linux-stable/drivers/clk/clk-eyeq.c
Théo Lebrun 1cbdfcfd08 clk: eyeq: add EyeQ6H west fixed factor clocks
Previous setup was:
 - pll-west clock registered from driver at of_clk_init();
 - Both OCC and UART clocks registered from DT using fixed-factor-clock
   compatible.

Now that drivers/clk/clk-eyeq.c supports registering fixed factors, use
that capability to register west-per-occ and west-per-uart (giving them
proper names at the same time).

Also switch from hard-coded index 0 for pll-west to using the
EQ6HC_WEST_PLL_PER constant by exposed dt-bindings headers.

All get exposed at of_clk_init() because they get used by the AMBA PL011
serial ports. Those are instantiated before platform bus infrastructure.

Signed-off-by: Théo Lebrun <theo.lebrun@bootlin.com>
Link: https://lore.kernel.org/r/20241106-mbly-clk-v2-8-84cfefb3f485@bootlin.com
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2024-11-14 14:52:27 -08:00

860 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* PLL clock driver for the Mobileye EyeQ5, EyeQ6L and EyeQ6H platforms.
*
* This controller handles:
* - Read-only PLLs, all derived from the same main crystal clock.
* - It also exposes divider clocks, those are children to PLLs.
* - Fixed factor clocks, children to PLLs.
*
* Parent clock is expected to be constant. This driver's registers live in a
* shared region called OLB. Some PLLs and fixed-factors are initialised early
* by of_clk_init(); if so, two clk providers are registered.
*
* We use eqc_ as prefix, as-in "EyeQ Clock", but way shorter.
*
* Copyright (C) 2024 Mobileye Vision Technologies Ltd.
*/
/*
* Set pr_fmt() for printing from eqc_early_init().
* It is called at of_clk_init() stage (read: really early).
*/
#define pr_fmt(fmt) "clk-eyeq: " fmt
#include <linux/array_size.h>
#include <linux/auxiliary_bus.h>
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk-provider.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/io-64-nonatomic-hi-lo.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/overflow.h>
#include <linux/platform_device.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <dt-bindings/clock/mobileye,eyeq5-clk.h>
/* In frac mode, it enables fractional noise canceling DAC. Else, no function. */
#define PCSR0_DAC_EN BIT(0)
/* Fractional or integer mode */
#define PCSR0_DSM_EN BIT(1)
#define PCSR0_PLL_EN BIT(2)
/* All clocks output held at 0 */
#define PCSR0_FOUTPOSTDIV_EN BIT(3)
#define PCSR0_POST_DIV1 GENMASK(6, 4)
#define PCSR0_POST_DIV2 GENMASK(9, 7)
#define PCSR0_REF_DIV GENMASK(15, 10)
#define PCSR0_INTIN GENMASK(27, 16)
#define PCSR0_BYPASS BIT(28)
/* Bits 30..29 are reserved */
#define PCSR0_PLL_LOCKED BIT(31)
#define PCSR1_RESET BIT(0)
#define PCSR1_SSGC_DIV GENMASK(4, 1)
/* Spread amplitude (% = 0.1 * SPREAD[4:0]) */
#define PCSR1_SPREAD GENMASK(9, 5)
#define PCSR1_DIS_SSCG BIT(10)
/* Down-spread or center-spread */
#define PCSR1_DOWN_SPREAD BIT(11)
#define PCSR1_FRAC_IN GENMASK(31, 12)
struct eqc_pll {
unsigned int index;
const char *name;
unsigned int reg64;
};
/*
* Divider clock. Divider is 2*(v+1), with v the register value.
* Min divider is 2, max is 2*(2^width).
*/
struct eqc_div {
unsigned int index;
const char *name;
unsigned int parent;
unsigned int reg;
u8 shift;
u8 width;
};
struct eqc_fixed_factor {
unsigned int index;
const char *name;
unsigned int mult;
unsigned int div;
unsigned int parent;
};
struct eqc_match_data {
unsigned int pll_count;
const struct eqc_pll *plls;
unsigned int div_count;
const struct eqc_div *divs;
unsigned int fixed_factor_count;
const struct eqc_fixed_factor *fixed_factors;
const char *reset_auxdev_name;
const char *pinctrl_auxdev_name;
unsigned int early_clk_count;
};
struct eqc_early_match_data {
unsigned int early_pll_count;
const struct eqc_pll *early_plls;
unsigned int early_fixed_factor_count;
const struct eqc_fixed_factor *early_fixed_factors;
/*
* We want our of_xlate callback to EPROBE_DEFER instead of dev_err()
* and EINVAL. For that, we must know the total clock count.
*/
unsigned int late_clk_count;
};
/*
* Both factors (mult and div) must fit in 32 bits. When an operation overflows,
* this function throws away low bits so that factors still fit in 32 bits.
*
* Precision loss depends on amplitude of mult and div. Worst theorical
* loss is: (UINT_MAX+1) / UINT_MAX - 1 = 2.3e-10.
* This is 1Hz every 4.3GHz.
*/
static void eqc_pll_downshift_factors(unsigned long *mult, unsigned long *div)
{
unsigned long biggest;
unsigned int shift;
/* This function can be removed if mult/div switch to unsigned long. */
static_assert(sizeof_field(struct clk_fixed_factor, mult) == sizeof(unsigned int));
static_assert(sizeof_field(struct clk_fixed_factor, div) == sizeof(unsigned int));
/* No overflow, nothing to be done. */
if (*mult <= UINT_MAX && *div <= UINT_MAX)
return;
/*
* Compute the shift required to bring the biggest factor into unsigned
* int range. That is, shift its highest set bit to the unsigned int
* most significant bit.
*/
biggest = max(*mult, *div);
shift = __fls(biggest) - (BITS_PER_BYTE * sizeof(unsigned int)) + 1;
*mult >>= shift;
*div >>= shift;
}
static int eqc_pll_parse_registers(u32 r0, u32 r1, unsigned long *mult,
unsigned long *div, unsigned long *acc)
{
u32 spread;
if (r0 & PCSR0_BYPASS) {
*mult = 1;
*div = 1;
*acc = 0;
return 0;
}
if (!(r0 & PCSR0_PLL_LOCKED))
return -EINVAL;
*mult = FIELD_GET(PCSR0_INTIN, r0);
*div = FIELD_GET(PCSR0_REF_DIV, r0);
if (r0 & PCSR0_FOUTPOSTDIV_EN)
*div *= FIELD_GET(PCSR0_POST_DIV1, r0) * FIELD_GET(PCSR0_POST_DIV2, r0);
/* Fractional mode, in 2^20 (0x100000) parts. */
if (r0 & PCSR0_DSM_EN) {
*div *= (1ULL << 20);
*mult = *mult * (1ULL << 20) + FIELD_GET(PCSR1_FRAC_IN, r1);
}
if (!*mult || !*div)
return -EINVAL;
if (r1 & (PCSR1_RESET | PCSR1_DIS_SSCG)) {
*acc = 0;
return 0;
}
/*
* Spread spectrum.
*
* Spread is 1/1000 parts of frequency, accuracy is half of
* that. To get accuracy, convert to ppb (parts per billion).
*
* acc = spread * 1e6 / 2
* with acc in parts per billion and,
* spread in parts per thousand.
*/
spread = FIELD_GET(PCSR1_SPREAD, r1);
*acc = spread * 500000;
if (r1 & PCSR1_DOWN_SPREAD) {
/*
* Downspreading: the central frequency is half a
* spread lower.
*/
*mult *= 2000 - spread;
*div *= 2000;
/*
* Previous operation might overflow 32 bits. If it
* does, throw away the least amount of low bits.
*/
eqc_pll_downshift_factors(mult, div);
}
return 0;
}
static void eqc_probe_init_plls(struct device *dev, const struct eqc_match_data *data,
void __iomem *base, struct clk_hw_onecell_data *cells)
{
unsigned long mult, div, acc;
const struct eqc_pll *pll;
struct clk_hw *hw;
unsigned int i;
u32 r0, r1;
u64 val;
int ret;
for (i = 0; i < data->pll_count; i++) {
pll = &data->plls[i];
val = readq(base + pll->reg64);
r0 = val;
r1 = val >> 32;
ret = eqc_pll_parse_registers(r0, r1, &mult, &div, &acc);
if (ret) {
dev_warn(dev, "failed parsing state of %s\n", pll->name);
cells->hws[pll->index] = ERR_PTR(ret);
continue;
}
hw = clk_hw_register_fixed_factor_with_accuracy_fwname(dev,
dev->of_node, pll->name, "ref", 0, mult, div, acc);
cells->hws[pll->index] = hw;
if (IS_ERR(hw))
dev_warn(dev, "failed registering %s: %pe\n", pll->name, hw);
}
}
static void eqc_probe_init_divs(struct device *dev, const struct eqc_match_data *data,
void __iomem *base, struct clk_hw_onecell_data *cells)
{
struct clk_parent_data parent_data = { };
const struct eqc_div *div;
struct clk_hw *parent;
void __iomem *reg;
struct clk_hw *hw;
unsigned int i;
for (i = 0; i < data->div_count; i++) {
div = &data->divs[i];
reg = base + div->reg;
parent = cells->hws[div->parent];
if (IS_ERR(parent)) {
/* Parent is in early clk provider. */
parent_data.index = div->parent;
parent_data.hw = NULL;
} else {
/* Avoid clock lookup when we already have the hw reference. */
parent_data.index = 0;
parent_data.hw = parent;
}
hw = clk_hw_register_divider_table_parent_data(dev, div->name,
&parent_data, 0, reg, div->shift, div->width,
CLK_DIVIDER_EVEN_INTEGERS, NULL, NULL);
cells->hws[div->index] = hw;
if (IS_ERR(hw))
dev_warn(dev, "failed registering %s: %pe\n",
div->name, hw);
}
}
static void eqc_probe_init_fixed_factors(struct device *dev,
const struct eqc_match_data *data,
struct clk_hw_onecell_data *cells)
{
const struct eqc_fixed_factor *ff;
struct clk_hw *hw, *parent_hw;
unsigned int i;
for (i = 0; i < data->fixed_factor_count; i++) {
ff = &data->fixed_factors[i];
parent_hw = cells->hws[ff->parent];
if (IS_ERR(parent_hw)) {
/* Parent is in early clk provider. */
hw = clk_hw_register_fixed_factor_index(dev, ff->name,
ff->parent, 0, ff->mult, ff->div);
} else {
/* Avoid clock lookup when we already have the hw reference. */
hw = clk_hw_register_fixed_factor_parent_hw(dev, ff->name,
parent_hw, 0, ff->mult, ff->div);
}
cells->hws[ff->index] = hw;
if (IS_ERR(hw))
dev_warn(dev, "failed registering %s: %pe\n",
ff->name, hw);
}
}
static void eqc_auxdev_release(struct device *dev)
{
struct auxiliary_device *adev = to_auxiliary_dev(dev);
kfree(adev);
}
static int eqc_auxdev_create(struct device *dev, void __iomem *base,
const char *name, u32 id)
{
struct auxiliary_device *adev;
int ret;
adev = kzalloc(sizeof(*adev), GFP_KERNEL);
if (!adev)
return -ENOMEM;
adev->name = name;
adev->dev.parent = dev;
adev->dev.platform_data = (void __force *)base;
adev->dev.release = eqc_auxdev_release;
adev->id = id;
ret = auxiliary_device_init(adev);
if (ret)
return ret;
ret = auxiliary_device_add(adev);
if (ret)
auxiliary_device_uninit(adev);
return ret;
}
static int eqc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
const struct eqc_match_data *data;
struct clk_hw_onecell_data *cells;
unsigned int i, clk_count;
struct resource *res;
void __iomem *base;
int ret;
data = device_get_match_data(dev);
if (!data)
return 0; /* No clocks nor auxdevs, we are done. */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
base = ioremap(res->start, resource_size(res));
if (!base)
return -ENOMEM;
/* Init optional reset auxiliary device. */
if (data->reset_auxdev_name) {
ret = eqc_auxdev_create(dev, base, data->reset_auxdev_name, 0);
if (ret)
dev_warn(dev, "failed creating auxiliary device %s.%s: %d\n",
KBUILD_MODNAME, data->reset_auxdev_name, ret);
}
/* Init optional pinctrl auxiliary device. */
if (data->pinctrl_auxdev_name) {
ret = eqc_auxdev_create(dev, base, data->pinctrl_auxdev_name, 0);
if (ret)
dev_warn(dev, "failed creating auxiliary device %s.%s: %d\n",
KBUILD_MODNAME, data->pinctrl_auxdev_name, ret);
}
if (data->pll_count + data->div_count + data->fixed_factor_count == 0)
return 0; /* Zero clocks, we are done. */
clk_count = data->pll_count + data->div_count +
data->fixed_factor_count + data->early_clk_count;
cells = kzalloc(struct_size(cells, hws, clk_count), GFP_KERNEL);
if (!cells)
return -ENOMEM;
cells->num = clk_count;
/* Early PLLs are marked as errors: the early provider will get queried. */
for (i = 0; i < clk_count; i++)
cells->hws[i] = ERR_PTR(-EINVAL);
eqc_probe_init_plls(dev, data, base, cells);
eqc_probe_init_divs(dev, data, base, cells);
eqc_probe_init_fixed_factors(dev, data, cells);
return of_clk_add_hw_provider(np, of_clk_hw_onecell_get, cells);
}
/* Required early for GIC timer (pll-cpu) and UARTs (pll-per). */
static const struct eqc_pll eqc_eyeq5_early_plls[] = {
{ .index = EQ5C_PLL_CPU, .name = "pll-cpu", .reg64 = 0x02C },
{ .index = EQ5C_PLL_PER, .name = "pll-per", .reg64 = 0x05C },
};
static const struct eqc_pll eqc_eyeq5_plls[] = {
{ .index = EQ5C_PLL_VMP, .name = "pll-vmp", .reg64 = 0x034 },
{ .index = EQ5C_PLL_PMA, .name = "pll-pma", .reg64 = 0x03C },
{ .index = EQ5C_PLL_VDI, .name = "pll-vdi", .reg64 = 0x044 },
{ .index = EQ5C_PLL_DDR0, .name = "pll-ddr0", .reg64 = 0x04C },
{ .index = EQ5C_PLL_PCI, .name = "pll-pci", .reg64 = 0x054 },
{ .index = EQ5C_PLL_PMAC, .name = "pll-pmac", .reg64 = 0x064 },
{ .index = EQ5C_PLL_MPC, .name = "pll-mpc", .reg64 = 0x06C },
{ .index = EQ5C_PLL_DDR1, .name = "pll-ddr1", .reg64 = 0x074 },
};
enum {
/*
* EQ5C_PLL_CPU children.
* EQ5C_PER_OCC_PCI is the last clock exposed in dt-bindings.
*/
EQ5C_CPU_OCC = EQ5C_PER_OCC_PCI + 1,
EQ5C_CPU_SI_CSS0,
EQ5C_CPU_CPC,
EQ5C_CPU_CM,
EQ5C_CPU_MEM,
EQ5C_CPU_OCC_ISRAM,
EQ5C_CPU_ISRAM,
EQ5C_CPU_OCC_DBU,
EQ5C_CPU_SI_DBU_TP,
/*
* EQ5C_PLL_VDI children.
*/
EQ5C_VDI_OCC_VDI,
EQ5C_VDI_VDI,
EQ5C_VDI_OCC_CAN_SER,
EQ5C_VDI_CAN_SER,
EQ5C_VDI_I2C_SER,
/*
* EQ5C_PLL_PER children.
*/
EQ5C_PER_PERIPH,
EQ5C_PER_CAN,
EQ5C_PER_TIMER,
EQ5C_PER_CCF,
EQ5C_PER_OCC_MJPEG,
EQ5C_PER_HSM,
EQ5C_PER_MJPEG,
EQ5C_PER_FCMU_A,
};
static const struct eqc_fixed_factor eqc_eyeq5_early_fixed_factors[] = {
/* EQ5C_PLL_CPU children */
{ EQ5C_CPU_OCC, "occ-cpu", 1, 1, EQ5C_PLL_CPU },
{ EQ5C_CPU_SI_CSS0, "si-css0", 1, 1, EQ5C_CPU_OCC },
{ EQ5C_CPU_CORE0, "core0", 1, 1, EQ5C_CPU_SI_CSS0 },
{ EQ5C_CPU_CORE1, "core1", 1, 1, EQ5C_CPU_SI_CSS0 },
{ EQ5C_CPU_CORE2, "core2", 1, 1, EQ5C_CPU_SI_CSS0 },
{ EQ5C_CPU_CORE3, "core3", 1, 1, EQ5C_CPU_SI_CSS0 },
/* EQ5C_PLL_PER children */
{ EQ5C_PER_OCC, "occ-periph", 1, 16, EQ5C_PLL_PER },
{ EQ5C_PER_UART, "uart", 1, 1, EQ5C_PER_OCC },
};
static const struct eqc_fixed_factor eqc_eyeq5_fixed_factors[] = {
/* EQ5C_PLL_CPU children */
{ EQ5C_CPU_CPC, "cpc", 1, 1, EQ5C_CPU_SI_CSS0 },
{ EQ5C_CPU_CM, "cm", 1, 1, EQ5C_CPU_SI_CSS0 },
{ EQ5C_CPU_MEM, "mem", 1, 1, EQ5C_CPU_SI_CSS0 },
{ EQ5C_CPU_OCC_ISRAM, "occ-isram", 1, 2, EQ5C_PLL_CPU },
{ EQ5C_CPU_ISRAM, "isram", 1, 1, EQ5C_CPU_OCC_ISRAM },
{ EQ5C_CPU_OCC_DBU, "occ-dbu", 1, 10, EQ5C_PLL_CPU },
{ EQ5C_CPU_SI_DBU_TP, "si-dbu-tp", 1, 1, EQ5C_CPU_OCC_DBU },
/* EQ5C_PLL_VDI children */
{ EQ5C_VDI_OCC_VDI, "occ-vdi", 1, 2, EQ5C_PLL_VDI },
{ EQ5C_VDI_VDI, "vdi", 1, 1, EQ5C_VDI_OCC_VDI },
{ EQ5C_VDI_OCC_CAN_SER, "occ-can-ser", 1, 16, EQ5C_PLL_VDI },
{ EQ5C_VDI_CAN_SER, "can-ser", 1, 1, EQ5C_VDI_OCC_CAN_SER },
{ EQ5C_VDI_I2C_SER, "i2c-ser", 1, 20, EQ5C_PLL_VDI },
/* EQ5C_PLL_PER children */
{ EQ5C_PER_PERIPH, "periph", 1, 1, EQ5C_PER_OCC },
{ EQ5C_PER_CAN, "can", 1, 1, EQ5C_PER_OCC },
{ EQ5C_PER_SPI, "spi", 1, 1, EQ5C_PER_OCC },
{ EQ5C_PER_I2C, "i2c", 1, 1, EQ5C_PER_OCC },
{ EQ5C_PER_TIMER, "timer", 1, 1, EQ5C_PER_OCC },
{ EQ5C_PER_GPIO, "gpio", 1, 1, EQ5C_PER_OCC },
{ EQ5C_PER_EMMC, "emmc-sys", 1, 10, EQ5C_PLL_PER },
{ EQ5C_PER_CCF, "ccf-ctrl", 1, 4, EQ5C_PLL_PER },
{ EQ5C_PER_OCC_MJPEG, "occ-mjpeg", 1, 2, EQ5C_PLL_PER },
{ EQ5C_PER_HSM, "hsm", 1, 1, EQ5C_PER_OCC_MJPEG },
{ EQ5C_PER_MJPEG, "mjpeg", 1, 1, EQ5C_PER_OCC_MJPEG },
{ EQ5C_PER_FCMU_A, "fcmu-a", 1, 20, EQ5C_PLL_PER },
{ EQ5C_PER_OCC_PCI, "occ-pci-sys", 1, 8, EQ5C_PLL_PER },
};
static const struct eqc_div eqc_eyeq5_divs[] = {
{
.index = EQ5C_DIV_OSPI,
.name = "div-ospi",
.parent = EQ5C_PLL_PER,
.reg = 0x11C,
.shift = 0,
.width = 4,
},
};
static const struct eqc_early_match_data eqc_eyeq5_early_match_data __initconst = {
.early_pll_count = ARRAY_SIZE(eqc_eyeq5_early_plls),
.early_plls = eqc_eyeq5_early_plls,
.early_fixed_factor_count = ARRAY_SIZE(eqc_eyeq5_early_fixed_factors),
.early_fixed_factors = eqc_eyeq5_early_fixed_factors,
.late_clk_count = ARRAY_SIZE(eqc_eyeq5_plls) + ARRAY_SIZE(eqc_eyeq5_divs) +
ARRAY_SIZE(eqc_eyeq5_fixed_factors),
};
static const struct eqc_match_data eqc_eyeq5_match_data = {
.pll_count = ARRAY_SIZE(eqc_eyeq5_plls),
.plls = eqc_eyeq5_plls,
.div_count = ARRAY_SIZE(eqc_eyeq5_divs),
.divs = eqc_eyeq5_divs,
.fixed_factor_count = ARRAY_SIZE(eqc_eyeq5_fixed_factors),
.fixed_factors = eqc_eyeq5_fixed_factors,
.reset_auxdev_name = "reset",
.pinctrl_auxdev_name = "pinctrl",
.early_clk_count = ARRAY_SIZE(eqc_eyeq5_early_plls) +
ARRAY_SIZE(eqc_eyeq5_early_fixed_factors),
};
static const struct eqc_pll eqc_eyeq6l_plls[] = {
{ .index = EQ6LC_PLL_DDR, .name = "pll-ddr", .reg64 = 0x02C },
{ .index = EQ6LC_PLL_CPU, .name = "pll-cpu", .reg64 = 0x034 }, /* also acc */
{ .index = EQ6LC_PLL_PER, .name = "pll-per", .reg64 = 0x03C },
{ .index = EQ6LC_PLL_VDI, .name = "pll-vdi", .reg64 = 0x044 },
};
static const struct eqc_match_data eqc_eyeq6l_match_data = {
.pll_count = ARRAY_SIZE(eqc_eyeq6l_plls),
.plls = eqc_eyeq6l_plls,
.reset_auxdev_name = "reset",
};
static const struct eqc_match_data eqc_eyeq6h_west_match_data = {
.reset_auxdev_name = "reset_west",
};
static const struct eqc_pll eqc_eyeq6h_east_plls[] = {
{ .index = 0, .name = "pll-east", .reg64 = 0x074 },
};
static const struct eqc_match_data eqc_eyeq6h_east_match_data = {
.pll_count = ARRAY_SIZE(eqc_eyeq6h_east_plls),
.plls = eqc_eyeq6h_east_plls,
.reset_auxdev_name = "reset_east",
};
static const struct eqc_pll eqc_eyeq6h_south_plls[] = {
{ .index = EQ6HC_SOUTH_PLL_VDI, .name = "pll-vdi", .reg64 = 0x000 },
{ .index = EQ6HC_SOUTH_PLL_PCIE, .name = "pll-pcie", .reg64 = 0x008 },
{ .index = EQ6HC_SOUTH_PLL_PER, .name = "pll-per", .reg64 = 0x010 },
{ .index = EQ6HC_SOUTH_PLL_ISP, .name = "pll-isp", .reg64 = 0x018 },
};
static const struct eqc_div eqc_eyeq6h_south_divs[] = {
{
.index = EQ6HC_SOUTH_DIV_EMMC,
.name = "div-emmc",
.parent = EQ6HC_SOUTH_PLL_PER,
.reg = 0x070,
.shift = 4,
.width = 4,
},
{
.index = EQ6HC_SOUTH_DIV_OSPI_REF,
.name = "div-ospi-ref",
.parent = EQ6HC_SOUTH_PLL_PER,
.reg = 0x090,
.shift = 4,
.width = 4,
},
{
.index = EQ6HC_SOUTH_DIV_OSPI_SYS,
.name = "div-ospi-sys",
.parent = EQ6HC_SOUTH_PLL_PER,
.reg = 0x090,
.shift = 8,
.width = 1,
},
{
.index = EQ6HC_SOUTH_DIV_TSU,
.name = "div-tsu",
.parent = EQ6HC_SOUTH_PLL_PCIE,
.reg = 0x098,
.shift = 4,
.width = 8,
},
};
static const struct eqc_match_data eqc_eyeq6h_south_match_data = {
.pll_count = ARRAY_SIZE(eqc_eyeq6h_south_plls),
.plls = eqc_eyeq6h_south_plls,
.div_count = ARRAY_SIZE(eqc_eyeq6h_south_divs),
.divs = eqc_eyeq6h_south_divs,
};
static const struct eqc_pll eqc_eyeq6h_ddr0_plls[] = {
{ .index = 0, .name = "pll-ddr0", .reg64 = 0x074 },
};
static const struct eqc_match_data eqc_eyeq6h_ddr0_match_data = {
.pll_count = ARRAY_SIZE(eqc_eyeq6h_ddr0_plls),
.plls = eqc_eyeq6h_ddr0_plls,
};
static const struct eqc_pll eqc_eyeq6h_ddr1_plls[] = {
{ .index = 0, .name = "pll-ddr1", .reg64 = 0x074 },
};
static const struct eqc_match_data eqc_eyeq6h_ddr1_match_data = {
.pll_count = ARRAY_SIZE(eqc_eyeq6h_ddr1_plls),
.plls = eqc_eyeq6h_ddr1_plls,
};
static const struct eqc_pll eqc_eyeq6h_acc_plls[] = {
{ .index = EQ6HC_ACC_PLL_XNN, .name = "pll-xnn", .reg64 = 0x040 },
{ .index = EQ6HC_ACC_PLL_VMP, .name = "pll-vmp", .reg64 = 0x050 },
{ .index = EQ6HC_ACC_PLL_PMA, .name = "pll-pma", .reg64 = 0x05C },
{ .index = EQ6HC_ACC_PLL_MPC, .name = "pll-mpc", .reg64 = 0x068 },
{ .index = EQ6HC_ACC_PLL_NOC, .name = "pll-noc", .reg64 = 0x070 },
};
static const struct eqc_match_data eqc_eyeq6h_acc_match_data = {
.pll_count = ARRAY_SIZE(eqc_eyeq6h_acc_plls),
.plls = eqc_eyeq6h_acc_plls,
.reset_auxdev_name = "reset_acc",
};
static const struct of_device_id eqc_match_table[] = {
{ .compatible = "mobileye,eyeq5-olb", .data = &eqc_eyeq5_match_data },
{ .compatible = "mobileye,eyeq6l-olb", .data = &eqc_eyeq6l_match_data },
{ .compatible = "mobileye,eyeq6h-west-olb", .data = &eqc_eyeq6h_west_match_data },
{ .compatible = "mobileye,eyeq6h-east-olb", .data = &eqc_eyeq6h_east_match_data },
{ .compatible = "mobileye,eyeq6h-south-olb", .data = &eqc_eyeq6h_south_match_data },
{ .compatible = "mobileye,eyeq6h-ddr0-olb", .data = &eqc_eyeq6h_ddr0_match_data },
{ .compatible = "mobileye,eyeq6h-ddr1-olb", .data = &eqc_eyeq6h_ddr1_match_data },
{ .compatible = "mobileye,eyeq6h-acc-olb", .data = &eqc_eyeq6h_acc_match_data },
{}
};
static struct platform_driver eqc_driver = {
.probe = eqc_probe,
.driver = {
.name = "clk-eyeq",
.of_match_table = eqc_match_table,
.suppress_bind_attrs = true,
},
};
builtin_platform_driver(eqc_driver);
/* Required early for GIC timer. */
static const struct eqc_pll eqc_eyeq6h_central_early_plls[] = {
{ .index = EQ6HC_CENTRAL_PLL_CPU, .name = "pll-cpu", .reg64 = 0x02C },
};
static const struct eqc_fixed_factor eqc_eyeq6h_central_early_fixed_factors[] = {
{ EQ6HC_CENTRAL_CPU_OCC, "occ-cpu", 1, 1, EQ6HC_CENTRAL_PLL_CPU },
};
static const struct eqc_early_match_data eqc_eyeq6h_central_early_match_data __initconst = {
.early_pll_count = ARRAY_SIZE(eqc_eyeq6h_central_early_plls),
.early_plls = eqc_eyeq6h_central_early_plls,
.early_fixed_factor_count = ARRAY_SIZE(eqc_eyeq6h_central_early_fixed_factors),
.early_fixed_factors = eqc_eyeq6h_central_early_fixed_factors,
};
/* Required early for UART. */
static const struct eqc_pll eqc_eyeq6h_west_early_plls[] = {
{ .index = EQ6HC_WEST_PLL_PER, .name = "pll-west", .reg64 = 0x074 },
};
static const struct eqc_fixed_factor eqc_eyeq6h_west_early_fixed_factors[] = {
{ EQ6HC_WEST_PER_OCC, "west-per-occ", 1, 10, EQ6HC_WEST_PLL_PER },
{ EQ6HC_WEST_PER_UART, "west-per-uart", 1, 1, EQ6HC_WEST_PER_OCC },
};
static const struct eqc_early_match_data eqc_eyeq6h_west_early_match_data __initconst = {
.early_pll_count = ARRAY_SIZE(eqc_eyeq6h_west_early_plls),
.early_plls = eqc_eyeq6h_west_early_plls,
.early_fixed_factor_count = ARRAY_SIZE(eqc_eyeq6h_west_early_fixed_factors),
.early_fixed_factors = eqc_eyeq6h_west_early_fixed_factors,
};
static void __init eqc_early_init(struct device_node *np,
const struct eqc_early_match_data *early_data)
{
struct clk_hw_onecell_data *cells;
unsigned int i, clk_count;
void __iomem *base;
int ret;
clk_count = early_data->early_pll_count + early_data->early_fixed_factor_count +
early_data->late_clk_count;
cells = kzalloc(struct_size(cells, hws, clk_count), GFP_KERNEL);
if (!cells) {
ret = -ENOMEM;
goto err;
}
cells->num = clk_count;
/*
* Mark all clocks as deferred; some are registered here, the rest at
* platform device probe.
*
* Once the platform device is probed, its provider will take priority
* when looking up clocks.
*/
for (i = 0; i < clk_count; i++)
cells->hws[i] = ERR_PTR(-EPROBE_DEFER);
/* Offsets (reg64) of early PLLs are relative to OLB block. */
base = of_iomap(np, 0);
if (!base) {
ret = -ENODEV;
goto err;
}
for (i = 0; i < early_data->early_pll_count; i++) {
const struct eqc_pll *pll = &early_data->early_plls[i];
unsigned long mult, div, acc;
struct clk_hw *hw;
u32 r0, r1;
u64 val;
val = readq(base + pll->reg64);
r0 = val;
r1 = val >> 32;
ret = eqc_pll_parse_registers(r0, r1, &mult, &div, &acc);
if (ret) {
pr_err("failed parsing state of %s\n", pll->name);
goto err;
}
hw = clk_hw_register_fixed_factor_with_accuracy_fwname(NULL,
np, pll->name, "ref", 0, mult, div, acc);
cells->hws[pll->index] = hw;
if (IS_ERR(hw)) {
pr_err("failed registering %s: %pe\n", pll->name, hw);
ret = PTR_ERR(hw);
goto err;
}
}
for (i = 0; i < early_data->early_fixed_factor_count; i++) {
const struct eqc_fixed_factor *ff = &early_data->early_fixed_factors[i];
struct clk_hw *parent_hw = cells->hws[ff->parent];
struct clk_hw *hw;
hw = clk_hw_register_fixed_factor_parent_hw(NULL, ff->name,
parent_hw, 0, ff->mult, ff->div);
cells->hws[ff->index] = hw;
if (IS_ERR(hw)) {
pr_err("failed registering %s: %pe\n", ff->name, hw);
ret = PTR_ERR(hw);
goto err;
}
}
ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, cells);
if (ret) {
pr_err("failed registering clk provider: %d\n", ret);
goto err;
}
return;
err:
/*
* We are doomed. The system will not be able to boot.
*
* Let's still try to be good citizens by freeing resources and print
* a last error message that might help debugging.
*/
pr_err("failed clk init: %d\n", ret);
if (cells) {
of_clk_del_provider(np);
for (i = 0; i < early_data->early_pll_count; i++) {
const struct eqc_pll *pll = &early_data->early_plls[i];
struct clk_hw *hw = cells->hws[pll->index];
if (!IS_ERR_OR_NULL(hw))
clk_hw_unregister_fixed_factor(hw);
}
kfree(cells);
}
}
static void __init eqc_eyeq5_early_init(struct device_node *np)
{
eqc_early_init(np, &eqc_eyeq5_early_match_data);
}
CLK_OF_DECLARE_DRIVER(eqc_eyeq5, "mobileye,eyeq5-olb", eqc_eyeq5_early_init);
static void __init eqc_eyeq6h_central_early_init(struct device_node *np)
{
eqc_early_init(np, &eqc_eyeq6h_central_early_match_data);
}
CLK_OF_DECLARE_DRIVER(eqc_eyeq6h_central, "mobileye,eyeq6h-central-olb",
eqc_eyeq6h_central_early_init);
static void __init eqc_eyeq6h_west_early_init(struct device_node *np)
{
eqc_early_init(np, &eqc_eyeq6h_west_early_match_data);
}
CLK_OF_DECLARE_DRIVER(eqc_eyeq6h_west, "mobileye,eyeq6h-west-olb",
eqc_eyeq6h_west_early_init);