linux-stable/drivers/iio/adc/ad7779.c
Ramona Alexandra Nechita c9a3f8c7bf drivers: iio: adc: add support for ad777x family
Add support for AD7770, AD7771, AD7779 ADCs. The device is capable of
sending out data both on DOUT lines interface,as on the SDO line.
The driver currently implements only the SDO data streaming mode. SPI
communication is used alternatively for accessing registers and streaming
data. Register accesses are protected by crc8.

Signed-off-by: Ramona Alexandra Nechita <ramona.nechita@analog.com>
Link: https://patch.msgid.link/20241014143204.30195-4-ramona.nechita@analog.com
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2024-10-28 20:04:10 +00:00

915 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* AD7770, AD7771, AD7779 ADC
*
* Copyright 2023-2024 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bitmap.h>
#include <linux/clk.h>
#include <linux/crc8.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/unaligned.h>
#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#define AD7779_SPI_READ_CMD BIT(7)
#define AD7779_DISABLE_SD BIT(7)
#define AD7779_REG_CH_DISABLE 0x08
#define AD7779_REG_CH_SYNC_OFFSET(ch) (0x09 + (ch))
#define AD7779_REG_CH_CONFIG(ch) (0x00 + (ch))
#define AD7779_REG_GENERAL_USER_CONFIG_1 0x11
#define AD7779_REG_GENERAL_USER_CONFIG_2 0x12
#define AD7779_REG_GENERAL_USER_CONFIG_3 0x13
#define AD7779_REG_DOUT_FORMAT 0x14
#define AD7779_REG_ADC_MUX_CONFIG 0x15
#define AD7779_REG_GPIO_CONFIG 0x17
#define AD7779_REG_BUFFER_CONFIG_1 0x19
#define AD7779_REG_GLOBAL_MUX_CONFIG 0x16
#define AD7779_REG_BUFFER_CONFIG_2 0x1A
#define AD7779_REG_GPIO_DATA 0x18
#define AD7779_REG_CH_OFFSET_UPPER_BYTE(ch) (0x1C + (ch) * 6)
#define AD7779_REG_CH_OFFSET_LOWER_BYTE(ch) (0x1E + (ch) * 6)
#define AD7779_REG_CH_GAIN_UPPER_BYTE(ch) (0x1F + (ch) * 6)
#define AD7779_REG_CH_OFFSET_MID_BYTE(ch) (0x1D + (ch) * 6)
#define AD7779_REG_CH_GAIN_MID_BYTE(ch) (0x20 + (ch) * 6)
#define AD7779_REG_CH_ERR_REG(ch) (0x4C + (ch))
#define AD7779_REG_CH0_1_SAT_ERR 0x54
#define AD7779_REG_CH_GAIN_LOWER_BYTE(ch) (0x21 + (ch) * 6)
#define AD7779_REG_CH2_3_SAT_ERR 0x55
#define AD7779_REG_CH4_5_SAT_ERR 0x56
#define AD7779_REG_CH6_7_SAT_ERR 0x57
#define AD7779_REG_CHX_ERR_REG_EN 0x58
#define AD7779_REG_GEN_ERR_REG_1 0x59
#define AD7779_REG_GEN_ERR_REG_1_EN 0x5A
#define AD7779_REG_GEN_ERR_REG_2 0x5B
#define AD7779_REG_GEN_ERR_REG_2_EN 0x5C
#define AD7779_REG_STATUS_REG_1 0x5D
#define AD7779_REG_STATUS_REG_2 0x5E
#define AD7779_REG_STATUS_REG_3 0x5F
#define AD7779_REG_SRC_N_MSB 0x60
#define AD7779_REG_SRC_N_LSB 0x61
#define AD7779_REG_SRC_IF_MSB 0x62
#define AD7779_REG_SRC_IF_LSB 0x63
#define AD7779_REG_SRC_UPDATE 0x64
#define AD7779_FILTER_MSK BIT(6)
#define AD7779_MOD_POWERMODE_MSK BIT(6)
#define AD7779_MOD_PDB_REFOUT_MSK BIT(4)
#define AD7779_MOD_SPI_EN_MSK BIT(4)
#define AD7779_USRMOD_INIT_MSK GENMASK(6, 4)
/* AD7779_REG_DOUT_FORMAT */
#define AD7779_DOUT_FORMAT_MSK GENMASK(7, 6)
#define AD7779_DOUT_HEADER_FORMAT BIT(5)
#define AD7779_DCLK_CLK_DIV_MSK GENMASK(3, 1)
#define AD7779_REFMUX_CTRL_MSK GENMASK(7, 6)
#define AD7779_SPI_CRC_EN_MSK BIT(0)
#define AD7779_MAXCLK_LOWPOWER (4096 * HZ_PER_KHZ)
#define AD7779_NUM_CHANNELS 8
#define AD7779_RESET_BUF_SIZE 8
#define AD7779_CHAN_DATA_SIZE 4
#define AD7779_LOWPOWER_DIV 512
#define AD7779_HIGHPOWER_DIV 2048
#define AD7779_SINC3_MAXFREQ (16 * HZ_PER_KHZ)
#define AD7779_SINC5_MAXFREQ (128 * HZ_PER_KHZ)
#define AD7779_DEFAULT_SAMPLING_FREQ (8 * HZ_PER_KHZ)
#define AD7779_DEFAULT_SAMPLING_2LINE (4 * HZ_PER_KHZ)
#define AD7779_DEFAULT_SAMPLING_1LINE (2 * HZ_PER_KHZ)
#define AD7779_SPIMODE_MAX_SAMP_FREQ (16 * HZ_PER_KHZ)
#define GAIN_REL 0x555555
#define AD7779_FREQ_MSB_MSK GENMASK(15, 8)
#define AD7779_FREQ_LSB_MSK GENMASK(7, 0)
#define AD7779_UPPER GENMASK(23, 16)
#define AD7779_MID GENMASK(15, 8)
#define AD7779_LOWER GENMASK(7, 0)
#define AD7779_REG_MSK GENMASK(6, 0)
#define AD7779_CRC8_POLY 0x07
DECLARE_CRC8_TABLE(ad7779_crc8_table);
enum ad7779_filter {
AD7779_SINC3,
AD7779_SINC5,
};
enum ad7779_variant {
ad7770,
ad7771,
ad7779,
};
enum ad7779_power_mode {
AD7779_LOW_POWER,
AD7779_HIGH_POWER,
};
struct ad7779_chip_info {
const char *name;
struct iio_chan_spec const *channels;
};
struct ad7779_state {
struct spi_device *spi;
const struct ad7779_chip_info *chip_info;
struct clk *mclk;
struct iio_trigger *trig;
struct completion completion;
unsigned int sampling_freq;
enum ad7779_filter filter_enabled;
/*
* DMA (thus cache coherency maintenance) requires the
* transfer buffers to live in their own cache lines.
*/
struct {
u32 chans[8];
aligned_s64 timestamp;
} data __aligned(IIO_DMA_MINALIGN);
u32 spidata_tx[8];
u8 reg_rx_buf[3];
u8 reg_tx_buf[3];
u8 reset_buf[8];
};
static const char * const ad7779_filter_type[] = {
[AD7779_SINC3] = "sinc3",
[AD7779_SINC5] = "sinc5",
};
static const char * const ad7779_power_supplies[] = {
"avdd1", "avdd2", "avdd4",
};
static int ad7779_spi_read(struct ad7779_state *st, u8 reg, u8 *rbuf)
{
int ret;
u8 crc_buf[2];
u8 exp_crc;
struct spi_transfer t = {
.tx_buf = st->reg_tx_buf,
.rx_buf = st->reg_rx_buf,
};
st->reg_tx_buf[0] = AD7779_SPI_READ_CMD | FIELD_GET(AD7779_REG_MSK, reg);
st->reg_tx_buf[1] = 0;
if (reg == AD7779_REG_GEN_ERR_REG_1_EN) {
t.len = 2;
} else {
t.len = 3;
st->reg_tx_buf[2] = crc8(ad7779_crc8_table, st->reg_tx_buf,
t.len - 1, 0);
}
ret = spi_sync_transfer(st->spi, &t, 1);
if (ret)
return ret;
crc_buf[0] = AD7779_SPI_READ_CMD | FIELD_GET(AD7779_REG_MSK, reg);
crc_buf[1] = st->reg_rx_buf[1];
exp_crc = crc8(ad7779_crc8_table, crc_buf, ARRAY_SIZE(crc_buf), 0);
if (reg != AD7779_REG_GEN_ERR_REG_1_EN && exp_crc != st->reg_rx_buf[2]) {
dev_err(&st->spi->dev, "Bad CRC %x, expected %x",
st->reg_rx_buf[2], exp_crc);
return -EINVAL;
}
*rbuf = st->reg_rx_buf[1];
return 0;
}
static int ad7779_spi_write(struct ad7779_state *st, u8 reg, u8 val)
{
u8 length = 3;
st->reg_tx_buf[0] = FIELD_GET(AD7779_REG_MSK, reg);
st->reg_tx_buf[1] = val;
if (reg == AD7779_REG_GEN_ERR_REG_1_EN)
length = 2;
else
st->reg_tx_buf[2] = crc8(ad7779_crc8_table, st->reg_tx_buf,
length - 1, 0);
return spi_write(st->spi, st->reg_tx_buf, length);
}
static int ad7779_spi_write_mask(struct ad7779_state *st, u8 reg, u8 mask,
u8 val)
{
int ret;
u8 regval, data;
ret = ad7779_spi_read(st, reg, &data);
if (ret)
return ret;
regval = (data & ~mask) | (val & mask);
if (regval == data)
return 0;
return ad7779_spi_write(st, reg, regval);
}
static int ad7779_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int writeval,
unsigned int *readval)
{
struct ad7779_state *st = iio_priv(indio_dev);
u8 rval;
int ret;
if (readval) {
ret = ad7779_spi_read(st, reg, &rval);
*readval = rval;
return ret;
}
return ad7779_spi_write(st, reg, writeval);
}
static int ad7779_set_sampling_frequency(struct ad7779_state *st,
unsigned int sampling_freq)
{
int ret;
unsigned int dec;
unsigned int frac;
unsigned int div;
unsigned int decimal;
unsigned int freq_khz;
if (st->filter_enabled == AD7779_SINC3 &&
sampling_freq > AD7779_SINC3_MAXFREQ)
return -EINVAL;
if (st->filter_enabled == AD7779_SINC5 &&
sampling_freq > AD7779_SINC5_MAXFREQ)
return -EINVAL;
if (sampling_freq > AD7779_SPIMODE_MAX_SAMP_FREQ)
return -EINVAL;
div = AD7779_HIGHPOWER_DIV;
freq_khz = sampling_freq / HZ_PER_KHZ;
dec = div / freq_khz;
frac = div % freq_khz;
ret = ad7779_spi_write(st, AD7779_REG_SRC_N_MSB,
FIELD_GET(AD7779_FREQ_MSB_MSK, dec));
if (ret)
return ret;
ret = ad7779_spi_write(st, AD7779_REG_SRC_N_LSB,
FIELD_GET(AD7779_FREQ_LSB_MSK, dec));
if (ret)
return ret;
if (frac) {
/*
* In order to obtain the first three decimals of the decimation
* the initial number is multiplied with 10^3 prior to the
* division, then the original division result is subtracted and
* the number is divided by 10^3.
*/
decimal = ((mult_frac(div, KILO, freq_khz) - dec * KILO) << 16)
/ KILO;
ret = ad7779_spi_write(st, AD7779_REG_SRC_N_MSB,
FIELD_GET(AD7779_FREQ_MSB_MSK, decimal));
if (ret)
return ret;
ret = ad7779_spi_write(st, AD7779_REG_SRC_N_LSB,
FIELD_GET(AD7779_FREQ_LSB_MSK, decimal));
if (ret)
return ret;
} else {
ret = ad7779_spi_write(st, AD7779_REG_SRC_N_MSB,
FIELD_GET(AD7779_FREQ_MSB_MSK, 0x0));
if (ret)
return ret;
ret = ad7779_spi_write(st, AD7779_REG_SRC_N_LSB,
FIELD_GET(AD7779_FREQ_LSB_MSK, 0x0));
if (ret)
return ret;
}
ret = ad7779_spi_write(st, AD7779_REG_SRC_UPDATE, BIT(0));
if (ret)
return ret;
/* SRC update settling time */
fsleep(15);
ret = ad7779_spi_write(st, AD7779_REG_SRC_UPDATE, 0x0);
if (ret)
return ret;
/* SRC update settling time */
fsleep(15);
st->sampling_freq = sampling_freq;
return 0;
}
static int ad7779_get_filter(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan)
{
struct ad7779_state *st = iio_priv(indio_dev);
u8 temp;
int ret;
ret = ad7779_spi_read(st, AD7779_REG_GENERAL_USER_CONFIG_2, &temp);
if (ret)
return ret;
return FIELD_GET(AD7779_FILTER_MSK, temp);
}
static int ad7779_set_filter(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
unsigned int mode)
{
struct ad7779_state *st = iio_priv(indio_dev);
int ret;
ret = ad7779_spi_write_mask(st,
AD7779_REG_GENERAL_USER_CONFIG_2,
AD7779_FILTER_MSK,
FIELD_PREP(AD7779_FILTER_MSK, mode));
if (ret)
return ret;
ret = ad7779_set_sampling_frequency(st, st->sampling_freq);
if (ret)
return ret;
st->filter_enabled = mode;
return 0;
}
static int ad7779_get_calibscale(struct ad7779_state *st, int channel)
{
int ret;
u8 calibscale[3];
ret = ad7779_spi_read(st, AD7779_REG_CH_GAIN_LOWER_BYTE(channel),
&calibscale[0]);
if (ret)
return ret;
ret = ad7779_spi_read(st, AD7779_REG_CH_GAIN_MID_BYTE(channel),
&calibscale[1]);
if (ret)
return ret;
ret = ad7779_spi_read(st, AD7779_REG_CH_GAIN_UPPER_BYTE(channel),
&calibscale[2]);
if (ret)
return ret;
return get_unaligned_be24(calibscale);
}
static int ad7779_set_calibscale(struct ad7779_state *st, int channel, int val)
{
int ret;
unsigned int gain;
u8 gain_bytes[3];
/*
* The gain value is relative to 0x555555, which represents a gain of 1
*/
gain = DIV_ROUND_CLOSEST_ULL((u64)val * 5592405LL, MEGA);
put_unaligned_be24(gain, gain_bytes);
ret = ad7779_spi_write(st, AD7779_REG_CH_GAIN_UPPER_BYTE(channel),
gain_bytes[0]);
if (ret)
return ret;
ret = ad7779_spi_write(st, AD7779_REG_CH_GAIN_MID_BYTE(channel),
gain_bytes[1]);
if (ret)
return ret;
return ad7779_spi_write(st, AD7779_REG_CH_GAIN_LOWER_BYTE(channel),
gain_bytes[2]);
}
static int ad7779_get_calibbias(struct ad7779_state *st, int channel)
{
int ret;
u8 calibbias[3];
ret = ad7779_spi_read(st, AD7779_REG_CH_OFFSET_LOWER_BYTE(channel),
&calibbias[0]);
if (ret)
return ret;
ret = ad7779_spi_read(st, AD7779_REG_CH_OFFSET_MID_BYTE(channel),
&calibbias[1]);
if (ret)
return ret;
ret = ad7779_spi_read(st, AD7779_REG_CH_OFFSET_UPPER_BYTE(channel),
&calibbias[2]);
if (ret)
return ret;
return get_unaligned_be24(calibbias);
}
static int ad7779_set_calibbias(struct ad7779_state *st, int channel, int val)
{
int ret;
u8 calibbias[3];
put_unaligned_be24(val, calibbias);
ret = ad7779_spi_write(st, AD7779_REG_CH_OFFSET_UPPER_BYTE(channel),
calibbias[0]);
if (ret)
return ret;
ret = ad7779_spi_write(st, AD7779_REG_CH_OFFSET_MID_BYTE(channel),
calibbias[1]);
if (ret)
return ret;
return ad7779_spi_write(st, AD7779_REG_CH_OFFSET_LOWER_BYTE(channel),
calibbias[2]);
}
static int ad7779_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct ad7779_state *st = iio_priv(indio_dev);
int ret;
iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
switch (mask) {
case IIO_CHAN_INFO_CALIBSCALE:
ret = ad7779_get_calibscale(st, chan->channel);
if (ret < 0)
return ret;
*val = ret;
*val2 = GAIN_REL;
return IIO_VAL_FRACTIONAL;
case IIO_CHAN_INFO_CALIBBIAS:
ret = ad7779_get_calibbias(st, chan->channel);
if (ret < 0)
return ret;
*val = ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
*val = st->sampling_freq;
if (*val < 0)
return -EINVAL;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
unreachable();
}
static int ad7779_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val, int val2,
long mask)
{
struct ad7779_state *st = iio_priv(indio_dev);
iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
switch (mask) {
case IIO_CHAN_INFO_CALIBSCALE:
return ad7779_set_calibscale(st, chan->channel, val2);
case IIO_CHAN_INFO_CALIBBIAS:
return ad7779_set_calibbias(st, chan->channel, val);
case IIO_CHAN_INFO_SAMP_FREQ:
return ad7779_set_sampling_frequency(st, val);
default:
return -EINVAL;
}
}
unreachable();
}
static int ad7779_buffer_preenable(struct iio_dev *indio_dev)
{
int ret;
struct ad7779_state *st = iio_priv(indio_dev);
ret = ad7779_spi_write_mask(st,
AD7779_REG_GENERAL_USER_CONFIG_3,
AD7779_MOD_SPI_EN_MSK,
FIELD_PREP(AD7779_MOD_SPI_EN_MSK, 1));
if (ret)
return ret;
/*
* DRDY output cannot be disabled at device level therefore we mask
* the irq at host end.
*/
enable_irq(st->spi->irq);
return 0;
}
static int ad7779_buffer_postdisable(struct iio_dev *indio_dev)
{
struct ad7779_state *st = iio_priv(indio_dev);
disable_irq(st->spi->irq);
return ad7779_spi_write(st, AD7779_REG_GENERAL_USER_CONFIG_3,
AD7779_DISABLE_SD);
}
static irqreturn_t ad7779_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ad7779_state *st = iio_priv(indio_dev);
int ret;
struct spi_transfer t = {
.rx_buf = st->data.chans,
.tx_buf = st->spidata_tx,
.len = AD7779_NUM_CHANNELS * AD7779_CHAN_DATA_SIZE,
};
st->spidata_tx[0] = AD7779_SPI_READ_CMD;
ret = spi_sync_transfer(st->spi, &t, 1);
if (ret) {
dev_err(&st->spi->dev, "SPI transfer error in IRQ handler");
goto exit_handler;
}
iio_push_to_buffers_with_timestamp(indio_dev, &st->data, pf->timestamp);
exit_handler:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int ad7779_reset(struct iio_dev *indio_dev, struct gpio_desc *reset_gpio)
{
struct ad7779_state *st = iio_priv(indio_dev);
int ret;
struct spi_transfer t = {
.tx_buf = st->reset_buf,
.len = 8,
};
if (reset_gpio) {
gpiod_set_value(reset_gpio, 1);
/* Delay for reset to occur is 225 microseconds */
fsleep(230);
ret = 0;
} else {
memset(st->reset_buf, 0xff, sizeof(st->reset_buf));
ret = spi_sync_transfer(st->spi, &t, 1);
if (ret)
return ret;
}
/* Delay for reset to occur is 225 microseconds */
fsleep(230);
return ret;
}
static const struct iio_info ad7779_info = {
.read_raw = ad7779_read_raw,
.write_raw = ad7779_write_raw,
.debugfs_reg_access = &ad7779_reg_access,
};
static const struct iio_enum ad7779_filter_enum = {
.items = ad7779_filter_type,
.num_items = ARRAY_SIZE(ad7779_filter_type),
.get = ad7779_get_filter,
.set = ad7779_set_filter,
};
static const struct iio_chan_spec_ext_info ad7779_ext_filter[] = {
IIO_ENUM("filter_type", IIO_SHARED_BY_ALL, &ad7779_filter_enum),
IIO_ENUM_AVAILABLE("filter_type", IIO_SHARED_BY_ALL,
&ad7779_filter_enum),
{ }
};
#define AD777x_CHAN_S(index, _ext_info) \
{ \
.type = IIO_VOLTAGE, \
.info_mask_separate = BIT(IIO_CHAN_INFO_CALIBSCALE) | \
BIT(IIO_CHAN_INFO_CALIBBIAS), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
.address = (index), \
.indexed = 1, \
.channel = (index), \
.scan_index = (index), \
.ext_info = (_ext_info), \
.scan_type = { \
.sign = 's', \
.realbits = 24, \
.storagebits = 32, \
.endianness = IIO_BE, \
}, \
}
#define AD777x_CHAN_NO_FILTER_S(index) \
AD777x_CHAN_S(index, NULL)
#define AD777x_CHAN_FILTER_S(index) \
AD777x_CHAN_S(index, ad7779_ext_filter)
static const struct iio_chan_spec ad7779_channels[] = {
AD777x_CHAN_NO_FILTER_S(0),
AD777x_CHAN_NO_FILTER_S(1),
AD777x_CHAN_NO_FILTER_S(2),
AD777x_CHAN_NO_FILTER_S(3),
AD777x_CHAN_NO_FILTER_S(4),
AD777x_CHAN_NO_FILTER_S(5),
AD777x_CHAN_NO_FILTER_S(6),
AD777x_CHAN_NO_FILTER_S(7),
IIO_CHAN_SOFT_TIMESTAMP(8),
};
static const struct iio_chan_spec ad7779_channels_filter[] = {
AD777x_CHAN_FILTER_S(0),
AD777x_CHAN_FILTER_S(1),
AD777x_CHAN_FILTER_S(2),
AD777x_CHAN_FILTER_S(3),
AD777x_CHAN_FILTER_S(4),
AD777x_CHAN_FILTER_S(5),
AD777x_CHAN_FILTER_S(6),
AD777x_CHAN_FILTER_S(7),
IIO_CHAN_SOFT_TIMESTAMP(8),
};
static const struct iio_buffer_setup_ops ad7779_buffer_setup_ops = {
.preenable = ad7779_buffer_preenable,
.postdisable = ad7779_buffer_postdisable,
};
static const struct iio_trigger_ops ad7779_trigger_ops = {
.validate_device = iio_trigger_validate_own_device,
};
static int ad7779_conf(struct ad7779_state *st, struct gpio_desc *start_gpio)
{
int ret;
ret = ad7779_spi_write_mask(st, AD7779_REG_GEN_ERR_REG_1_EN,
AD7779_SPI_CRC_EN_MSK,
FIELD_PREP(AD7779_SPI_CRC_EN_MSK, 1));
if (ret)
return ret;
ret = ad7779_spi_write_mask(st, AD7779_REG_GENERAL_USER_CONFIG_1,
AD7779_USRMOD_INIT_MSK,
FIELD_PREP(AD7779_USRMOD_INIT_MSK, 5));
if (ret)
return ret;
ret = ad7779_spi_write_mask(st, AD7779_REG_DOUT_FORMAT,
AD7779_DCLK_CLK_DIV_MSK,
FIELD_PREP(AD7779_DCLK_CLK_DIV_MSK, 1));
if (ret)
return ret;
ret = ad7779_spi_write_mask(st, AD7779_REG_ADC_MUX_CONFIG,
AD7779_REFMUX_CTRL_MSK,
FIELD_PREP(AD7779_REFMUX_CTRL_MSK, 1));
if (ret)
return ret;
ret = ad7779_set_sampling_frequency(st, AD7779_DEFAULT_SAMPLING_FREQ);
if (ret)
return ret;
gpiod_set_value(start_gpio, 0);
/* Start setup time */
fsleep(15);
gpiod_set_value(start_gpio, 1);
/* Start setup time */
fsleep(15);
gpiod_set_value(start_gpio, 0);
/* Start setup time */
fsleep(15);
return 0;
}
static int ad7779_probe(struct spi_device *spi)
{
struct iio_dev *indio_dev;
struct ad7779_state *st;
struct gpio_desc *reset_gpio, *start_gpio;
struct device *dev = &spi->dev;
int ret = -EINVAL;
if (!spi->irq)
return dev_err_probe(dev, ret, "DRDY irq not present\n");
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
ret = devm_regulator_bulk_get_enable(dev,
ARRAY_SIZE(ad7779_power_supplies),
ad7779_power_supplies);
if (ret)
return dev_err_probe(dev, ret,
"failed to get and enable supplies\n");
st->mclk = devm_clk_get_enabled(dev, "mclk");
if (IS_ERR(st->mclk))
return PTR_ERR(st->mclk);
reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(reset_gpio))
return PTR_ERR(reset_gpio);
start_gpio = devm_gpiod_get(dev, "start", GPIOD_OUT_HIGH);
if (IS_ERR(start_gpio))
return PTR_ERR(start_gpio);
crc8_populate_msb(ad7779_crc8_table, AD7779_CRC8_POLY);
st->spi = spi;
st->chip_info = spi_get_device_match_data(spi);
if (!st->chip_info)
return -ENODEV;
ret = ad7779_reset(indio_dev, reset_gpio);
if (ret)
return ret;
ret = ad7779_conf(st, start_gpio);
if (ret)
return ret;
indio_dev->name = st->chip_info->name;
indio_dev->info = &ad7779_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = st->chip_info->channels;
indio_dev->num_channels = ARRAY_SIZE(ad7779_channels);
st->trig = devm_iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name,
iio_device_id(indio_dev));
if (!st->trig)
return -ENOMEM;
st->trig->ops = &ad7779_trigger_ops;
iio_trigger_set_drvdata(st->trig, st);
ret = devm_request_irq(dev, spi->irq, iio_trigger_generic_data_rdy_poll,
IRQF_ONESHOT | IRQF_NO_AUTOEN, indio_dev->name,
st->trig);
if (ret)
return dev_err_probe(dev, ret, "request IRQ %d failed\n",
st->spi->irq);
ret = devm_iio_trigger_register(dev, st->trig);
if (ret)
return ret;
indio_dev->trig = iio_trigger_get(st->trig);
init_completion(&st->completion);
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
&iio_pollfunc_store_time,
&ad7779_trigger_handler,
&ad7779_buffer_setup_ops);
if (ret)
return ret;
ret = ad7779_spi_write_mask(st, AD7779_REG_DOUT_FORMAT,
AD7779_DCLK_CLK_DIV_MSK,
FIELD_PREP(AD7779_DCLK_CLK_DIV_MSK, 7));
if (ret)
return ret;
return devm_iio_device_register(dev, indio_dev);
}
static int ad7779_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ad7779_state *st = iio_priv(indio_dev);
return ad7779_spi_write_mask(st, AD7779_REG_GENERAL_USER_CONFIG_1,
AD7779_MOD_POWERMODE_MSK,
FIELD_PREP(AD7779_MOD_POWERMODE_MSK,
AD7779_LOW_POWER));
}
static int ad7779_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ad7779_state *st = iio_priv(indio_dev);
return ad7779_spi_write_mask(st, AD7779_REG_GENERAL_USER_CONFIG_1,
AD7779_MOD_POWERMODE_MSK,
FIELD_PREP(AD7779_MOD_POWERMODE_MSK,
AD7779_HIGH_POWER));
}
static DEFINE_SIMPLE_DEV_PM_OPS(ad7779_pm_ops, ad7779_suspend, ad7779_resume);
static const struct ad7779_chip_info ad7770_chip_info = {
.name = "ad7770",
.channels = ad7779_channels,
};
static const struct ad7779_chip_info ad7771_chip_info = {
.name = "ad7771",
.channels = ad7779_channels_filter,
};
static const struct ad7779_chip_info ad7779_chip_info = {
.name = "ad7779",
.channels = ad7779_channels,
};
static const struct spi_device_id ad7779_id[] = {
{
.name = "ad7770",
.driver_data = (kernel_ulong_t)&ad7770_chip_info,
},
{
.name = "ad7771",
.driver_data = (kernel_ulong_t)&ad7771_chip_info,
},
{
.name = "ad7779",
.driver_data = (kernel_ulong_t)&ad7779_chip_info,
},
{ }
};
MODULE_DEVICE_TABLE(spi, ad7779_id);
static const struct of_device_id ad7779_of_table[] = {
{
.compatible = "adi,ad7770",
.data = &ad7770_chip_info,
},
{
.compatible = "adi,ad7771",
.data = &ad7771_chip_info,
},
{
.compatible = "adi,ad7779",
.data = &ad7779_chip_info,
},
{ }
};
MODULE_DEVICE_TABLE(of, ad7779_of_table);
static struct spi_driver ad7779_driver = {
.driver = {
.name = "ad7779",
.pm = pm_sleep_ptr(&ad7779_pm_ops),
.of_match_table = ad7779_of_table,
},
.probe = ad7779_probe,
.id_table = ad7779_id,
};
module_spi_driver(ad7779_driver);
MODULE_AUTHOR("Ramona Alexandra Nechita <ramona.nechita@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD7779 ADC");
MODULE_LICENSE("GPL");