linux-stable/drivers/iio/dac/ad9739a.c
Peter Zijlstra cdd30ebb1b module: Convert symbol namespace to string literal
Clean up the existing export namespace code along the same lines of
commit 33def8498f ("treewide: Convert macro and uses of __section(foo)
to __section("foo")") and for the same reason, it is not desired for the
namespace argument to be a macro expansion itself.

Scripted using

  git grep -l -e MODULE_IMPORT_NS -e EXPORT_SYMBOL_NS | while read file;
  do
    awk -i inplace '
      /^#define EXPORT_SYMBOL_NS/ {
        gsub(/__stringify\(ns\)/, "ns");
        print;
        next;
      }
      /^#define MODULE_IMPORT_NS/ {
        gsub(/__stringify\(ns\)/, "ns");
        print;
        next;
      }
      /MODULE_IMPORT_NS/ {
        $0 = gensub(/MODULE_IMPORT_NS\(([^)]*)\)/, "MODULE_IMPORT_NS(\"\\1\")", "g");
      }
      /EXPORT_SYMBOL_NS/ {
        if ($0 ~ /(EXPORT_SYMBOL_NS[^(]*)\(([^,]+),/) {
  	if ($0 !~ /(EXPORT_SYMBOL_NS[^(]*)\(([^,]+), ([^)]+)\)/ &&
  	    $0 !~ /(EXPORT_SYMBOL_NS[^(]*)\(\)/ &&
  	    $0 !~ /^my/) {
  	  getline line;
  	  gsub(/[[:space:]]*\\$/, "");
  	  gsub(/[[:space:]]/, "", line);
  	  $0 = $0 " " line;
  	}

  	$0 = gensub(/(EXPORT_SYMBOL_NS[^(]*)\(([^,]+), ([^)]+)\)/,
  		    "\\1(\\2, \"\\3\")", "g");
        }
      }
      { print }' $file;
  done

Requested-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://mail.google.com/mail/u/2/#inbox/FMfcgzQXKWgMmjdFwwdsfgxzKpVHWPlc
Acked-by: Greg KH <gregkh@linuxfoundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-12-02 11:34:44 -08:00

470 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Analog Devices AD9739a SPI DAC driver
*
* Copyright 2015-2024 Analog Devices Inc.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/gpio/consumer.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/units.h>
#include <linux/iio/backend.h>
#include <linux/iio/iio.h>
#include <linux/iio/types.h>
#define AD9739A_REG_MODE 0
#define AD9739A_RESET_MASK BIT(5)
#define AD9739A_REG_FSC_1 0x06
#define AD9739A_REG_FSC_2 0x07
#define AD9739A_FSC_MSB GENMASK(1, 0)
#define AD9739A_REG_DEC_CNT 0x8
#define AD9739A_NORMAL_MODE 0
#define AD9739A_MIXED_MODE 2
#define AD9739A_DAC_DEC GENMASK(1, 0)
#define AD9739A_REG_LVDS_REC_CNT1 0x10
#define AD9739A_RCVR_LOOP_EN_MASK GENMASK(1, 0)
#define AD9739A_REG_LVDS_REC_CNT4 0x13
#define AD9739A_FINE_DEL_SKW_MASK GENMASK(3, 0)
#define AD9739A_REG_LVDS_REC_STAT9 0x21
#define AD9739A_RCVR_TRACK_AND_LOCK (BIT(3) | BIT(0))
#define AD9739A_REG_CROSS_CNT1 0x22
#define AD9739A_REG_CROSS_CNT2 0x23
#define AD9739A_REG_PHS_DET 0x24
#define AD9739A_REG_MU_DUTY 0x25
#define AD9739A_REG_MU_CNT1 0x26
#define AD9739A_MU_EN_MASK BIT(0)
#define AD9739A_MU_GAIN_MASK BIT(1)
#define AD9739A_REG_MU_CNT2 0x27
#define AD9739A_REG_MU_CNT3 0x28
#define AD9739A_REG_MU_CNT4 0x29
#define AD9739A_MU_CNT4_DEFAULT 0xcb
#define AD9739A_REG_MU_STAT1 0x2A
#define AD9739A_MU_LOCK_MASK BIT(0)
#define AD9739A_REG_ANA_CNT_1 0x32
#define AD9739A_REG_ID 0x35
#define AD9739A_ID 0x24
#define AD9739A_REG_IS_RESERVED(reg) \
((reg) == 0x5 || (reg) == 0x9 || (reg) == 0x0E || (reg) == 0x0D || \
(reg) == 0x2B || (reg) == 0x2C || (reg) == 0x34)
#define AD9739A_FSC_MIN 8580
#define AD9739A_FSC_MAX 31700
#define AD9739A_FSC_RANGE (AD9739A_FSC_MAX - AD9739A_FSC_MIN + 1)
#define AD9739A_MIN_DAC_CLK (1600 * MEGA)
#define AD9739A_MAX_DAC_CLK (2500 * MEGA)
#define AD9739A_DAC_CLK_RANGE (AD9739A_MAX_DAC_CLK - AD9739A_MIN_DAC_CLK + 1)
/* as recommended by the datasheet */
#define AD9739A_LOCK_N_TRIES 3
struct ad9739a_state {
struct iio_backend *back;
struct regmap *regmap;
unsigned long sample_rate;
};
static int ad9739a_oper_mode_get(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct ad9739a_state *st = iio_priv(indio_dev);
u32 mode;
int ret;
ret = regmap_read(st->regmap, AD9739A_REG_DEC_CNT, &mode);
if (ret)
return ret;
mode = FIELD_GET(AD9739A_DAC_DEC, mode);
/* sanity check we get valid values from the HW */
if (mode != AD9739A_NORMAL_MODE && mode != AD9739A_MIXED_MODE)
return -EIO;
if (!mode)
return AD9739A_NORMAL_MODE;
/*
* We get 2 from the device but for IIO modes, that means 1. Hence the
* minus 1.
*/
return AD9739A_MIXED_MODE - 1;
}
static int ad9739a_oper_mode_set(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, u32 mode)
{
struct ad9739a_state *st = iio_priv(indio_dev);
/*
* On the IIO interface we have 0 and 1 for mode. But for mixed_mode, we
* need to write 2 in the device. That's what the below check is about.
*/
if (mode == AD9739A_MIXED_MODE - 1)
mode = AD9739A_MIXED_MODE;
return regmap_update_bits(st->regmap, AD9739A_REG_DEC_CNT,
AD9739A_DAC_DEC, mode);
}
static int ad9739a_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct ad9739a_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
*val = st->sample_rate;
*val2 = 0;
return IIO_VAL_INT_64;
default:
return -EINVAL;
}
}
static int ad9739a_buffer_preenable(struct iio_dev *indio_dev)
{
struct ad9739a_state *st = iio_priv(indio_dev);
return iio_backend_data_source_set(st->back, 0, IIO_BACKEND_EXTERNAL);
}
static int ad9739a_buffer_postdisable(struct iio_dev *indio_dev)
{
struct ad9739a_state *st = iio_priv(indio_dev);
return iio_backend_data_source_set(st->back, 0,
IIO_BACKEND_INTERNAL_CONTINUOUS_WAVE);
}
static bool ad9739a_reg_accessible(struct device *dev, unsigned int reg)
{
if (AD9739A_REG_IS_RESERVED(reg))
return false;
if (reg > AD9739A_REG_MU_STAT1 && reg < AD9739A_REG_ANA_CNT_1)
return false;
return true;
}
static int ad9739a_reset(struct device *dev, const struct ad9739a_state *st)
{
struct gpio_desc *gpio;
int ret;
gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(gpio))
return PTR_ERR(gpio);
if (gpio) {
/* minimum pulse width of 40ns */
ndelay(40);
gpiod_set_value_cansleep(gpio, 0);
return 0;
}
/* bring all registers to their default state */
ret = regmap_set_bits(st->regmap, AD9739A_REG_MODE, AD9739A_RESET_MASK);
if (ret)
return ret;
ndelay(40);
return regmap_clear_bits(st->regmap, AD9739A_REG_MODE,
AD9739A_RESET_MASK);
}
/*
* Recommended values (as per datasheet) for the dac clk common mode voltage
* and Mu controller. Look at table 29.
*/
static const struct reg_sequence ad9739a_clk_mu_ctrl[] = {
/* DAC clk common mode voltage */
{ AD9739A_REG_CROSS_CNT1, 0x0f },
{ AD9739A_REG_CROSS_CNT2, 0x0f },
/* Mu controller configuration */
{ AD9739A_REG_PHS_DET, 0x30 },
{ AD9739A_REG_MU_DUTY, 0x80 },
{ AD9739A_REG_MU_CNT2, 0x44 },
{ AD9739A_REG_MU_CNT3, 0x6c },
};
static int ad9739a_init(struct device *dev, const struct ad9739a_state *st)
{
unsigned int i = 0, lock, fsc;
u32 fsc_raw;
int ret;
ret = regmap_multi_reg_write(st->regmap, ad9739a_clk_mu_ctrl,
ARRAY_SIZE(ad9739a_clk_mu_ctrl));
if (ret)
return ret;
/*
* Try to get the Mu lock. Repeat the below steps AD9739A_LOCK_N_TRIES
* (as specified by the datasheet) until we get the lock.
*/
do {
ret = regmap_write(st->regmap, AD9739A_REG_MU_CNT4,
AD9739A_MU_CNT4_DEFAULT);
if (ret)
return ret;
/* Enable the Mu controller search and track mode. */
ret = regmap_write(st->regmap, AD9739A_REG_MU_CNT1,
AD9739A_MU_EN_MASK | AD9739A_MU_GAIN_MASK);
if (ret)
return ret;
/* Ensure the DLL loop is locked */
ret = regmap_read_poll_timeout(st->regmap, AD9739A_REG_MU_STAT1,
lock, lock & AD9739A_MU_LOCK_MASK,
0, 1000);
if (ret && ret != -ETIMEDOUT)
return ret;
} while (ret && ++i < AD9739A_LOCK_N_TRIES);
if (i == AD9739A_LOCK_N_TRIES)
return dev_err_probe(dev, ret, "Mu lock timeout\n");
/* Receiver tracking and lock. Same deal as the Mu controller */
i = 0;
do {
ret = regmap_update_bits(st->regmap, AD9739A_REG_LVDS_REC_CNT4,
AD9739A_FINE_DEL_SKW_MASK,
FIELD_PREP(AD9739A_FINE_DEL_SKW_MASK, 2));
if (ret)
return ret;
/* Disable the receiver and the loop. */
ret = regmap_write(st->regmap, AD9739A_REG_LVDS_REC_CNT1, 0);
if (ret)
return ret;
/*
* Re-enable the loop so it falls out of lock and begins the
* search/track routine again.
*/
ret = regmap_set_bits(st->regmap, AD9739A_REG_LVDS_REC_CNT1,
AD9739A_RCVR_LOOP_EN_MASK);
if (ret)
return ret;
/* Ensure the DLL loop is locked */
ret = regmap_read_poll_timeout(st->regmap,
AD9739A_REG_LVDS_REC_STAT9, lock,
lock == AD9739A_RCVR_TRACK_AND_LOCK,
0, 1000);
if (ret && ret != -ETIMEDOUT)
return ret;
} while (ret && ++i < AD9739A_LOCK_N_TRIES);
if (i == AD9739A_LOCK_N_TRIES)
return dev_err_probe(dev, ret, "Receiver lock timeout\n");
ret = device_property_read_u32(dev, "adi,full-scale-microamp", &fsc);
if (ret && ret == -EINVAL)
return 0;
if (ret)
return ret;
if (!in_range(fsc, AD9739A_FSC_MIN, AD9739A_FSC_RANGE))
return dev_err_probe(dev, -EINVAL,
"Invalid full scale current(%u) [%u %u]\n",
fsc, AD9739A_FSC_MIN, AD9739A_FSC_MAX);
/*
* IOUTFS is given by
* Ioutfs = 0.0226 * FSC + 8.58
* and is given in mA. Hence we'll have to multiply by 10 * MILLI in
* order to get rid of the fractional.
*/
fsc_raw = DIV_ROUND_CLOSEST(fsc * 10 - 85800, 226);
ret = regmap_write(st->regmap, AD9739A_REG_FSC_1, fsc_raw & 0xff);
if (ret)
return ret;
return regmap_update_bits(st->regmap, AD9739A_REG_FSC_2,
AD9739A_FSC_MSB, fsc_raw >> 8);
}
static const char * const ad9739a_modes_avail[] = { "normal", "mixed-mode" };
static const struct iio_enum ad9739a_modes = {
.items = ad9739a_modes_avail,
.num_items = ARRAY_SIZE(ad9739a_modes_avail),
.get = ad9739a_oper_mode_get,
.set = ad9739a_oper_mode_set,
};
static const struct iio_chan_spec_ext_info ad9739a_ext_info[] = {
IIO_ENUM_AVAILABLE("operating_mode", IIO_SEPARATE, &ad9739a_modes),
IIO_ENUM("operating_mode", IIO_SEPARATE, &ad9739a_modes),
{ }
};
/*
* The reason for having two different channels is because we have, in reality,
* two sources of data:
* ALTVOLTAGE: It's a Continuous Wave that's internally generated by the
* backend device.
* VOLTAGE: It's the typical data we can have in a DAC device and the source
* of it has nothing to do with the backend. The backend will only
* forward it into our data interface to be sent out.
*/
static struct iio_chan_spec ad9739a_channels[] = {
{
.type = IIO_ALTVOLTAGE,
.indexed = 1,
.output = 1,
.scan_index = -1,
},
{
.type = IIO_VOLTAGE,
.indexed = 1,
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
.output = 1,
.ext_info = ad9739a_ext_info,
.scan_type = {
.sign = 's',
.storagebits = 16,
.realbits = 16,
},
}
};
static const struct iio_info ad9739a_info = {
.read_raw = ad9739a_read_raw,
};
static const struct iio_buffer_setup_ops ad9739a_buffer_setup_ops = {
.preenable = &ad9739a_buffer_preenable,
.postdisable = &ad9739a_buffer_postdisable,
};
static const struct regmap_config ad9739a_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.readable_reg = ad9739a_reg_accessible,
.writeable_reg = ad9739a_reg_accessible,
.max_register = AD9739A_REG_ID,
};
static int ad9739a_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct iio_dev *indio_dev;
struct ad9739a_state *st;
unsigned int id;
struct clk *clk;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(clk))
return dev_err_probe(dev, PTR_ERR(clk), "Could not get clkin\n");
st->sample_rate = clk_get_rate(clk);
if (!in_range(st->sample_rate, AD9739A_MIN_DAC_CLK,
AD9739A_DAC_CLK_RANGE))
return dev_err_probe(dev, -EINVAL,
"Invalid dac clk range(%lu) [%lu %lu]\n",
st->sample_rate, AD9739A_MIN_DAC_CLK,
AD9739A_MAX_DAC_CLK);
st->regmap = devm_regmap_init_spi(spi, &ad9739a_regmap_config);
if (IS_ERR(st->regmap))
return PTR_ERR(st->regmap);
ret = regmap_read(st->regmap, AD9739A_REG_ID, &id);
if (ret)
return ret;
if (id != AD9739A_ID)
dev_warn(dev, "Unrecognized CHIP_ID 0x%X", id);
ret = ad9739a_reset(dev, st);
if (ret)
return ret;
ret = ad9739a_init(dev, st);
if (ret)
return ret;
st->back = devm_iio_backend_get(dev, NULL);
if (IS_ERR(st->back))
return PTR_ERR(st->back);
ret = devm_iio_backend_request_buffer(dev, st->back, indio_dev);
if (ret)
return ret;
ret = iio_backend_extend_chan_spec(st->back, &ad9739a_channels[0]);
if (ret)
return ret;
ret = iio_backend_set_sampling_freq(st->back, 0, st->sample_rate);
if (ret)
return ret;
ret = devm_iio_backend_enable(dev, st->back);
if (ret)
return ret;
indio_dev->name = "ad9739a";
indio_dev->info = &ad9739a_info;
indio_dev->channels = ad9739a_channels;
indio_dev->num_channels = ARRAY_SIZE(ad9739a_channels);
indio_dev->setup_ops = &ad9739a_buffer_setup_ops;
ret = devm_iio_device_register(&spi->dev, indio_dev);
if (ret)
return ret;
iio_backend_debugfs_add(st->back, indio_dev);
return 0;
}
static const struct of_device_id ad9739a_of_match[] = {
{ .compatible = "adi,ad9739a" },
{}
};
MODULE_DEVICE_TABLE(of, ad9739a_of_match);
static const struct spi_device_id ad9739a_id[] = {
{"ad9739a"},
{}
};
MODULE_DEVICE_TABLE(spi, ad9739a_id);
static struct spi_driver ad9739a_driver = {
.driver = {
.name = "ad9739a",
.of_match_table = ad9739a_of_match,
},
.probe = ad9739a_probe,
.id_table = ad9739a_id,
};
module_spi_driver(ad9739a_driver);
MODULE_AUTHOR("Dragos Bogdan <dragos.bogdan@analog.com>");
MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD9739 DAC");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS("IIO_BACKEND");