Benjamin Gaignard 022eb8ae8b ARM: 8938/1: kernel: initialize broadcast hrtimer based clock event device
On platforms implementing CPU power management, the CPUidle subsystem
can allow CPUs to enter idle states where local timers logic is lost on power
down. To keep the software timers functional the kernel relies on an
always-on broadcast timer to be present in the platform to relay the
interrupt signalling the timer expiries.

For platforms implementing CPU core gating that do not implement an always-on
HW timer or implement it in a broken way, this patch adds code to initialize
the kernel hrtimer based clock event device upon boot (which can be chosen as
tick broadcast device by the kernel).
It relies on a dynamically chosen CPU to be always powered-up. This CPU then
relays the timer interrupt to CPUs in deep-idle states through its HW local
timer device.

Having a CPU always-on has implications on power management platform
capabilities and makes CPUidle suboptimal, since at least a CPU is kept
always in a shallow idle state by the kernel to relay timer interrupts,
but at least leaves the kernel with a functional system with some working
power management capabilities.

The hrtimer based clock event device is unconditionally registered, but
has the lowest possible rating such that any broadcast-capable HW clock
event device present will be chosen in preference as the tick broadcast
device.

Signed-off-by: Benjamin Gaignard <benjamin.gaignard@st.com>
Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2019-11-16 10:51:24 +00:00

114 lines
2.5 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/arch/arm/kernel/time.c
*
* Copyright (C) 1991, 1992, 1995 Linus Torvalds
* Modifications for ARM (C) 1994-2001 Russell King
*
* This file contains the ARM-specific time handling details:
* reading the RTC at bootup, etc...
*/
#include <linux/clk-provider.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/profile.h>
#include <linux/sched.h>
#include <linux/sched_clock.h>
#include <linux/smp.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/timer.h>
#include <asm/mach/arch.h>
#include <asm/mach/time.h>
#include <asm/stacktrace.h>
#include <asm/thread_info.h>
#if defined(CONFIG_RTC_DRV_CMOS) || defined(CONFIG_RTC_DRV_CMOS_MODULE) || \
defined(CONFIG_NVRAM) || defined(CONFIG_NVRAM_MODULE)
/* this needs a better home */
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL(rtc_lock);
#endif /* pc-style 'CMOS' RTC support */
/* change this if you have some constant time drift */
#define USECS_PER_JIFFY (1000000/HZ)
#ifdef CONFIG_SMP
unsigned long profile_pc(struct pt_regs *regs)
{
struct stackframe frame;
if (!in_lock_functions(regs->ARM_pc))
return regs->ARM_pc;
arm_get_current_stackframe(regs, &frame);
do {
int ret = unwind_frame(&frame);
if (ret < 0)
return 0;
} while (in_lock_functions(frame.pc));
return frame.pc;
}
EXPORT_SYMBOL(profile_pc);
#endif
#ifndef CONFIG_GENERIC_CLOCKEVENTS
/*
* Kernel system timer support.
*/
void timer_tick(void)
{
profile_tick(CPU_PROFILING);
xtime_update(1);
#ifndef CONFIG_SMP
update_process_times(user_mode(get_irq_regs()));
#endif
}
#endif
static void dummy_clock_access(struct timespec64 *ts)
{
ts->tv_sec = 0;
ts->tv_nsec = 0;
}
static clock_access_fn __read_persistent_clock = dummy_clock_access;
void read_persistent_clock64(struct timespec64 *ts)
{
__read_persistent_clock(ts);
}
int __init register_persistent_clock(clock_access_fn read_persistent)
{
/* Only allow the clockaccess functions to be registered once */
if (__read_persistent_clock == dummy_clock_access) {
if (read_persistent)
__read_persistent_clock = read_persistent;
return 0;
}
return -EINVAL;
}
void __init time_init(void)
{
if (machine_desc->init_time) {
machine_desc->init_time();
} else {
#ifdef CONFIG_COMMON_CLK
of_clk_init(NULL);
#endif
timer_probe();
tick_setup_hrtimer_broadcast();
}
}