Vincent Guittot 75d659317b cpufreq: Add a cpufreq pressure feedback for the scheduler
Provide to the scheduler a feedback about the temporary max available
capacity. Unlike arch_update_thermal_pressure(), this doesn't need to be
filtered as the pressure will happen for dozens of ms or more.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Qais Yousef <qyousef@layalina.io>
Reviewed-by: Lukasz Luba <lukasz.luba@arm.com>
Reviewed-by: Dhruva Gole <d-gole@ti.com>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
Link: https://lore.kernel.org/r/20240326091616.3696851-2-vincent.guittot@linaro.org
2024-04-24 12:07:58 +02:00

1225 lines
36 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* linux/include/linux/cpufreq.h
*
* Copyright (C) 2001 Russell King
* (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
*/
#ifndef _LINUX_CPUFREQ_H
#define _LINUX_CPUFREQ_H
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/completion.h>
#include <linux/kobject.h>
#include <linux/notifier.h>
#include <linux/of.h>
#include <linux/pm_opp.h>
#include <linux/pm_qos.h>
#include <linux/spinlock.h>
#include <linux/sysfs.h>
#include <linux/minmax.h>
/*********************************************************************
* CPUFREQ INTERFACE *
*********************************************************************/
/*
* Frequency values here are CPU kHz
*
* Maximum transition latency is in nanoseconds - if it's unknown,
* CPUFREQ_ETERNAL shall be used.
*/
#define CPUFREQ_ETERNAL (-1)
#define CPUFREQ_NAME_LEN 16
/* Print length for names. Extra 1 space for accommodating '\n' in prints */
#define CPUFREQ_NAME_PLEN (CPUFREQ_NAME_LEN + 1)
struct cpufreq_governor;
enum cpufreq_table_sorting {
CPUFREQ_TABLE_UNSORTED,
CPUFREQ_TABLE_SORTED_ASCENDING,
CPUFREQ_TABLE_SORTED_DESCENDING
};
struct cpufreq_cpuinfo {
unsigned int max_freq;
unsigned int min_freq;
/* in 10^(-9) s = nanoseconds */
unsigned int transition_latency;
};
struct cpufreq_policy {
/* CPUs sharing clock, require sw coordination */
cpumask_var_t cpus; /* Online CPUs only */
cpumask_var_t related_cpus; /* Online + Offline CPUs */
cpumask_var_t real_cpus; /* Related and present */
unsigned int shared_type; /* ACPI: ANY or ALL affected CPUs
should set cpufreq */
unsigned int cpu; /* cpu managing this policy, must be online */
struct clk *clk;
struct cpufreq_cpuinfo cpuinfo;/* see above */
unsigned int min; /* in kHz */
unsigned int max; /* in kHz */
unsigned int cur; /* in kHz, only needed if cpufreq
* governors are used */
unsigned int suspend_freq; /* freq to set during suspend */
unsigned int policy; /* see above */
unsigned int last_policy; /* policy before unplug */
struct cpufreq_governor *governor; /* see below */
void *governor_data;
char last_governor[CPUFREQ_NAME_LEN]; /* last governor used */
struct work_struct update; /* if update_policy() needs to be
* called, but you're in IRQ context */
struct freq_constraints constraints;
struct freq_qos_request *min_freq_req;
struct freq_qos_request *max_freq_req;
struct cpufreq_frequency_table *freq_table;
enum cpufreq_table_sorting freq_table_sorted;
struct list_head policy_list;
struct kobject kobj;
struct completion kobj_unregister;
/*
* The rules for this semaphore:
* - Any routine that wants to read from the policy structure will
* do a down_read on this semaphore.
* - Any routine that will write to the policy structure and/or may take away
* the policy altogether (eg. CPU hotplug), will hold this lock in write
* mode before doing so.
*/
struct rw_semaphore rwsem;
/*
* Fast switch flags:
* - fast_switch_possible should be set by the driver if it can
* guarantee that frequency can be changed on any CPU sharing the
* policy and that the change will affect all of the policy CPUs then.
* - fast_switch_enabled is to be set by governors that support fast
* frequency switching with the help of cpufreq_enable_fast_switch().
*/
bool fast_switch_possible;
bool fast_switch_enabled;
/*
* Set if the CPUFREQ_GOV_STRICT_TARGET flag is set for the current
* governor.
*/
bool strict_target;
/*
* Set if inefficient frequencies were found in the frequency table.
* This indicates if the relation flag CPUFREQ_RELATION_E can be
* honored.
*/
bool efficiencies_available;
/*
* Preferred average time interval between consecutive invocations of
* the driver to set the frequency for this policy. To be set by the
* scaling driver (0, which is the default, means no preference).
*/
unsigned int transition_delay_us;
/*
* Remote DVFS flag (Not added to the driver structure as we don't want
* to access another structure from scheduler hotpath).
*
* Should be set if CPUs can do DVFS on behalf of other CPUs from
* different cpufreq policies.
*/
bool dvfs_possible_from_any_cpu;
/* Per policy boost enabled flag. */
bool boost_enabled;
/* Cached frequency lookup from cpufreq_driver_resolve_freq. */
unsigned int cached_target_freq;
unsigned int cached_resolved_idx;
/* Synchronization for frequency transitions */
bool transition_ongoing; /* Tracks transition status */
spinlock_t transition_lock;
wait_queue_head_t transition_wait;
struct task_struct *transition_task; /* Task which is doing the transition */
/* cpufreq-stats */
struct cpufreq_stats *stats;
/* For cpufreq driver's internal use */
void *driver_data;
/* Pointer to the cooling device if used for thermal mitigation */
struct thermal_cooling_device *cdev;
struct notifier_block nb_min;
struct notifier_block nb_max;
};
/*
* Used for passing new cpufreq policy data to the cpufreq driver's ->verify()
* callback for sanitization. That callback is only expected to modify the min
* and max values, if necessary, and specifically it must not update the
* frequency table.
*/
struct cpufreq_policy_data {
struct cpufreq_cpuinfo cpuinfo;
struct cpufreq_frequency_table *freq_table;
unsigned int cpu;
unsigned int min; /* in kHz */
unsigned int max; /* in kHz */
};
struct cpufreq_freqs {
struct cpufreq_policy *policy;
unsigned int old;
unsigned int new;
u8 flags; /* flags of cpufreq_driver, see below. */
};
/* Only for ACPI */
#define CPUFREQ_SHARED_TYPE_NONE (0) /* None */
#define CPUFREQ_SHARED_TYPE_HW (1) /* HW does needed coordination */
#define CPUFREQ_SHARED_TYPE_ALL (2) /* All dependent CPUs should set freq */
#define CPUFREQ_SHARED_TYPE_ANY (3) /* Freq can be set from any dependent CPU*/
#ifdef CONFIG_CPU_FREQ
struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu);
struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu);
void cpufreq_cpu_put(struct cpufreq_policy *policy);
#else
static inline struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
{
return NULL;
}
static inline struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
{
return NULL;
}
static inline void cpufreq_cpu_put(struct cpufreq_policy *policy) { }
#endif
static inline bool policy_is_inactive(struct cpufreq_policy *policy)
{
return cpumask_empty(policy->cpus);
}
static inline bool policy_is_shared(struct cpufreq_policy *policy)
{
return cpumask_weight(policy->cpus) > 1;
}
#ifdef CONFIG_CPU_FREQ
unsigned int cpufreq_get(unsigned int cpu);
unsigned int cpufreq_quick_get(unsigned int cpu);
unsigned int cpufreq_quick_get_max(unsigned int cpu);
unsigned int cpufreq_get_hw_max_freq(unsigned int cpu);
void disable_cpufreq(void);
u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy);
struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu);
void cpufreq_cpu_release(struct cpufreq_policy *policy);
int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu);
void refresh_frequency_limits(struct cpufreq_policy *policy);
void cpufreq_update_policy(unsigned int cpu);
void cpufreq_update_limits(unsigned int cpu);
bool have_governor_per_policy(void);
bool cpufreq_supports_freq_invariance(void);
struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy);
void cpufreq_enable_fast_switch(struct cpufreq_policy *policy);
void cpufreq_disable_fast_switch(struct cpufreq_policy *policy);
bool has_target_index(void);
DECLARE_PER_CPU(unsigned long, cpufreq_pressure);
static inline unsigned long cpufreq_get_pressure(int cpu)
{
return READ_ONCE(per_cpu(cpufreq_pressure, cpu));
}
#else
static inline unsigned int cpufreq_get(unsigned int cpu)
{
return 0;
}
static inline unsigned int cpufreq_quick_get(unsigned int cpu)
{
return 0;
}
static inline unsigned int cpufreq_quick_get_max(unsigned int cpu)
{
return 0;
}
static inline unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
{
return 0;
}
static inline bool cpufreq_supports_freq_invariance(void)
{
return false;
}
static inline void disable_cpufreq(void) { }
static inline void cpufreq_update_limits(unsigned int cpu) { }
static inline unsigned long cpufreq_get_pressure(int cpu)
{
return 0;
}
#endif
#ifdef CONFIG_CPU_FREQ_STAT
void cpufreq_stats_create_table(struct cpufreq_policy *policy);
void cpufreq_stats_free_table(struct cpufreq_policy *policy);
void cpufreq_stats_record_transition(struct cpufreq_policy *policy,
unsigned int new_freq);
#else
static inline void cpufreq_stats_create_table(struct cpufreq_policy *policy) { }
static inline void cpufreq_stats_free_table(struct cpufreq_policy *policy) { }
static inline void cpufreq_stats_record_transition(struct cpufreq_policy *policy,
unsigned int new_freq) { }
#endif /* CONFIG_CPU_FREQ_STAT */
/*********************************************************************
* CPUFREQ DRIVER INTERFACE *
*********************************************************************/
#define CPUFREQ_RELATION_L 0 /* lowest frequency at or above target */
#define CPUFREQ_RELATION_H 1 /* highest frequency below or at target */
#define CPUFREQ_RELATION_C 2 /* closest frequency to target */
/* relation flags */
#define CPUFREQ_RELATION_E BIT(2) /* Get if possible an efficient frequency */
#define CPUFREQ_RELATION_LE (CPUFREQ_RELATION_L | CPUFREQ_RELATION_E)
#define CPUFREQ_RELATION_HE (CPUFREQ_RELATION_H | CPUFREQ_RELATION_E)
#define CPUFREQ_RELATION_CE (CPUFREQ_RELATION_C | CPUFREQ_RELATION_E)
struct freq_attr {
struct attribute attr;
ssize_t (*show)(struct cpufreq_policy *, char *);
ssize_t (*store)(struct cpufreq_policy *, const char *, size_t count);
};
#define cpufreq_freq_attr_ro(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0444, show_##_name, NULL)
#define cpufreq_freq_attr_ro_perm(_name, _perm) \
static struct freq_attr _name = \
__ATTR(_name, _perm, show_##_name, NULL)
#define cpufreq_freq_attr_rw(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)
#define cpufreq_freq_attr_wo(_name) \
static struct freq_attr _name = \
__ATTR(_name, 0200, NULL, store_##_name)
#define define_one_global_ro(_name) \
static struct kobj_attribute _name = \
__ATTR(_name, 0444, show_##_name, NULL)
#define define_one_global_rw(_name) \
static struct kobj_attribute _name = \
__ATTR(_name, 0644, show_##_name, store_##_name)
struct cpufreq_driver {
char name[CPUFREQ_NAME_LEN];
u16 flags;
void *driver_data;
/* needed by all drivers */
int (*init)(struct cpufreq_policy *policy);
int (*verify)(struct cpufreq_policy_data *policy);
/* define one out of two */
int (*setpolicy)(struct cpufreq_policy *policy);
int (*target)(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation); /* Deprecated */
int (*target_index)(struct cpufreq_policy *policy,
unsigned int index);
unsigned int (*fast_switch)(struct cpufreq_policy *policy,
unsigned int target_freq);
/*
* ->fast_switch() replacement for drivers that use an internal
* representation of performance levels and can pass hints other than
* the target performance level to the hardware. This can only be set
* if ->fast_switch is set too, because in those cases (under specific
* conditions) scale invariance can be disabled, which causes the
* schedutil governor to fall back to the latter.
*/
void (*adjust_perf)(unsigned int cpu,
unsigned long min_perf,
unsigned long target_perf,
unsigned long capacity);
/*
* Only for drivers with target_index() and CPUFREQ_ASYNC_NOTIFICATION
* unset.
*
* get_intermediate should return a stable intermediate frequency
* platform wants to switch to and target_intermediate() should set CPU
* to that frequency, before jumping to the frequency corresponding
* to 'index'. Core will take care of sending notifications and driver
* doesn't have to handle them in target_intermediate() or
* target_index().
*
* Drivers can return '0' from get_intermediate() in case they don't
* wish to switch to intermediate frequency for some target frequency.
* In that case core will directly call ->target_index().
*/
unsigned int (*get_intermediate)(struct cpufreq_policy *policy,
unsigned int index);
int (*target_intermediate)(struct cpufreq_policy *policy,
unsigned int index);
/* should be defined, if possible, return 0 on error */
unsigned int (*get)(unsigned int cpu);
/* Called to update policy limits on firmware notifications. */
void (*update_limits)(unsigned int cpu);
/* optional */
int (*bios_limit)(int cpu, unsigned int *limit);
int (*online)(struct cpufreq_policy *policy);
int (*offline)(struct cpufreq_policy *policy);
int (*exit)(struct cpufreq_policy *policy);
int (*suspend)(struct cpufreq_policy *policy);
int (*resume)(struct cpufreq_policy *policy);
/* Will be called after the driver is fully initialized */
void (*ready)(struct cpufreq_policy *policy);
struct freq_attr **attr;
/* platform specific boost support code */
bool boost_enabled;
int (*set_boost)(struct cpufreq_policy *policy, int state);
/*
* Set by drivers that want to register with the energy model after the
* policy is properly initialized, but before the governor is started.
*/
void (*register_em)(struct cpufreq_policy *policy);
};
/* flags */
/*
* Set by drivers that need to update internal upper and lower boundaries along
* with the target frequency and so the core and governors should also invoke
* the diver if the target frequency does not change, but the policy min or max
* may have changed.
*/
#define CPUFREQ_NEED_UPDATE_LIMITS BIT(0)
/* loops_per_jiffy or other kernel "constants" aren't affected by frequency transitions */
#define CPUFREQ_CONST_LOOPS BIT(1)
/*
* Set by drivers that want the core to automatically register the cpufreq
* driver as a thermal cooling device.
*/
#define CPUFREQ_IS_COOLING_DEV BIT(2)
/*
* This should be set by platforms having multiple clock-domains, i.e.
* supporting multiple policies. With this sysfs directories of governor would
* be created in cpu/cpu<num>/cpufreq/ directory and so they can use the same
* governor with different tunables for different clusters.
*/
#define CPUFREQ_HAVE_GOVERNOR_PER_POLICY BIT(3)
/*
* Driver will do POSTCHANGE notifications from outside of their ->target()
* routine and so must set cpufreq_driver->flags with this flag, so that core
* can handle them specially.
*/
#define CPUFREQ_ASYNC_NOTIFICATION BIT(4)
/*
* Set by drivers which want cpufreq core to check if CPU is running at a
* frequency present in freq-table exposed by the driver. For these drivers if
* CPU is found running at an out of table freq, we will try to set it to a freq
* from the table. And if that fails, we will stop further boot process by
* issuing a BUG_ON().
*/
#define CPUFREQ_NEED_INITIAL_FREQ_CHECK BIT(5)
/*
* Set by drivers to disallow use of governors with "dynamic_switching" flag
* set.
*/
#define CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING BIT(6)
int cpufreq_register_driver(struct cpufreq_driver *driver_data);
void cpufreq_unregister_driver(struct cpufreq_driver *driver_data);
bool cpufreq_driver_test_flags(u16 flags);
const char *cpufreq_get_current_driver(void);
void *cpufreq_get_driver_data(void);
static inline int cpufreq_thermal_control_enabled(struct cpufreq_driver *drv)
{
return IS_ENABLED(CONFIG_CPU_THERMAL) &&
(drv->flags & CPUFREQ_IS_COOLING_DEV);
}
static inline void cpufreq_verify_within_limits(struct cpufreq_policy_data *policy,
unsigned int min,
unsigned int max)
{
policy->max = clamp(policy->max, min, max);
policy->min = clamp(policy->min, min, policy->max);
}
static inline void
cpufreq_verify_within_cpu_limits(struct cpufreq_policy_data *policy)
{
cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
policy->cpuinfo.max_freq);
}
#ifdef CONFIG_CPU_FREQ
void cpufreq_suspend(void);
void cpufreq_resume(void);
int cpufreq_generic_suspend(struct cpufreq_policy *policy);
#else
static inline void cpufreq_suspend(void) {}
static inline void cpufreq_resume(void) {}
#endif
/*********************************************************************
* CPUFREQ NOTIFIER INTERFACE *
*********************************************************************/
#define CPUFREQ_TRANSITION_NOTIFIER (0)
#define CPUFREQ_POLICY_NOTIFIER (1)
/* Transition notifiers */
#define CPUFREQ_PRECHANGE (0)
#define CPUFREQ_POSTCHANGE (1)
/* Policy Notifiers */
#define CPUFREQ_CREATE_POLICY (0)
#define CPUFREQ_REMOVE_POLICY (1)
#ifdef CONFIG_CPU_FREQ
int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list);
int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list);
void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs);
void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
struct cpufreq_freqs *freqs, int transition_failed);
#else /* CONFIG_CPU_FREQ */
static inline int cpufreq_register_notifier(struct notifier_block *nb,
unsigned int list)
{
return 0;
}
static inline int cpufreq_unregister_notifier(struct notifier_block *nb,
unsigned int list)
{
return 0;
}
#endif /* !CONFIG_CPU_FREQ */
/**
* cpufreq_scale - "old * mult / div" calculation for large values (32-bit-arch
* safe)
* @old: old value
* @div: divisor
* @mult: multiplier
*
*
* new = old * mult / div
*/
static inline unsigned long cpufreq_scale(unsigned long old, u_int div,
u_int mult)
{
#if BITS_PER_LONG == 32
u64 result = ((u64) old) * ((u64) mult);
do_div(result, div);
return (unsigned long) result;
#elif BITS_PER_LONG == 64
unsigned long result = old * ((u64) mult);
result /= div;
return result;
#endif
}
/*********************************************************************
* CPUFREQ GOVERNORS *
*********************************************************************/
#define CPUFREQ_POLICY_UNKNOWN (0)
/*
* If (cpufreq_driver->target) exists, the ->governor decides what frequency
* within the limits is used. If (cpufreq_driver->setpolicy> exists, these
* two generic policies are available:
*/
#define CPUFREQ_POLICY_POWERSAVE (1)
#define CPUFREQ_POLICY_PERFORMANCE (2)
/*
* The polling frequency depends on the capability of the processor. Default
* polling frequency is 1000 times the transition latency of the processor.
*/
#define LATENCY_MULTIPLIER (1000)
struct cpufreq_governor {
char name[CPUFREQ_NAME_LEN];
int (*init)(struct cpufreq_policy *policy);
void (*exit)(struct cpufreq_policy *policy);
int (*start)(struct cpufreq_policy *policy);
void (*stop)(struct cpufreq_policy *policy);
void (*limits)(struct cpufreq_policy *policy);
ssize_t (*show_setspeed) (struct cpufreq_policy *policy,
char *buf);
int (*store_setspeed) (struct cpufreq_policy *policy,
unsigned int freq);
struct list_head governor_list;
struct module *owner;
u8 flags;
};
/* Governor flags */
/* For governors which change frequency dynamically by themselves */
#define CPUFREQ_GOV_DYNAMIC_SWITCHING BIT(0)
/* For governors wanting the target frequency to be set exactly */
#define CPUFREQ_GOV_STRICT_TARGET BIT(1)
/* Pass a target to the cpufreq driver */
unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
unsigned int target_freq);
void cpufreq_driver_adjust_perf(unsigned int cpu,
unsigned long min_perf,
unsigned long target_perf,
unsigned long capacity);
bool cpufreq_driver_has_adjust_perf(void);
int cpufreq_driver_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation);
int __cpufreq_driver_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation);
unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
unsigned int target_freq);
unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy);
int cpufreq_register_governor(struct cpufreq_governor *governor);
void cpufreq_unregister_governor(struct cpufreq_governor *governor);
int cpufreq_start_governor(struct cpufreq_policy *policy);
void cpufreq_stop_governor(struct cpufreq_policy *policy);
#define cpufreq_governor_init(__governor) \
static int __init __governor##_init(void) \
{ \
return cpufreq_register_governor(&__governor); \
} \
core_initcall(__governor##_init)
#define cpufreq_governor_exit(__governor) \
static void __exit __governor##_exit(void) \
{ \
return cpufreq_unregister_governor(&__governor); \
} \
module_exit(__governor##_exit)
struct cpufreq_governor *cpufreq_default_governor(void);
struct cpufreq_governor *cpufreq_fallback_governor(void);
static inline void cpufreq_policy_apply_limits(struct cpufreq_policy *policy)
{
if (policy->max < policy->cur)
__cpufreq_driver_target(policy, policy->max,
CPUFREQ_RELATION_HE);
else if (policy->min > policy->cur)
__cpufreq_driver_target(policy, policy->min,
CPUFREQ_RELATION_LE);
}
/* Governor attribute set */
struct gov_attr_set {
struct kobject kobj;
struct list_head policy_list;
struct mutex update_lock;
int usage_count;
};
/* sysfs ops for cpufreq governors */
extern const struct sysfs_ops governor_sysfs_ops;
static inline struct gov_attr_set *to_gov_attr_set(struct kobject *kobj)
{
return container_of(kobj, struct gov_attr_set, kobj);
}
void gov_attr_set_init(struct gov_attr_set *attr_set, struct list_head *list_node);
void gov_attr_set_get(struct gov_attr_set *attr_set, struct list_head *list_node);
unsigned int gov_attr_set_put(struct gov_attr_set *attr_set, struct list_head *list_node);
/* Governor sysfs attribute */
struct governor_attr {
struct attribute attr;
ssize_t (*show)(struct gov_attr_set *attr_set, char *buf);
ssize_t (*store)(struct gov_attr_set *attr_set, const char *buf,
size_t count);
};
/*********************************************************************
* FREQUENCY TABLE HELPERS *
*********************************************************************/
/* Special Values of .frequency field */
#define CPUFREQ_ENTRY_INVALID ~0u
#define CPUFREQ_TABLE_END ~1u
/* Special Values of .flags field */
#define CPUFREQ_BOOST_FREQ (1 << 0)
#define CPUFREQ_INEFFICIENT_FREQ (1 << 1)
struct cpufreq_frequency_table {
unsigned int flags;
unsigned int driver_data; /* driver specific data, not used by core */
unsigned int frequency; /* kHz - doesn't need to be in ascending
* order */
};
/*
* cpufreq_for_each_entry - iterate over a cpufreq_frequency_table
* @pos: the cpufreq_frequency_table * to use as a loop cursor.
* @table: the cpufreq_frequency_table * to iterate over.
*/
#define cpufreq_for_each_entry(pos, table) \
for (pos = table; pos->frequency != CPUFREQ_TABLE_END; pos++)
/*
* cpufreq_for_each_entry_idx - iterate over a cpufreq_frequency_table
* with index
* @pos: the cpufreq_frequency_table * to use as a loop cursor.
* @table: the cpufreq_frequency_table * to iterate over.
* @idx: the table entry currently being processed
*/
#define cpufreq_for_each_entry_idx(pos, table, idx) \
for (pos = table, idx = 0; pos->frequency != CPUFREQ_TABLE_END; \
pos++, idx++)
/*
* cpufreq_for_each_valid_entry - iterate over a cpufreq_frequency_table
* excluding CPUFREQ_ENTRY_INVALID frequencies.
* @pos: the cpufreq_frequency_table * to use as a loop cursor.
* @table: the cpufreq_frequency_table * to iterate over.
*/
#define cpufreq_for_each_valid_entry(pos, table) \
for (pos = table; pos->frequency != CPUFREQ_TABLE_END; pos++) \
if (pos->frequency == CPUFREQ_ENTRY_INVALID) \
continue; \
else
/*
* cpufreq_for_each_valid_entry_idx - iterate with index over a cpufreq
* frequency_table excluding CPUFREQ_ENTRY_INVALID frequencies.
* @pos: the cpufreq_frequency_table * to use as a loop cursor.
* @table: the cpufreq_frequency_table * to iterate over.
* @idx: the table entry currently being processed
*/
#define cpufreq_for_each_valid_entry_idx(pos, table, idx) \
cpufreq_for_each_entry_idx(pos, table, idx) \
if (pos->frequency == CPUFREQ_ENTRY_INVALID) \
continue; \
else
/**
* cpufreq_for_each_efficient_entry_idx - iterate with index over a cpufreq
* frequency_table excluding CPUFREQ_ENTRY_INVALID and
* CPUFREQ_INEFFICIENT_FREQ frequencies.
* @pos: the &struct cpufreq_frequency_table to use as a loop cursor.
* @table: the &struct cpufreq_frequency_table to iterate over.
* @idx: the table entry currently being processed.
* @efficiencies: set to true to only iterate over efficient frequencies.
*/
#define cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) \
cpufreq_for_each_valid_entry_idx(pos, table, idx) \
if (efficiencies && (pos->flags & CPUFREQ_INEFFICIENT_FREQ)) \
continue; \
else
int cpufreq_frequency_table_cpuinfo(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table);
int cpufreq_frequency_table_verify(struct cpufreq_policy_data *policy,
struct cpufreq_frequency_table *table);
int cpufreq_generic_frequency_table_verify(struct cpufreq_policy_data *policy);
int cpufreq_table_index_unsorted(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation);
int cpufreq_frequency_table_get_index(struct cpufreq_policy *policy,
unsigned int freq);
ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf);
#ifdef CONFIG_CPU_FREQ
int cpufreq_boost_trigger_state(int state);
int cpufreq_boost_enabled(void);
int cpufreq_enable_boost_support(void);
bool policy_has_boost_freq(struct cpufreq_policy *policy);
/* Find lowest freq at or above target in a table in ascending order */
static inline int cpufreq_table_find_index_al(struct cpufreq_policy *policy,
unsigned int target_freq,
bool efficiencies)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos;
unsigned int freq;
int idx, best = -1;
cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
freq = pos->frequency;
if (freq >= target_freq)
return idx;
best = idx;
}
return best;
}
/* Find lowest freq at or above target in a table in descending order */
static inline int cpufreq_table_find_index_dl(struct cpufreq_policy *policy,
unsigned int target_freq,
bool efficiencies)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos;
unsigned int freq;
int idx, best = -1;
cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
freq = pos->frequency;
if (freq == target_freq)
return idx;
if (freq > target_freq) {
best = idx;
continue;
}
/* No freq found above target_freq */
if (best == -1)
return idx;
return best;
}
return best;
}
/* Works only on sorted freq-tables */
static inline int cpufreq_table_find_index_l(struct cpufreq_policy *policy,
unsigned int target_freq,
bool efficiencies)
{
target_freq = clamp_val(target_freq, policy->min, policy->max);
if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
return cpufreq_table_find_index_al(policy, target_freq,
efficiencies);
else
return cpufreq_table_find_index_dl(policy, target_freq,
efficiencies);
}
/* Find highest freq at or below target in a table in ascending order */
static inline int cpufreq_table_find_index_ah(struct cpufreq_policy *policy,
unsigned int target_freq,
bool efficiencies)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos;
unsigned int freq;
int idx, best = -1;
cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
freq = pos->frequency;
if (freq == target_freq)
return idx;
if (freq < target_freq) {
best = idx;
continue;
}
/* No freq found below target_freq */
if (best == -1)
return idx;
return best;
}
return best;
}
/* Find highest freq at or below target in a table in descending order */
static inline int cpufreq_table_find_index_dh(struct cpufreq_policy *policy,
unsigned int target_freq,
bool efficiencies)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos;
unsigned int freq;
int idx, best = -1;
cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
freq = pos->frequency;
if (freq <= target_freq)
return idx;
best = idx;
}
return best;
}
/* Works only on sorted freq-tables */
static inline int cpufreq_table_find_index_h(struct cpufreq_policy *policy,
unsigned int target_freq,
bool efficiencies)
{
target_freq = clamp_val(target_freq, policy->min, policy->max);
if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
return cpufreq_table_find_index_ah(policy, target_freq,
efficiencies);
else
return cpufreq_table_find_index_dh(policy, target_freq,
efficiencies);
}
/* Find closest freq to target in a table in ascending order */
static inline int cpufreq_table_find_index_ac(struct cpufreq_policy *policy,
unsigned int target_freq,
bool efficiencies)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos;
unsigned int freq;
int idx, best = -1;
cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
freq = pos->frequency;
if (freq == target_freq)
return idx;
if (freq < target_freq) {
best = idx;
continue;
}
/* No freq found below target_freq */
if (best == -1)
return idx;
/* Choose the closest freq */
if (target_freq - table[best].frequency > freq - target_freq)
return idx;
return best;
}
return best;
}
/* Find closest freq to target in a table in descending order */
static inline int cpufreq_table_find_index_dc(struct cpufreq_policy *policy,
unsigned int target_freq,
bool efficiencies)
{
struct cpufreq_frequency_table *table = policy->freq_table;
struct cpufreq_frequency_table *pos;
unsigned int freq;
int idx, best = -1;
cpufreq_for_each_efficient_entry_idx(pos, table, idx, efficiencies) {
freq = pos->frequency;
if (freq == target_freq)
return idx;
if (freq > target_freq) {
best = idx;
continue;
}
/* No freq found above target_freq */
if (best == -1)
return idx;
/* Choose the closest freq */
if (table[best].frequency - target_freq > target_freq - freq)
return idx;
return best;
}
return best;
}
/* Works only on sorted freq-tables */
static inline int cpufreq_table_find_index_c(struct cpufreq_policy *policy,
unsigned int target_freq,
bool efficiencies)
{
target_freq = clamp_val(target_freq, policy->min, policy->max);
if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
return cpufreq_table_find_index_ac(policy, target_freq,
efficiencies);
else
return cpufreq_table_find_index_dc(policy, target_freq,
efficiencies);
}
static inline bool cpufreq_is_in_limits(struct cpufreq_policy *policy, int idx)
{
unsigned int freq;
if (idx < 0)
return false;
freq = policy->freq_table[idx].frequency;
return freq == clamp_val(freq, policy->min, policy->max);
}
static inline int cpufreq_frequency_table_target(struct cpufreq_policy *policy,
unsigned int target_freq,
unsigned int relation)
{
bool efficiencies = policy->efficiencies_available &&
(relation & CPUFREQ_RELATION_E);
int idx;
/* cpufreq_table_index_unsorted() has no use for this flag anyway */
relation &= ~CPUFREQ_RELATION_E;
if (unlikely(policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED))
return cpufreq_table_index_unsorted(policy, target_freq,
relation);
retry:
switch (relation) {
case CPUFREQ_RELATION_L:
idx = cpufreq_table_find_index_l(policy, target_freq,
efficiencies);
break;
case CPUFREQ_RELATION_H:
idx = cpufreq_table_find_index_h(policy, target_freq,
efficiencies);
break;
case CPUFREQ_RELATION_C:
idx = cpufreq_table_find_index_c(policy, target_freq,
efficiencies);
break;
default:
WARN_ON_ONCE(1);
return 0;
}
/* Limit frequency index to honor policy->min/max */
if (!cpufreq_is_in_limits(policy, idx) && efficiencies) {
efficiencies = false;
goto retry;
}
return idx;
}
static inline int cpufreq_table_count_valid_entries(const struct cpufreq_policy *policy)
{
struct cpufreq_frequency_table *pos;
int count = 0;
if (unlikely(!policy->freq_table))
return 0;
cpufreq_for_each_valid_entry(pos, policy->freq_table)
count++;
return count;
}
/**
* cpufreq_table_set_inefficient() - Mark a frequency as inefficient
* @policy: the &struct cpufreq_policy containing the inefficient frequency
* @frequency: the inefficient frequency
*
* The &struct cpufreq_policy must use a sorted frequency table
*
* Return: %0 on success or a negative errno code
*/
static inline int
cpufreq_table_set_inefficient(struct cpufreq_policy *policy,
unsigned int frequency)
{
struct cpufreq_frequency_table *pos;
/* Not supported */
if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED)
return -EINVAL;
cpufreq_for_each_valid_entry(pos, policy->freq_table) {
if (pos->frequency == frequency) {
pos->flags |= CPUFREQ_INEFFICIENT_FREQ;
policy->efficiencies_available = true;
return 0;
}
}
return -EINVAL;
}
static inline int parse_perf_domain(int cpu, const char *list_name,
const char *cell_name,
struct of_phandle_args *args)
{
struct device_node *cpu_np;
int ret;
cpu_np = of_cpu_device_node_get(cpu);
if (!cpu_np)
return -ENODEV;
ret = of_parse_phandle_with_args(cpu_np, list_name, cell_name, 0,
args);
if (ret < 0)
return ret;
of_node_put(cpu_np);
return 0;
}
static inline int of_perf_domain_get_sharing_cpumask(int pcpu, const char *list_name,
const char *cell_name, struct cpumask *cpumask,
struct of_phandle_args *pargs)
{
int cpu, ret;
struct of_phandle_args args;
ret = parse_perf_domain(pcpu, list_name, cell_name, pargs);
if (ret < 0)
return ret;
cpumask_set_cpu(pcpu, cpumask);
for_each_possible_cpu(cpu) {
if (cpu == pcpu)
continue;
ret = parse_perf_domain(cpu, list_name, cell_name, &args);
if (ret < 0)
continue;
if (of_phandle_args_equal(pargs, &args))
cpumask_set_cpu(cpu, cpumask);
of_node_put(args.np);
}
return 0;
}
#else
static inline int cpufreq_boost_trigger_state(int state)
{
return 0;
}
static inline int cpufreq_boost_enabled(void)
{
return 0;
}
static inline int cpufreq_enable_boost_support(void)
{
return -EINVAL;
}
static inline bool policy_has_boost_freq(struct cpufreq_policy *policy)
{
return false;
}
static inline int
cpufreq_table_set_inefficient(struct cpufreq_policy *policy,
unsigned int frequency)
{
return -EINVAL;
}
static inline int of_perf_domain_get_sharing_cpumask(int pcpu, const char *list_name,
const char *cell_name, struct cpumask *cpumask,
struct of_phandle_args *pargs)
{
return -EOPNOTSUPP;
}
#endif
extern unsigned int arch_freq_get_on_cpu(int cpu);
#ifndef arch_set_freq_scale
static __always_inline
void arch_set_freq_scale(const struct cpumask *cpus,
unsigned long cur_freq,
unsigned long max_freq)
{
}
#endif
/* the following are really really optional */
extern struct freq_attr cpufreq_freq_attr_scaling_available_freqs;
extern struct freq_attr cpufreq_freq_attr_scaling_boost_freqs;
extern struct freq_attr *cpufreq_generic_attr[];
int cpufreq_table_validate_and_sort(struct cpufreq_policy *policy);
unsigned int cpufreq_generic_get(unsigned int cpu);
void cpufreq_generic_init(struct cpufreq_policy *policy,
struct cpufreq_frequency_table *table,
unsigned int transition_latency);
static inline void cpufreq_register_em_with_opp(struct cpufreq_policy *policy)
{
dev_pm_opp_of_register_em(get_cpu_device(policy->cpu),
policy->related_cpus);
}
#endif /* _LINUX_CPUFREQ_H */