linux-stable/drivers/dma/dw-edma/dw-edma-core.c
Cai Huoqing e74c39573d dmaengine: dw-edma: Add support for native HDMA
Add support for HDMA NATIVE, as long the IP design has set
the compatible register map parameter-HDMA_NATIVE,
which allows compatibility for native HDMA register configuration.

The HDMA Hyper-DMA IP is an enhancement of the eDMA embedded-DMA IP.
And the native HDMA registers are different from eDMA, so this patch
add support for HDMA NATIVE mode.

HDMA write and read channels operate independently to maximize
the performance of the HDMA read and write data transfer over
the link When you configure the HDMA with multiple read channels,
then it uses a round robin (RR) arbitration scheme to select
the next read channel to be serviced.The same applies when you
have multiple write channels.

The native HDMA driver also supports a maximum of 16 independent
channels (8 write + 8 read), which can run simultaneously.
Both SAR (Source Address Register) and DAR (Destination Address Register)
are aligned to byte.

Signed-off-by: Cai Huoqing <cai.huoqing@linux.dev>
Reviewed-by: Serge Semin <fancer.lancer@gmail.com>
Reviewed-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Tested-by: Serge Semin <fancer.lancer@gmail.com>
Link: https://lore.kernel.org/r/20230520050854.73160-4-cai.huoqing@linux.dev
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2023-05-24 12:20:45 +05:30

1017 lines
25 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018-2019 Synopsys, Inc. and/or its affiliates.
* Synopsys DesignWare eDMA core driver
*
* Author: Gustavo Pimentel <gustavo.pimentel@synopsys.com>
*/
#include <linux/module.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/dma/edma.h>
#include <linux/dma-mapping.h>
#include "dw-edma-core.h"
#include "dw-edma-v0-core.h"
#include "dw-hdma-v0-core.h"
#include "../dmaengine.h"
#include "../virt-dma.h"
static inline
struct device *dchan2dev(struct dma_chan *dchan)
{
return &dchan->dev->device;
}
static inline
struct device *chan2dev(struct dw_edma_chan *chan)
{
return &chan->vc.chan.dev->device;
}
static inline
struct dw_edma_desc *vd2dw_edma_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct dw_edma_desc, vd);
}
static inline
u64 dw_edma_get_pci_address(struct dw_edma_chan *chan, phys_addr_t cpu_addr)
{
struct dw_edma_chip *chip = chan->dw->chip;
if (chip->ops->pci_address)
return chip->ops->pci_address(chip->dev, cpu_addr);
return cpu_addr;
}
static struct dw_edma_burst *dw_edma_alloc_burst(struct dw_edma_chunk *chunk)
{
struct dw_edma_burst *burst;
burst = kzalloc(sizeof(*burst), GFP_NOWAIT);
if (unlikely(!burst))
return NULL;
INIT_LIST_HEAD(&burst->list);
if (chunk->burst) {
/* Create and add new element into the linked list */
chunk->bursts_alloc++;
list_add_tail(&burst->list, &chunk->burst->list);
} else {
/* List head */
chunk->bursts_alloc = 0;
chunk->burst = burst;
}
return burst;
}
static struct dw_edma_chunk *dw_edma_alloc_chunk(struct dw_edma_desc *desc)
{
struct dw_edma_chip *chip = desc->chan->dw->chip;
struct dw_edma_chan *chan = desc->chan;
struct dw_edma_chunk *chunk;
chunk = kzalloc(sizeof(*chunk), GFP_NOWAIT);
if (unlikely(!chunk))
return NULL;
INIT_LIST_HEAD(&chunk->list);
chunk->chan = chan;
/* Toggling change bit (CB) in each chunk, this is a mechanism to
* inform the eDMA HW block that this is a new linked list ready
* to be consumed.
* - Odd chunks originate CB equal to 0
* - Even chunks originate CB equal to 1
*/
chunk->cb = !(desc->chunks_alloc % 2);
if (chan->dir == EDMA_DIR_WRITE) {
chunk->ll_region.paddr = chip->ll_region_wr[chan->id].paddr;
chunk->ll_region.vaddr = chip->ll_region_wr[chan->id].vaddr;
} else {
chunk->ll_region.paddr = chip->ll_region_rd[chan->id].paddr;
chunk->ll_region.vaddr = chip->ll_region_rd[chan->id].vaddr;
}
if (desc->chunk) {
/* Create and add new element into the linked list */
if (!dw_edma_alloc_burst(chunk)) {
kfree(chunk);
return NULL;
}
desc->chunks_alloc++;
list_add_tail(&chunk->list, &desc->chunk->list);
} else {
/* List head */
chunk->burst = NULL;
desc->chunks_alloc = 0;
desc->chunk = chunk;
}
return chunk;
}
static struct dw_edma_desc *dw_edma_alloc_desc(struct dw_edma_chan *chan)
{
struct dw_edma_desc *desc;
desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
if (unlikely(!desc))
return NULL;
desc->chan = chan;
if (!dw_edma_alloc_chunk(desc)) {
kfree(desc);
return NULL;
}
return desc;
}
static void dw_edma_free_burst(struct dw_edma_chunk *chunk)
{
struct dw_edma_burst *child, *_next;
/* Remove all the list elements */
list_for_each_entry_safe(child, _next, &chunk->burst->list, list) {
list_del(&child->list);
kfree(child);
chunk->bursts_alloc--;
}
/* Remove the list head */
kfree(child);
chunk->burst = NULL;
}
static void dw_edma_free_chunk(struct dw_edma_desc *desc)
{
struct dw_edma_chunk *child, *_next;
if (!desc->chunk)
return;
/* Remove all the list elements */
list_for_each_entry_safe(child, _next, &desc->chunk->list, list) {
dw_edma_free_burst(child);
list_del(&child->list);
kfree(child);
desc->chunks_alloc--;
}
/* Remove the list head */
kfree(child);
desc->chunk = NULL;
}
static void dw_edma_free_desc(struct dw_edma_desc *desc)
{
dw_edma_free_chunk(desc);
kfree(desc);
}
static void vchan_free_desc(struct virt_dma_desc *vdesc)
{
dw_edma_free_desc(vd2dw_edma_desc(vdesc));
}
static int dw_edma_start_transfer(struct dw_edma_chan *chan)
{
struct dw_edma *dw = chan->dw;
struct dw_edma_chunk *child;
struct dw_edma_desc *desc;
struct virt_dma_desc *vd;
vd = vchan_next_desc(&chan->vc);
if (!vd)
return 0;
desc = vd2dw_edma_desc(vd);
if (!desc)
return 0;
child = list_first_entry_or_null(&desc->chunk->list,
struct dw_edma_chunk, list);
if (!child)
return 0;
dw_edma_core_start(dw, child, !desc->xfer_sz);
desc->xfer_sz += child->ll_region.sz;
dw_edma_free_burst(child);
list_del(&child->list);
kfree(child);
desc->chunks_alloc--;
return 1;
}
static void dw_edma_device_caps(struct dma_chan *dchan,
struct dma_slave_caps *caps)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
if (chan->dir == EDMA_DIR_READ)
caps->directions = BIT(DMA_DEV_TO_MEM);
else
caps->directions = BIT(DMA_MEM_TO_DEV);
} else {
if (chan->dir == EDMA_DIR_WRITE)
caps->directions = BIT(DMA_DEV_TO_MEM);
else
caps->directions = BIT(DMA_MEM_TO_DEV);
}
}
static int dw_edma_device_config(struct dma_chan *dchan,
struct dma_slave_config *config)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
memcpy(&chan->config, config, sizeof(*config));
chan->configured = true;
return 0;
}
static int dw_edma_device_pause(struct dma_chan *dchan)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
int err = 0;
if (!chan->configured)
err = -EPERM;
else if (chan->status != EDMA_ST_BUSY)
err = -EPERM;
else if (chan->request != EDMA_REQ_NONE)
err = -EPERM;
else
chan->request = EDMA_REQ_PAUSE;
return err;
}
static int dw_edma_device_resume(struct dma_chan *dchan)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
int err = 0;
if (!chan->configured) {
err = -EPERM;
} else if (chan->status != EDMA_ST_PAUSE) {
err = -EPERM;
} else if (chan->request != EDMA_REQ_NONE) {
err = -EPERM;
} else {
chan->status = EDMA_ST_BUSY;
dw_edma_start_transfer(chan);
}
return err;
}
static int dw_edma_device_terminate_all(struct dma_chan *dchan)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
int err = 0;
if (!chan->configured) {
/* Do nothing */
} else if (chan->status == EDMA_ST_PAUSE) {
chan->status = EDMA_ST_IDLE;
chan->configured = false;
} else if (chan->status == EDMA_ST_IDLE) {
chan->configured = false;
} else if (dw_edma_core_ch_status(chan) == DMA_COMPLETE) {
/*
* The channel is in a false BUSY state, probably didn't
* receive or lost an interrupt
*/
chan->status = EDMA_ST_IDLE;
chan->configured = false;
} else if (chan->request > EDMA_REQ_PAUSE) {
err = -EPERM;
} else {
chan->request = EDMA_REQ_STOP;
}
return err;
}
static void dw_edma_device_issue_pending(struct dma_chan *dchan)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
unsigned long flags;
if (!chan->configured)
return;
spin_lock_irqsave(&chan->vc.lock, flags);
if (vchan_issue_pending(&chan->vc) && chan->request == EDMA_REQ_NONE &&
chan->status == EDMA_ST_IDLE) {
chan->status = EDMA_ST_BUSY;
dw_edma_start_transfer(chan);
}
spin_unlock_irqrestore(&chan->vc.lock, flags);
}
static enum dma_status
dw_edma_device_tx_status(struct dma_chan *dchan, dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
struct dw_edma_desc *desc;
struct virt_dma_desc *vd;
unsigned long flags;
enum dma_status ret;
u32 residue = 0;
ret = dma_cookie_status(dchan, cookie, txstate);
if (ret == DMA_COMPLETE)
return ret;
if (ret == DMA_IN_PROGRESS && chan->status == EDMA_ST_PAUSE)
ret = DMA_PAUSED;
if (!txstate)
goto ret_residue;
spin_lock_irqsave(&chan->vc.lock, flags);
vd = vchan_find_desc(&chan->vc, cookie);
if (vd) {
desc = vd2dw_edma_desc(vd);
if (desc)
residue = desc->alloc_sz - desc->xfer_sz;
}
spin_unlock_irqrestore(&chan->vc.lock, flags);
ret_residue:
dma_set_residue(txstate, residue);
return ret;
}
static struct dma_async_tx_descriptor *
dw_edma_device_transfer(struct dw_edma_transfer *xfer)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(xfer->dchan);
enum dma_transfer_direction dir = xfer->direction;
struct scatterlist *sg = NULL;
struct dw_edma_chunk *chunk;
struct dw_edma_burst *burst;
struct dw_edma_desc *desc;
u64 src_addr, dst_addr;
size_t fsz = 0;
u32 cnt = 0;
int i;
if (!chan->configured)
return NULL;
/*
* Local Root Port/End-point Remote End-point
* +-----------------------+ PCIe bus +----------------------+
* | | +-+ | |
* | DEV_TO_MEM Rx Ch <----+ +---+ Tx Ch DEV_TO_MEM |
* | | | | | |
* | MEM_TO_DEV Tx Ch +----+ +---> Rx Ch MEM_TO_DEV |
* | | +-+ | |
* +-----------------------+ +----------------------+
*
* 1. Normal logic:
* If eDMA is embedded into the DW PCIe RP/EP and controlled from the
* CPU/Application side, the Rx channel (EDMA_DIR_READ) will be used
* for the device read operations (DEV_TO_MEM) and the Tx channel
* (EDMA_DIR_WRITE) - for the write operations (MEM_TO_DEV).
*
* 2. Inverted logic:
* If eDMA is embedded into a Remote PCIe EP and is controlled by the
* MWr/MRd TLPs sent from the CPU's PCIe host controller, the Tx
* channel (EDMA_DIR_WRITE) will be used for the device read operations
* (DEV_TO_MEM) and the Rx channel (EDMA_DIR_READ) - for the write
* operations (MEM_TO_DEV).
*
* It is the client driver responsibility to choose a proper channel
* for the DMA transfers.
*/
if (chan->dw->chip->flags & DW_EDMA_CHIP_LOCAL) {
if ((chan->dir == EDMA_DIR_READ && dir != DMA_DEV_TO_MEM) ||
(chan->dir == EDMA_DIR_WRITE && dir != DMA_MEM_TO_DEV))
return NULL;
} else {
if ((chan->dir == EDMA_DIR_WRITE && dir != DMA_DEV_TO_MEM) ||
(chan->dir == EDMA_DIR_READ && dir != DMA_MEM_TO_DEV))
return NULL;
}
if (xfer->type == EDMA_XFER_CYCLIC) {
if (!xfer->xfer.cyclic.len || !xfer->xfer.cyclic.cnt)
return NULL;
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
if (xfer->xfer.sg.len < 1)
return NULL;
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
if (!xfer->xfer.il->numf || xfer->xfer.il->frame_size < 1)
return NULL;
if (!xfer->xfer.il->src_inc || !xfer->xfer.il->dst_inc)
return NULL;
} else {
return NULL;
}
desc = dw_edma_alloc_desc(chan);
if (unlikely(!desc))
goto err_alloc;
chunk = dw_edma_alloc_chunk(desc);
if (unlikely(!chunk))
goto err_alloc;
if (xfer->type == EDMA_XFER_INTERLEAVED) {
src_addr = xfer->xfer.il->src_start;
dst_addr = xfer->xfer.il->dst_start;
} else {
src_addr = chan->config.src_addr;
dst_addr = chan->config.dst_addr;
}
if (dir == DMA_DEV_TO_MEM)
src_addr = dw_edma_get_pci_address(chan, (phys_addr_t)src_addr);
else
dst_addr = dw_edma_get_pci_address(chan, (phys_addr_t)dst_addr);
if (xfer->type == EDMA_XFER_CYCLIC) {
cnt = xfer->xfer.cyclic.cnt;
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
cnt = xfer->xfer.sg.len;
sg = xfer->xfer.sg.sgl;
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
cnt = xfer->xfer.il->numf * xfer->xfer.il->frame_size;
fsz = xfer->xfer.il->frame_size;
}
for (i = 0; i < cnt; i++) {
if (xfer->type == EDMA_XFER_SCATTER_GATHER && !sg)
break;
if (chunk->bursts_alloc == chan->ll_max) {
chunk = dw_edma_alloc_chunk(desc);
if (unlikely(!chunk))
goto err_alloc;
}
burst = dw_edma_alloc_burst(chunk);
if (unlikely(!burst))
goto err_alloc;
if (xfer->type == EDMA_XFER_CYCLIC)
burst->sz = xfer->xfer.cyclic.len;
else if (xfer->type == EDMA_XFER_SCATTER_GATHER)
burst->sz = sg_dma_len(sg);
else if (xfer->type == EDMA_XFER_INTERLEAVED)
burst->sz = xfer->xfer.il->sgl[i % fsz].size;
chunk->ll_region.sz += burst->sz;
desc->alloc_sz += burst->sz;
if (dir == DMA_DEV_TO_MEM) {
burst->sar = src_addr;
if (xfer->type == EDMA_XFER_CYCLIC) {
burst->dar = xfer->xfer.cyclic.paddr;
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
src_addr += sg_dma_len(sg);
burst->dar = sg_dma_address(sg);
/* Unlike the typical assumption by other
* drivers/IPs the peripheral memory isn't
* a FIFO memory, in this case, it's a
* linear memory and that why the source
* and destination addresses are increased
* by the same portion (data length)
*/
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
burst->dar = dst_addr;
}
} else {
burst->dar = dst_addr;
if (xfer->type == EDMA_XFER_CYCLIC) {
burst->sar = xfer->xfer.cyclic.paddr;
} else if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
dst_addr += sg_dma_len(sg);
burst->sar = sg_dma_address(sg);
/* Unlike the typical assumption by other
* drivers/IPs the peripheral memory isn't
* a FIFO memory, in this case, it's a
* linear memory and that why the source
* and destination addresses are increased
* by the same portion (data length)
*/
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
burst->sar = src_addr;
}
}
if (xfer->type == EDMA_XFER_SCATTER_GATHER) {
sg = sg_next(sg);
} else if (xfer->type == EDMA_XFER_INTERLEAVED) {
struct dma_interleaved_template *il = xfer->xfer.il;
struct data_chunk *dc = &il->sgl[i % fsz];
src_addr += burst->sz;
if (il->src_sgl)
src_addr += dmaengine_get_src_icg(il, dc);
dst_addr += burst->sz;
if (il->dst_sgl)
dst_addr += dmaengine_get_dst_icg(il, dc);
}
}
return vchan_tx_prep(&chan->vc, &desc->vd, xfer->flags);
err_alloc:
if (desc)
dw_edma_free_desc(desc);
return NULL;
}
static struct dma_async_tx_descriptor *
dw_edma_device_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
unsigned int len,
enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct dw_edma_transfer xfer;
xfer.dchan = dchan;
xfer.direction = direction;
xfer.xfer.sg.sgl = sgl;
xfer.xfer.sg.len = len;
xfer.flags = flags;
xfer.type = EDMA_XFER_SCATTER_GATHER;
return dw_edma_device_transfer(&xfer);
}
static struct dma_async_tx_descriptor *
dw_edma_device_prep_dma_cyclic(struct dma_chan *dchan, dma_addr_t paddr,
size_t len, size_t count,
enum dma_transfer_direction direction,
unsigned long flags)
{
struct dw_edma_transfer xfer;
xfer.dchan = dchan;
xfer.direction = direction;
xfer.xfer.cyclic.paddr = paddr;
xfer.xfer.cyclic.len = len;
xfer.xfer.cyclic.cnt = count;
xfer.flags = flags;
xfer.type = EDMA_XFER_CYCLIC;
return dw_edma_device_transfer(&xfer);
}
static struct dma_async_tx_descriptor *
dw_edma_device_prep_interleaved_dma(struct dma_chan *dchan,
struct dma_interleaved_template *ilt,
unsigned long flags)
{
struct dw_edma_transfer xfer;
xfer.dchan = dchan;
xfer.direction = ilt->dir;
xfer.xfer.il = ilt;
xfer.flags = flags;
xfer.type = EDMA_XFER_INTERLEAVED;
return dw_edma_device_transfer(&xfer);
}
static void dw_edma_done_interrupt(struct dw_edma_chan *chan)
{
struct dw_edma_desc *desc;
struct virt_dma_desc *vd;
unsigned long flags;
spin_lock_irqsave(&chan->vc.lock, flags);
vd = vchan_next_desc(&chan->vc);
if (vd) {
switch (chan->request) {
case EDMA_REQ_NONE:
desc = vd2dw_edma_desc(vd);
if (!desc->chunks_alloc) {
list_del(&vd->node);
vchan_cookie_complete(vd);
}
/* Continue transferring if there are remaining chunks or issued requests.
*/
chan->status = dw_edma_start_transfer(chan) ? EDMA_ST_BUSY : EDMA_ST_IDLE;
break;
case EDMA_REQ_STOP:
list_del(&vd->node);
vchan_cookie_complete(vd);
chan->request = EDMA_REQ_NONE;
chan->status = EDMA_ST_IDLE;
break;
case EDMA_REQ_PAUSE:
chan->request = EDMA_REQ_NONE;
chan->status = EDMA_ST_PAUSE;
break;
default:
break;
}
}
spin_unlock_irqrestore(&chan->vc.lock, flags);
}
static void dw_edma_abort_interrupt(struct dw_edma_chan *chan)
{
struct virt_dma_desc *vd;
unsigned long flags;
spin_lock_irqsave(&chan->vc.lock, flags);
vd = vchan_next_desc(&chan->vc);
if (vd) {
list_del(&vd->node);
vchan_cookie_complete(vd);
}
spin_unlock_irqrestore(&chan->vc.lock, flags);
chan->request = EDMA_REQ_NONE;
chan->status = EDMA_ST_IDLE;
}
static inline irqreturn_t dw_edma_interrupt_write(int irq, void *data)
{
struct dw_edma_irq *dw_irq = data;
return dw_edma_core_handle_int(dw_irq, EDMA_DIR_WRITE,
dw_edma_done_interrupt,
dw_edma_abort_interrupt);
}
static inline irqreturn_t dw_edma_interrupt_read(int irq, void *data)
{
struct dw_edma_irq *dw_irq = data;
return dw_edma_core_handle_int(dw_irq, EDMA_DIR_READ,
dw_edma_done_interrupt,
dw_edma_abort_interrupt);
}
static irqreturn_t dw_edma_interrupt_common(int irq, void *data)
{
irqreturn_t ret = IRQ_NONE;
ret |= dw_edma_interrupt_write(irq, data);
ret |= dw_edma_interrupt_read(irq, data);
return ret;
}
static int dw_edma_alloc_chan_resources(struct dma_chan *dchan)
{
struct dw_edma_chan *chan = dchan2dw_edma_chan(dchan);
if (chan->status != EDMA_ST_IDLE)
return -EBUSY;
return 0;
}
static void dw_edma_free_chan_resources(struct dma_chan *dchan)
{
unsigned long timeout = jiffies + msecs_to_jiffies(5000);
int ret;
while (time_before(jiffies, timeout)) {
ret = dw_edma_device_terminate_all(dchan);
if (!ret)
break;
if (time_after_eq(jiffies, timeout))
return;
cpu_relax();
}
}
static int dw_edma_channel_setup(struct dw_edma *dw, u32 wr_alloc, u32 rd_alloc)
{
struct dw_edma_chip *chip = dw->chip;
struct device *dev = chip->dev;
struct dw_edma_chan *chan;
struct dw_edma_irq *irq;
struct dma_device *dma;
u32 i, ch_cnt;
u32 pos;
ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
dma = &dw->dma;
INIT_LIST_HEAD(&dma->channels);
for (i = 0; i < ch_cnt; i++) {
chan = &dw->chan[i];
chan->dw = dw;
if (i < dw->wr_ch_cnt) {
chan->id = i;
chan->dir = EDMA_DIR_WRITE;
} else {
chan->id = i - dw->wr_ch_cnt;
chan->dir = EDMA_DIR_READ;
}
chan->configured = false;
chan->request = EDMA_REQ_NONE;
chan->status = EDMA_ST_IDLE;
if (chan->dir == EDMA_DIR_WRITE)
chan->ll_max = (chip->ll_region_wr[chan->id].sz / EDMA_LL_SZ);
else
chan->ll_max = (chip->ll_region_rd[chan->id].sz / EDMA_LL_SZ);
chan->ll_max -= 1;
dev_vdbg(dev, "L. List:\tChannel %s[%u] max_cnt=%u\n",
chan->dir == EDMA_DIR_WRITE ? "write" : "read",
chan->id, chan->ll_max);
if (dw->nr_irqs == 1)
pos = 0;
else if (chan->dir == EDMA_DIR_WRITE)
pos = chan->id % wr_alloc;
else
pos = wr_alloc + chan->id % rd_alloc;
irq = &dw->irq[pos];
if (chan->dir == EDMA_DIR_WRITE)
irq->wr_mask |= BIT(chan->id);
else
irq->rd_mask |= BIT(chan->id);
irq->dw = dw;
memcpy(&chan->msi, &irq->msi, sizeof(chan->msi));
dev_vdbg(dev, "MSI:\t\tChannel %s[%u] addr=0x%.8x%.8x, data=0x%.8x\n",
chan->dir == EDMA_DIR_WRITE ? "write" : "read", chan->id,
chan->msi.address_hi, chan->msi.address_lo,
chan->msi.data);
chan->vc.desc_free = vchan_free_desc;
chan->vc.chan.private = chan->dir == EDMA_DIR_WRITE ?
&dw->chip->dt_region_wr[chan->id] :
&dw->chip->dt_region_rd[chan->id];
vchan_init(&chan->vc, dma);
dw_edma_core_ch_config(chan);
}
/* Set DMA channel capabilities */
dma_cap_zero(dma->cap_mask);
dma_cap_set(DMA_SLAVE, dma->cap_mask);
dma_cap_set(DMA_CYCLIC, dma->cap_mask);
dma_cap_set(DMA_PRIVATE, dma->cap_mask);
dma_cap_set(DMA_INTERLEAVE, dma->cap_mask);
dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
dma->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
dma->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
dma->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
/* Set DMA channel callbacks */
dma->dev = chip->dev;
dma->device_alloc_chan_resources = dw_edma_alloc_chan_resources;
dma->device_free_chan_resources = dw_edma_free_chan_resources;
dma->device_caps = dw_edma_device_caps;
dma->device_config = dw_edma_device_config;
dma->device_pause = dw_edma_device_pause;
dma->device_resume = dw_edma_device_resume;
dma->device_terminate_all = dw_edma_device_terminate_all;
dma->device_issue_pending = dw_edma_device_issue_pending;
dma->device_tx_status = dw_edma_device_tx_status;
dma->device_prep_slave_sg = dw_edma_device_prep_slave_sg;
dma->device_prep_dma_cyclic = dw_edma_device_prep_dma_cyclic;
dma->device_prep_interleaved_dma = dw_edma_device_prep_interleaved_dma;
dma_set_max_seg_size(dma->dev, U32_MAX);
/* Register DMA device */
return dma_async_device_register(dma);
}
static inline void dw_edma_dec_irq_alloc(int *nr_irqs, u32 *alloc, u16 cnt)
{
if (*nr_irqs && *alloc < cnt) {
(*alloc)++;
(*nr_irqs)--;
}
}
static inline void dw_edma_add_irq_mask(u32 *mask, u32 alloc, u16 cnt)
{
while (*mask * alloc < cnt)
(*mask)++;
}
static int dw_edma_irq_request(struct dw_edma *dw,
u32 *wr_alloc, u32 *rd_alloc)
{
struct dw_edma_chip *chip = dw->chip;
struct device *dev = dw->chip->dev;
u32 wr_mask = 1;
u32 rd_mask = 1;
int i, err = 0;
u32 ch_cnt;
int irq;
ch_cnt = dw->wr_ch_cnt + dw->rd_ch_cnt;
if (chip->nr_irqs < 1 || !chip->ops->irq_vector)
return -EINVAL;
dw->irq = devm_kcalloc(dev, chip->nr_irqs, sizeof(*dw->irq), GFP_KERNEL);
if (!dw->irq)
return -ENOMEM;
if (chip->nr_irqs == 1) {
/* Common IRQ shared among all channels */
irq = chip->ops->irq_vector(dev, 0);
err = request_irq(irq, dw_edma_interrupt_common,
IRQF_SHARED, dw->name, &dw->irq[0]);
if (err) {
dw->nr_irqs = 0;
return err;
}
if (irq_get_msi_desc(irq))
get_cached_msi_msg(irq, &dw->irq[0].msi);
dw->nr_irqs = 1;
} else {
/* Distribute IRQs equally among all channels */
int tmp = chip->nr_irqs;
while (tmp && (*wr_alloc + *rd_alloc) < ch_cnt) {
dw_edma_dec_irq_alloc(&tmp, wr_alloc, dw->wr_ch_cnt);
dw_edma_dec_irq_alloc(&tmp, rd_alloc, dw->rd_ch_cnt);
}
dw_edma_add_irq_mask(&wr_mask, *wr_alloc, dw->wr_ch_cnt);
dw_edma_add_irq_mask(&rd_mask, *rd_alloc, dw->rd_ch_cnt);
for (i = 0; i < (*wr_alloc + *rd_alloc); i++) {
irq = chip->ops->irq_vector(dev, i);
err = request_irq(irq,
i < *wr_alloc ?
dw_edma_interrupt_write :
dw_edma_interrupt_read,
IRQF_SHARED, dw->name,
&dw->irq[i]);
if (err)
goto err_irq_free;
if (irq_get_msi_desc(irq))
get_cached_msi_msg(irq, &dw->irq[i].msi);
}
dw->nr_irqs = i;
}
return 0;
err_irq_free:
for (i--; i >= 0; i--) {
irq = chip->ops->irq_vector(dev, i);
free_irq(irq, &dw->irq[i]);
}
return err;
}
int dw_edma_probe(struct dw_edma_chip *chip)
{
struct device *dev;
struct dw_edma *dw;
u32 wr_alloc = 0;
u32 rd_alloc = 0;
int i, err;
if (!chip)
return -EINVAL;
dev = chip->dev;
if (!dev || !chip->ops)
return -EINVAL;
dw = devm_kzalloc(dev, sizeof(*dw), GFP_KERNEL);
if (!dw)
return -ENOMEM;
dw->chip = chip;
if (dw->chip->mf == EDMA_MF_HDMA_NATIVE)
dw_hdma_v0_core_register(dw);
else
dw_edma_v0_core_register(dw);
raw_spin_lock_init(&dw->lock);
dw->wr_ch_cnt = min_t(u16, chip->ll_wr_cnt,
dw_edma_core_ch_count(dw, EDMA_DIR_WRITE));
dw->wr_ch_cnt = min_t(u16, dw->wr_ch_cnt, EDMA_MAX_WR_CH);
dw->rd_ch_cnt = min_t(u16, chip->ll_rd_cnt,
dw_edma_core_ch_count(dw, EDMA_DIR_READ));
dw->rd_ch_cnt = min_t(u16, dw->rd_ch_cnt, EDMA_MAX_RD_CH);
if (!dw->wr_ch_cnt && !dw->rd_ch_cnt)
return -EINVAL;
dev_vdbg(dev, "Channels:\twrite=%d, read=%d\n",
dw->wr_ch_cnt, dw->rd_ch_cnt);
/* Allocate channels */
dw->chan = devm_kcalloc(dev, dw->wr_ch_cnt + dw->rd_ch_cnt,
sizeof(*dw->chan), GFP_KERNEL);
if (!dw->chan)
return -ENOMEM;
snprintf(dw->name, sizeof(dw->name), "dw-edma-core:%s",
dev_name(chip->dev));
/* Disable eDMA, only to establish the ideal initial conditions */
dw_edma_core_off(dw);
/* Request IRQs */
err = dw_edma_irq_request(dw, &wr_alloc, &rd_alloc);
if (err)
return err;
/* Setup write/read channels */
err = dw_edma_channel_setup(dw, wr_alloc, rd_alloc);
if (err)
goto err_irq_free;
/* Turn debugfs on */
dw_edma_core_debugfs_on(dw);
chip->dw = dw;
return 0;
err_irq_free:
for (i = (dw->nr_irqs - 1); i >= 0; i--)
free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
return err;
}
EXPORT_SYMBOL_GPL(dw_edma_probe);
int dw_edma_remove(struct dw_edma_chip *chip)
{
struct dw_edma_chan *chan, *_chan;
struct device *dev = chip->dev;
struct dw_edma *dw = chip->dw;
int i;
/* Skip removal if no private data found */
if (!dw)
return -ENODEV;
/* Disable eDMA */
dw_edma_core_off(dw);
/* Free irqs */
for (i = (dw->nr_irqs - 1); i >= 0; i--)
free_irq(chip->ops->irq_vector(dev, i), &dw->irq[i]);
/* Deregister eDMA device */
dma_async_device_unregister(&dw->dma);
list_for_each_entry_safe(chan, _chan, &dw->dma.channels,
vc.chan.device_node) {
tasklet_kill(&chan->vc.task);
list_del(&chan->vc.chan.device_node);
}
return 0;
}
EXPORT_SYMBOL_GPL(dw_edma_remove);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("Synopsys DesignWare eDMA controller core driver");
MODULE_AUTHOR("Gustavo Pimentel <gustavo.pimentel@synopsys.com>");