linux-stable/drivers/misc/keba/cp500.c
Gerhard Engleder a27b406a49 misc: keba: Add UART devices
Add support for the UART auxiliary devices. This enables access to up to
3 different UARTs, which are implemented in the FPGA.

Signed-off-by: Gerhard Engleder <eg@keba.com>
Link: https://lore.kernel.org/r/20241011191257.19702-9-gerhard@engleder-embedded.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-10-13 17:16:57 +02:00

969 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) KEBA Industrial Automation Gmbh 2024
*
* Driver for KEBA system FPGA
*
* The KEBA system FPGA implements various devices. This driver registers
* auxiliary devices for every device within the FPGA.
*/
#include <linux/device.h>
#include <linux/i2c.h>
#include <linux/misc/keba.h>
#include <linux/module.h>
#include <linux/mtd/partitions.h>
#include <linux/nvmem-consumer.h>
#include <linux/nvmem-provider.h>
#include <linux/pci.h>
#include <linux/spi/flash.h>
#include <linux/spi/spi.h>
#define CP500 "cp500"
#define PCI_VENDOR_ID_KEBA 0xCEBA
#define PCI_DEVICE_ID_KEBA_CP035 0x2706
#define PCI_DEVICE_ID_KEBA_CP505 0x2703
#define PCI_DEVICE_ID_KEBA_CP520 0x2696
#define CP500_SYS_BAR 0
#define CP500_ECM_BAR 1
/* BAR 0 registers */
#define CP500_VERSION_REG 0x00
#define CP500_RECONFIG_REG 0x11 /* upper 8-bits of STARTUP register */
#define CP500_PRESENT_REG 0x20
#define CP500_AXI_REG 0x40
/* Bits in BUILD_REG */
#define CP500_BUILD_TEST 0x8000 /* FPGA test version */
/* Bits in RECONFIG_REG */
#define CP500_RECFG_REQ 0x01 /* reconfigure FPGA on next reset */
/* Bits in PRESENT_REG */
#define CP500_PRESENT_FAN0 0x01
/* MSIX */
#define CP500_AXI_MSIX 3
#define CP500_RFB_UART_MSIX 4
#define CP500_DEBUG_UART_MSIX 5
#define CP500_SI1_UART_MSIX 6
#define CP500_NUM_MSIX 8
#define CP500_NUM_MSIX_NO_MMI 2
#define CP500_NUM_MSIX_NO_AXI 3
/* EEPROM */
#define CP500_EEPROM_DA_OFFSET 0x016F
#define CP500_EEPROM_DA_ESC_TYPE_MASK 0x01
#define CP500_EEPROM_ESC_LAN9252 0x00
#define CP500_EEPROM_ESC_ET1100 0x01
#define CP500_EEPROM_CPU_NAME "cpu_eeprom"
#define CP500_EEPROM_CPU_OFFSET 0
#define CP500_EEPROM_CPU_SIZE 3072
#define CP500_EEPROM_USER_NAME "user_eeprom"
#define CP500_EEPROM_USER_OFFSET 3072
#define CP500_EEPROM_USER_SIZE 1024
/* SPI flash running at full speed */
#define CP500_FLASH_HZ (33 * 1000 * 1000)
/* LAN9252 */
#define CP500_LAN9252_HZ (10 * 1000 * 1000)
#define CP500_IS_CP035(dev) ((dev)->pci_dev->device == PCI_DEVICE_ID_KEBA_CP035)
#define CP500_IS_CP505(dev) ((dev)->pci_dev->device == PCI_DEVICE_ID_KEBA_CP505)
#define CP500_IS_CP520(dev) ((dev)->pci_dev->device == PCI_DEVICE_ID_KEBA_CP520)
struct cp500_dev_info {
off_t offset;
size_t size;
unsigned int msix;
};
struct cp500_devs {
struct cp500_dev_info startup;
struct cp500_dev_info spi;
struct cp500_dev_info i2c;
struct cp500_dev_info fan;
struct cp500_dev_info batt;
struct cp500_dev_info uart0_rfb;
struct cp500_dev_info uart1_dbg;
struct cp500_dev_info uart2_si1;
};
/* list of devices within FPGA of CP035 family (CP035, CP056, CP057) */
static struct cp500_devs cp035_devices = {
.startup = { 0x0000, SZ_4K },
.spi = { 0x1000, SZ_4K },
.i2c = { 0x4000, SZ_4K },
.fan = { 0x9000, SZ_4K },
.batt = { 0xA000, SZ_4K },
.uart0_rfb = { 0xB000, SZ_4K, CP500_RFB_UART_MSIX },
.uart2_si1 = { 0xD000, SZ_4K, CP500_SI1_UART_MSIX },
};
/* list of devices within FPGA of CP505 family (CP503, CP505, CP507) */
static struct cp500_devs cp505_devices = {
.startup = { 0x0000, SZ_4K },
.spi = { 0x4000, SZ_4K },
.i2c = { 0x5000, SZ_4K },
.fan = { 0x9000, SZ_4K },
.batt = { 0xA000, SZ_4K },
.uart0_rfb = { 0xB000, SZ_4K, CP500_RFB_UART_MSIX },
.uart2_si1 = { 0xD000, SZ_4K, CP500_SI1_UART_MSIX },
};
/* list of devices within FPGA of CP520 family (CP520, CP530) */
static struct cp500_devs cp520_devices = {
.startup = { 0x0000, SZ_4K },
.spi = { 0x4000, SZ_4K },
.i2c = { 0x5000, SZ_4K },
.fan = { 0x8000, SZ_4K },
.batt = { 0x9000, SZ_4K },
.uart0_rfb = { 0xC000, SZ_4K, CP500_RFB_UART_MSIX },
.uart1_dbg = { 0xD000, SZ_4K, CP500_DEBUG_UART_MSIX },
};
struct cp500_nvmem {
struct nvmem_device *nvmem;
unsigned int offset;
};
struct cp500 {
struct pci_dev *pci_dev;
struct cp500_devs *devs;
int msix_num;
struct {
int major;
int minor;
int build;
} version;
struct notifier_block nvmem_notifier;
atomic_t nvmem_notified;
/* system FPGA BAR */
resource_size_t sys_hwbase;
struct keba_spi_auxdev *spi;
struct keba_i2c_auxdev *i2c;
struct keba_fan_auxdev *fan;
struct keba_batt_auxdev *batt;
struct keba_uart_auxdev *uart0_rfb;
struct keba_uart_auxdev *uart1_dbg;
struct keba_uart_auxdev *uart2_si1;
/* ECM EtherCAT BAR */
resource_size_t ecm_hwbase;
/* NVMEM devices */
struct cp500_nvmem nvmem_cpu;
struct cp500_nvmem nvmem_user;
void __iomem *system_startup_addr;
};
/* I2C devices */
#define CP500_EEPROM_ADDR 0x50
static struct i2c_board_info cp500_i2c_info[] = {
{ /* temperature sensor */
I2C_BOARD_INFO("emc1403", 0x4c),
},
{ /*
* CPU EEPROM
* CP035 family: CPU board
* CP505 family: bridge board
* CP520 family: carrier board
*/
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR),
},
{ /* interface board EEPROM */
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 1),
},
{ /*
* EEPROM (optional)
* CP505 family: CPU board
* CP520 family: MMI board
*/
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 2),
},
{ /* extension module 0 EEPROM (optional) */
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 3),
},
{ /* extension module 1 EEPROM (optional) */
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 4),
},
{ /* extension module 2 EEPROM (optional) */
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 5),
},
{ /* extension module 3 EEPROM (optional) */
I2C_BOARD_INFO("24c32", CP500_EEPROM_ADDR + 6),
}
};
/* SPI devices */
static struct mtd_partition cp500_partitions[] = {
{
.name = "system-flash-parts",
.size = MTDPART_SIZ_FULL,
.offset = 0,
.mask_flags = 0
}
};
static const struct flash_platform_data cp500_w25q32 = {
.type = "w25q32",
.name = "system-flash",
.parts = cp500_partitions,
.nr_parts = ARRAY_SIZE(cp500_partitions),
};
static const struct flash_platform_data cp500_m25p16 = {
.type = "m25p16",
.name = "system-flash",
.parts = cp500_partitions,
.nr_parts = ARRAY_SIZE(cp500_partitions),
};
static struct spi_board_info cp500_spi_info[] = {
{ /* system FPGA configuration bitstream flash */
.modalias = "m25p80",
.platform_data = &cp500_m25p16,
.max_speed_hz = CP500_FLASH_HZ,
.chip_select = 0,
.mode = SPI_MODE_3,
}, { /* LAN9252 EtherCAT slave controller */
.modalias = "lan9252",
.platform_data = NULL,
.max_speed_hz = CP500_LAN9252_HZ,
.chip_select = 1,
.mode = SPI_MODE_3,
}
};
static ssize_t cp500_get_fpga_version(struct cp500 *cp500, char *buf,
size_t max_len)
{
int n;
if (CP500_IS_CP035(cp500))
n = scnprintf(buf, max_len, "CP035");
else if (CP500_IS_CP505(cp500))
n = scnprintf(buf, max_len, "CP505");
else
n = scnprintf(buf, max_len, "CP500");
n += scnprintf(buf + n, max_len - n, "_FPGA_%d.%02d",
cp500->version.major, cp500->version.minor);
/* test versions have test bit set */
if (cp500->version.build & CP500_BUILD_TEST)
n += scnprintf(buf + n, max_len - n, "Test%d",
cp500->version.build & ~CP500_BUILD_TEST);
n += scnprintf(buf + n, max_len - n, "\n");
return n;
}
static ssize_t version_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct cp500 *cp500 = dev_get_drvdata(dev);
return cp500_get_fpga_version(cp500, buf, PAGE_SIZE);
}
static DEVICE_ATTR_RO(version);
static ssize_t keep_cfg_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct cp500 *cp500 = dev_get_drvdata(dev);
unsigned long keep_cfg = 1;
/*
* FPGA configuration stream is kept during reset when RECONFIG bit is
* zero
*/
if (ioread8(cp500->system_startup_addr + CP500_RECONFIG_REG) &
CP500_RECFG_REQ)
keep_cfg = 0;
return sysfs_emit(buf, "%lu\n", keep_cfg);
}
static ssize_t keep_cfg_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct cp500 *cp500 = dev_get_drvdata(dev);
unsigned long keep_cfg;
if (kstrtoul(buf, 10, &keep_cfg) < 0)
return -EINVAL;
/*
* In normal operation "keep_cfg" is "1". This means that the FPGA keeps
* its configuration stream during a reset.
* In case of a firmware update of the FPGA, the configuration stream
* needs to be reloaded. This can be done without a powercycle by
* writing a "0" into the "keep_cfg" attribute. After a reset/reboot th
* new configuration stream will be loaded.
*/
if (keep_cfg)
iowrite8(0, cp500->system_startup_addr + CP500_RECONFIG_REG);
else
iowrite8(CP500_RECFG_REQ,
cp500->system_startup_addr + CP500_RECONFIG_REG);
return count;
}
static DEVICE_ATTR_RW(keep_cfg);
static struct attribute *cp500_attrs[] = {
&dev_attr_version.attr,
&dev_attr_keep_cfg.attr,
NULL
};
ATTRIBUTE_GROUPS(cp500);
static void cp500_i2c_release(struct device *dev)
{
struct keba_i2c_auxdev *i2c =
container_of(dev, struct keba_i2c_auxdev, auxdev.dev);
kfree(i2c);
}
static int cp500_register_i2c(struct cp500 *cp500)
{
int ret;
cp500->i2c = kzalloc(sizeof(*cp500->i2c), GFP_KERNEL);
if (!cp500->i2c)
return -ENOMEM;
cp500->i2c->auxdev.name = "i2c";
cp500->i2c->auxdev.id = 0;
cp500->i2c->auxdev.dev.release = cp500_i2c_release;
cp500->i2c->auxdev.dev.parent = &cp500->pci_dev->dev;
cp500->i2c->io = (struct resource) {
/* I2C register area */
.start = (resource_size_t) cp500->sys_hwbase +
cp500->devs->i2c.offset,
.end = (resource_size_t) cp500->sys_hwbase +
cp500->devs->i2c.offset +
cp500->devs->i2c.size - 1,
.flags = IORESOURCE_MEM,
};
cp500->i2c->info_size = ARRAY_SIZE(cp500_i2c_info);
cp500->i2c->info = cp500_i2c_info;
ret = auxiliary_device_init(&cp500->i2c->auxdev);
if (ret) {
kfree(cp500->i2c);
cp500->i2c = NULL;
return ret;
}
ret = __auxiliary_device_add(&cp500->i2c->auxdev, "keba");
if (ret) {
auxiliary_device_uninit(&cp500->i2c->auxdev);
cp500->i2c = NULL;
return ret;
}
return 0;
}
static void cp500_spi_release(struct device *dev)
{
struct keba_spi_auxdev *spi =
container_of(dev, struct keba_spi_auxdev, auxdev.dev);
kfree(spi);
}
static int cp500_register_spi(struct cp500 *cp500, u8 esc_type)
{
int info_size;
int ret;
cp500->spi = kzalloc(sizeof(*cp500->spi), GFP_KERNEL);
if (!cp500->spi)
return -ENOMEM;
if (CP500_IS_CP035(cp500))
cp500_spi_info[0].platform_data = &cp500_w25q32;
if (esc_type == CP500_EEPROM_ESC_LAN9252)
info_size = ARRAY_SIZE(cp500_spi_info);
else
info_size = ARRAY_SIZE(cp500_spi_info) - 1;
cp500->spi->auxdev.name = "spi";
cp500->spi->auxdev.id = 0;
cp500->spi->auxdev.dev.release = cp500_spi_release;
cp500->spi->auxdev.dev.parent = &cp500->pci_dev->dev;
cp500->spi->io = (struct resource) {
/* SPI register area */
.start = (resource_size_t) cp500->sys_hwbase +
cp500->devs->spi.offset,
.end = (resource_size_t) cp500->sys_hwbase +
cp500->devs->spi.offset +
cp500->devs->spi.size - 1,
.flags = IORESOURCE_MEM,
};
cp500->spi->info_size = info_size;
cp500->spi->info = cp500_spi_info;
ret = auxiliary_device_init(&cp500->spi->auxdev);
if (ret) {
kfree(cp500->spi);
cp500->spi = NULL;
return ret;
}
ret = __auxiliary_device_add(&cp500->spi->auxdev, "keba");
if (ret) {
auxiliary_device_uninit(&cp500->spi->auxdev);
cp500->spi = NULL;
return ret;
}
return 0;
}
static void cp500_fan_release(struct device *dev)
{
struct keba_fan_auxdev *fan =
container_of(dev, struct keba_fan_auxdev, auxdev.dev);
kfree(fan);
}
static int cp500_register_fan(struct cp500 *cp500)
{
int ret;
cp500->fan = kzalloc(sizeof(*cp500->fan), GFP_KERNEL);
if (!cp500->fan)
return -ENOMEM;
cp500->fan->auxdev.name = "fan";
cp500->fan->auxdev.id = 0;
cp500->fan->auxdev.dev.release = cp500_fan_release;
cp500->fan->auxdev.dev.parent = &cp500->pci_dev->dev;
cp500->fan->io = (struct resource) {
/* fan register area */
.start = (resource_size_t) cp500->sys_hwbase +
cp500->devs->fan.offset,
.end = (resource_size_t) cp500->sys_hwbase +
cp500->devs->fan.offset +
cp500->devs->fan.size - 1,
.flags = IORESOURCE_MEM,
};
ret = auxiliary_device_init(&cp500->fan->auxdev);
if (ret) {
kfree(cp500->fan);
cp500->fan = NULL;
return ret;
}
ret = __auxiliary_device_add(&cp500->fan->auxdev, "keba");
if (ret) {
auxiliary_device_uninit(&cp500->fan->auxdev);
cp500->fan = NULL;
return ret;
}
return 0;
}
static void cp500_batt_release(struct device *dev)
{
struct keba_batt_auxdev *fan =
container_of(dev, struct keba_batt_auxdev, auxdev.dev);
kfree(fan);
}
static int cp500_register_batt(struct cp500 *cp500)
{
int ret;
cp500->batt = kzalloc(sizeof(*cp500->batt), GFP_KERNEL);
if (!cp500->batt)
return -ENOMEM;
cp500->batt->auxdev.name = "batt";
cp500->batt->auxdev.id = 0;
cp500->batt->auxdev.dev.release = cp500_batt_release;
cp500->batt->auxdev.dev.parent = &cp500->pci_dev->dev;
cp500->batt->io = (struct resource) {
/* battery register area */
.start = (resource_size_t) cp500->sys_hwbase +
cp500->devs->batt.offset,
.end = (resource_size_t) cp500->sys_hwbase +
cp500->devs->batt.offset +
cp500->devs->batt.size - 1,
.flags = IORESOURCE_MEM,
};
ret = auxiliary_device_init(&cp500->batt->auxdev);
if (ret) {
kfree(cp500->batt);
cp500->batt = NULL;
return ret;
}
ret = __auxiliary_device_add(&cp500->batt->auxdev, "keba");
if (ret) {
auxiliary_device_uninit(&cp500->batt->auxdev);
cp500->batt = NULL;
return ret;
}
return 0;
}
static void cp500_uart_release(struct device *dev)
{
struct keba_uart_auxdev *uart =
container_of(dev, struct keba_uart_auxdev, auxdev.dev);
kfree(uart);
}
static int cp500_register_uart(struct cp500 *cp500,
struct keba_uart_auxdev **uart, const char *name,
struct cp500_dev_info *info, unsigned int irq)
{
int ret;
*uart = kzalloc(sizeof(**uart), GFP_KERNEL);
if (!*uart)
return -ENOMEM;
(*uart)->auxdev.name = name;
(*uart)->auxdev.id = 0;
(*uart)->auxdev.dev.release = cp500_uart_release;
(*uart)->auxdev.dev.parent = &cp500->pci_dev->dev;
(*uart)->io = (struct resource) {
/* UART register area */
.start = (resource_size_t) cp500->sys_hwbase + info->offset,
.end = (resource_size_t) cp500->sys_hwbase + info->offset +
info->size - 1,
.flags = IORESOURCE_MEM,
};
(*uart)->irq = irq;
ret = auxiliary_device_init(&(*uart)->auxdev);
if (ret) {
kfree(*uart);
*uart = NULL;
return ret;
}
ret = __auxiliary_device_add(&(*uart)->auxdev, "keba");
if (ret) {
auxiliary_device_uninit(&(*uart)->auxdev);
*uart = NULL;
return ret;
}
return 0;
}
static int cp500_nvmem_read(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct cp500_nvmem *nvmem = priv;
int ret;
ret = nvmem_device_read(nvmem->nvmem, nvmem->offset + offset, bytes,
val);
if (ret != bytes)
return ret;
return 0;
}
static int cp500_nvmem_write(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct cp500_nvmem *nvmem = priv;
int ret;
ret = nvmem_device_write(nvmem->nvmem, nvmem->offset + offset, bytes,
val);
if (ret != bytes)
return ret;
return 0;
}
static int cp500_nvmem_register(struct cp500 *cp500, struct nvmem_device *nvmem)
{
struct device *dev = &cp500->pci_dev->dev;
struct nvmem_config nvmem_config = {};
struct nvmem_device *tmp;
/*
* The main EEPROM of CP500 devices is logically split into two EEPROMs.
* The first logical EEPROM with 3 kB contains the type label which is
* programmed during production of the device. The second logical EEPROM
* with 1 kB is not programmed during production and can be used for
* arbitrary user data.
*/
nvmem_config.dev = dev;
nvmem_config.owner = THIS_MODULE;
nvmem_config.id = NVMEM_DEVID_NONE;
nvmem_config.type = NVMEM_TYPE_EEPROM;
nvmem_config.root_only = true;
nvmem_config.reg_read = cp500_nvmem_read;
nvmem_config.reg_write = cp500_nvmem_write;
cp500->nvmem_cpu.nvmem = nvmem;
cp500->nvmem_cpu.offset = CP500_EEPROM_CPU_OFFSET;
nvmem_config.name = CP500_EEPROM_CPU_NAME;
nvmem_config.size = CP500_EEPROM_CPU_SIZE;
nvmem_config.priv = &cp500->nvmem_cpu;
tmp = devm_nvmem_register(dev, &nvmem_config);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
cp500->nvmem_user.nvmem = nvmem;
cp500->nvmem_user.offset = CP500_EEPROM_USER_OFFSET;
nvmem_config.name = CP500_EEPROM_USER_NAME;
nvmem_config.size = CP500_EEPROM_USER_SIZE;
nvmem_config.priv = &cp500->nvmem_user;
tmp = devm_nvmem_register(dev, &nvmem_config);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
return 0;
}
static int cp500_nvmem_match(struct device *dev, const void *data)
{
const struct cp500 *cp500 = data;
struct i2c_client *client;
/* match only CPU EEPROM below the cp500 device */
dev = dev->parent;
client = i2c_verify_client(dev);
if (!client || client->addr != CP500_EEPROM_ADDR)
return 0;
while ((dev = dev->parent))
if (dev == &cp500->pci_dev->dev)
return 1;
return 0;
}
static void cp500_devm_nvmem_put(void *data)
{
struct nvmem_device *nvmem = data;
nvmem_device_put(nvmem);
}
static int cp500_nvmem(struct notifier_block *nb, unsigned long action,
void *data)
{
struct nvmem_device *nvmem;
struct cp500 *cp500;
struct device *dev;
int notified;
u8 esc_type;
int ret;
if (action != NVMEM_ADD)
return NOTIFY_DONE;
cp500 = container_of(nb, struct cp500, nvmem_notifier);
dev = &cp500->pci_dev->dev;
/* process CPU EEPROM content only once */
notified = atomic_read(&cp500->nvmem_notified);
if (notified)
return NOTIFY_DONE;
nvmem = nvmem_device_find(cp500, cp500_nvmem_match);
if (IS_ERR_OR_NULL(nvmem))
return NOTIFY_DONE;
if (!atomic_try_cmpxchg_relaxed(&cp500->nvmem_notified, &notified, 1)) {
nvmem_device_put(nvmem);
return NOTIFY_DONE;
}
ret = devm_add_action_or_reset(dev, cp500_devm_nvmem_put, nvmem);
if (ret)
return ret;
ret = cp500_nvmem_register(cp500, nvmem);
if (ret)
return ret;
ret = nvmem_device_read(nvmem, CP500_EEPROM_DA_OFFSET, sizeof(esc_type),
(void *)&esc_type);
if (ret != sizeof(esc_type)) {
dev_warn(dev, "Failed to read device assembly!\n");
return NOTIFY_DONE;
}
esc_type &= CP500_EEPROM_DA_ESC_TYPE_MASK;
if (cp500_register_spi(cp500, esc_type))
dev_warn(dev, "Failed to register SPI!\n");
return NOTIFY_OK;
}
static void cp500_register_auxiliary_devs(struct cp500 *cp500)
{
struct device *dev = &cp500->pci_dev->dev;
u8 present = ioread8(cp500->system_startup_addr + CP500_PRESENT_REG);
if (cp500_register_i2c(cp500))
dev_warn(dev, "Failed to register I2C!\n");
if (present & CP500_PRESENT_FAN0)
if (cp500_register_fan(cp500))
dev_warn(dev, "Failed to register fan!\n");
if (cp500_register_batt(cp500))
dev_warn(dev, "Failed to register battery!\n");
if (cp500->devs->uart0_rfb.size &&
cp500->devs->uart0_rfb.msix < cp500->msix_num) {
int irq = pci_irq_vector(cp500->pci_dev,
cp500->devs->uart0_rfb.msix);
if (cp500_register_uart(cp500, &cp500->uart0_rfb, "rs485-uart",
&cp500->devs->uart0_rfb, irq))
dev_warn(dev, "Failed to register RFB UART!\n");
}
if (cp500->devs->uart1_dbg.size &&
cp500->devs->uart1_dbg.msix < cp500->msix_num) {
int irq = pci_irq_vector(cp500->pci_dev,
cp500->devs->uart1_dbg.msix);
if (cp500_register_uart(cp500, &cp500->uart1_dbg, "rs232-uart",
&cp500->devs->uart1_dbg, irq))
dev_warn(dev, "Failed to register debug UART!\n");
}
if (cp500->devs->uart2_si1.size &&
cp500->devs->uart2_si1.msix < cp500->msix_num) {
int irq = pci_irq_vector(cp500->pci_dev,
cp500->devs->uart2_si1.msix);
if (cp500_register_uart(cp500, &cp500->uart2_si1, "uart",
&cp500->devs->uart2_si1, irq))
dev_warn(dev, "Failed to register SI1 UART!\n");
}
}
static void cp500_unregister_dev(struct auxiliary_device *auxdev)
{
auxiliary_device_delete(auxdev);
auxiliary_device_uninit(auxdev);
}
static void cp500_unregister_auxiliary_devs(struct cp500 *cp500)
{
if (cp500->spi) {
cp500_unregister_dev(&cp500->spi->auxdev);
cp500->spi = NULL;
}
if (cp500->i2c) {
cp500_unregister_dev(&cp500->i2c->auxdev);
cp500->i2c = NULL;
}
if (cp500->fan) {
cp500_unregister_dev(&cp500->fan->auxdev);
cp500->fan = NULL;
}
if (cp500->batt) {
cp500_unregister_dev(&cp500->batt->auxdev);
cp500->batt = NULL;
}
if (cp500->uart0_rfb) {
cp500_unregister_dev(&cp500->uart0_rfb->auxdev);
cp500->uart0_rfb = NULL;
}
if (cp500->uart1_dbg) {
cp500_unregister_dev(&cp500->uart1_dbg->auxdev);
cp500->uart1_dbg = NULL;
}
if (cp500->uart2_si1) {
cp500_unregister_dev(&cp500->uart2_si1->auxdev);
cp500->uart2_si1 = NULL;
}
}
static irqreturn_t cp500_axi_handler(int irq, void *dev)
{
struct cp500 *cp500 = dev;
u32 axi_address = ioread32(cp500->system_startup_addr + CP500_AXI_REG);
/*
* FPGA signals AXI response error, print AXI address to indicate which
* IP core was affected
*/
dev_err(&cp500->pci_dev->dev, "AXI response error at 0x%08x\n",
axi_address);
return IRQ_HANDLED;
}
static int cp500_enable(struct cp500 *cp500)
{
int axi_irq = -1;
int ret;
if (cp500->msix_num > CP500_NUM_MSIX_NO_AXI) {
axi_irq = pci_irq_vector(cp500->pci_dev, CP500_AXI_MSIX);
ret = request_irq(axi_irq, cp500_axi_handler, 0,
CP500, cp500);
if (ret != 0) {
dev_err(&cp500->pci_dev->dev,
"Failed to register AXI response error!\n");
return ret;
}
}
return 0;
}
static void cp500_disable(struct cp500 *cp500)
{
int axi_irq;
if (cp500->msix_num > CP500_NUM_MSIX_NO_AXI) {
axi_irq = pci_irq_vector(cp500->pci_dev, CP500_AXI_MSIX);
free_irq(axi_irq, cp500);
}
}
static int cp500_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
{
struct device *dev = &pci_dev->dev;
struct resource startup;
struct cp500 *cp500;
u32 cp500_vers;
char buf[64];
int ret;
cp500 = devm_kzalloc(dev, sizeof(*cp500), GFP_KERNEL);
if (!cp500)
return -ENOMEM;
cp500->pci_dev = pci_dev;
cp500->sys_hwbase = pci_resource_start(pci_dev, CP500_SYS_BAR);
cp500->ecm_hwbase = pci_resource_start(pci_dev, CP500_ECM_BAR);
if (!cp500->sys_hwbase || !cp500->ecm_hwbase)
return -ENODEV;
if (CP500_IS_CP035(cp500))
cp500->devs = &cp035_devices;
else if (CP500_IS_CP505(cp500))
cp500->devs = &cp505_devices;
else if (CP500_IS_CP520(cp500))
cp500->devs = &cp520_devices;
else
return -ENODEV;
ret = pci_enable_device(pci_dev);
if (ret)
return ret;
pci_set_master(pci_dev);
startup = *pci_resource_n(pci_dev, CP500_SYS_BAR);
startup.end = startup.start + cp500->devs->startup.size - 1;
cp500->system_startup_addr = devm_ioremap_resource(&pci_dev->dev,
&startup);
if (IS_ERR(cp500->system_startup_addr)) {
ret = PTR_ERR(cp500->system_startup_addr);
goto out_disable;
}
cp500->msix_num = pci_alloc_irq_vectors(pci_dev, CP500_NUM_MSIX_NO_MMI,
CP500_NUM_MSIX, PCI_IRQ_MSIX);
if (cp500->msix_num < CP500_NUM_MSIX_NO_MMI) {
dev_err(&pci_dev->dev,
"Hardware does not support enough MSI-X interrupts\n");
ret = -ENODEV;
goto out_disable;
}
cp500_vers = ioread32(cp500->system_startup_addr + CP500_VERSION_REG);
cp500->version.major = (cp500_vers & 0xff);
cp500->version.minor = (cp500_vers >> 8) & 0xff;
cp500->version.build = (cp500_vers >> 16) & 0xffff;
cp500_get_fpga_version(cp500, buf, sizeof(buf));
dev_info(&pci_dev->dev, "FPGA version %s", buf);
pci_set_drvdata(pci_dev, cp500);
cp500->nvmem_notifier.notifier_call = cp500_nvmem;
ret = nvmem_register_notifier(&cp500->nvmem_notifier);
if (ret != 0)
goto out_free_irq;
ret = cp500_enable(cp500);
if (ret != 0)
goto out_unregister_nvmem;
cp500_register_auxiliary_devs(cp500);
return 0;
out_unregister_nvmem:
nvmem_unregister_notifier(&cp500->nvmem_notifier);
out_free_irq:
pci_free_irq_vectors(pci_dev);
out_disable:
pci_clear_master(pci_dev);
pci_disable_device(pci_dev);
return ret;
}
static void cp500_remove(struct pci_dev *pci_dev)
{
struct cp500 *cp500 = pci_get_drvdata(pci_dev);
cp500_unregister_auxiliary_devs(cp500);
cp500_disable(cp500);
nvmem_unregister_notifier(&cp500->nvmem_notifier);
pci_set_drvdata(pci_dev, 0);
pci_free_irq_vectors(pci_dev);
pci_clear_master(pci_dev);
pci_disable_device(pci_dev);
}
static struct pci_device_id cp500_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_KEBA, PCI_DEVICE_ID_KEBA_CP035) },
{ PCI_DEVICE(PCI_VENDOR_ID_KEBA, PCI_DEVICE_ID_KEBA_CP505) },
{ PCI_DEVICE(PCI_VENDOR_ID_KEBA, PCI_DEVICE_ID_KEBA_CP520) },
{ }
};
MODULE_DEVICE_TABLE(pci, cp500_ids);
static struct pci_driver cp500_driver = {
.name = CP500,
.id_table = cp500_ids,
.probe = cp500_probe,
.remove = cp500_remove,
.dev_groups = cp500_groups,
};
module_pci_driver(cp500_driver);
MODULE_AUTHOR("Gerhard Engleder <eg@keba.com>");
MODULE_DESCRIPTION("KEBA CP500 system FPGA driver");
MODULE_LICENSE("GPL");