linux-stable/drivers/spi/spi-mxic.c
Linus Torvalds d0c9a21c8e MTD device changes: Aside from the platform_driver::remove() switch, two
misc issues got fixed.
 
 SPI-NAND changes:
 A load of fixes to Winbond manufacturer driver have been done, plus a
 structure constification.
 
 Raw NAND changes:
 The GPMI driver has been improved on the power management side.
 The Davinci driver has been cleaned up.
 A leak in the Atmel driver plus some typos in the core have been fixed.
 
 SPI NOR changes:
 Introduce byte swap support for 8D-8D-8D mode and a user for it:
 macronix. SPI NOR flashes may swap the bytes on a 16-bit boundary when
 configured in Octal DTR mode. For such cases the byte order is
 propagated through SPI MEM to the SPI controllers so that the
 controllers swap the bytes back at runtime. This avoids breaking the
 boot sequence because of the endianness problems that appear when the
 bootloaders use 1-1-1 and the kernel uses 8D-8D-8D with byte swap
 support. Along with the SPI MEM byte swap support we queue a patch for
 the SPI MXIC controller that swaps the bytes back at runtime.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEE9HuaYnbmDhq/XIDIJWrqGEe9VoQFAmc/WusACgkQJWrqGEe9
 VoR0Zgf/admMDFN51dtkz950bnOkZfot/4uLgUQCDenhbugHrom7KWQ6+oh1+HSN
 9EAjLoLNQzq4vxKx1WoI/99iJO86zg/DiyVD3nQidv9JkqHRDp2t13ZLclr4gGyW
 Kh1lDQ+9GwpB8CQQnxVaPL39NjjqR3RiEfEP/1fVgGYQvCt4yedhVsDT3WThJeVb
 1n7l54RBpZji88mT0chFB9CoSLnzrYZFh2MvzJaW/i1v02yZLXHFxFiKiKo+WysY
 FGQTY3x0j20H2Ib8RSP7ECegvNb1HtfIxAPsTIqDBGbrA+ahvBr0J/XxX3NbV3RT
 Ee4rXqL257zH9dC9Rr1LJAZCqiyx7w==
 =p+y9
 -----END PGP SIGNATURE-----

Merge tag 'mtd/for-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux

Pull MTD updates from Miquel Raynal:
 "MTD device changes:
   - switch platform_driver back to remove()
   - misc fixes

  SPI-NAND changes:
   - a load of fixes to Winbond manufacturer driver
   - structure constification

  Raw NAND changes:
   - improve the power management of the GPMI driver
   - Davinci driver clean-ups
   - fix leak in the Atmel driver
   - fix some typos in the core

  SPI NOR changes:
   - Introduce byte swap support for 8D-8D-8D mode and a user for it:
     macronix.

     SPI NOR flashes may swap the bytes on a 16-bit boundary when
     configured in Octal DTR mode. For such cases the byte order is
     propagated through SPI MEM to the SPI controllers so that the
     controllers swap the bytes back at runtime. This avoids breaking
     the boot sequence because of the endianness problems that appear
     when the bootloaders use 1-1-1 and the kernel uses 8D-8D-8D with
     byte swap support. Along with the SPI MEM byte swap support we
     queue a patch for the SPI MXIC controller that swaps the bytes back
     at runtime"

* tag 'mtd/for-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux: (25 commits)
  mtd: spi-nor: core: replace dummy buswidth from addr to data
  mtd: spi-nor: winbond: add "w/ and w/o SFDP" comment
  mtd: spi-nor: spansion: Use nor->addr_nbytes in octal DTR mode in RD_ANY_REG_OP
  mtd: Switch back to struct platform_driver::remove()
  mtd: cfi_cmdset_0002: remove redundant assignment to variable ret
  mtd: spinand: Constify struct nand_ecc_engine_ops
  MAINTAINERS: add mailing list for GPMI NAND driver
  mtd: spinand: winbond: Sort the devices
  mtd: spinand: winbond: Ignore the last ID characters
  mtd: spinand: winbond: Fix 512GW, 01GW, 01JW and 02JW ECC information
  mtd: spinand: winbond: Fix 512GW and 02JW OOB layout
  mtd: nand: raw: gpmi: improve power management handling
  mtd: nand: raw: gpmi: switch to SYSTEM_SLEEP_PM_OPS
  mtd: rawnand: davinci: use generic device property helpers
  mtd: rawnand: davinci: break the line correctly
  mtd: rawnand: davinci: order headers alphabetically
  mtd: rawnand: atmel: Fix possible memory leak
  mtd: rawnand: Correct multiple typos in comments
  mtd: hyperbus: rpc-if: Add missing MODULE_DEVICE_TABLE
  mtd: spi-nor: add support for Macronix Octal flash
  ...
2024-11-22 17:06:59 -08:00

860 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Copyright (C) 2018 Macronix International Co., Ltd.
//
// Authors:
// Mason Yang <masonccyang@mxic.com.tw>
// zhengxunli <zhengxunli@mxic.com.tw>
// Boris Brezillon <boris.brezillon@bootlin.com>
//
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand-ecc-mxic.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#define HC_CFG 0x0
#define HC_CFG_IF_CFG(x) ((x) << 27)
#define HC_CFG_DUAL_SLAVE BIT(31)
#define HC_CFG_INDIVIDUAL BIT(30)
#define HC_CFG_NIO(x) (((x) / 4) << 27)
#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
#define HC_CFG_TYPE_SPI_NOR 0
#define HC_CFG_TYPE_SPI_NAND 1
#define HC_CFG_TYPE_SPI_RAM 2
#define HC_CFG_TYPE_RAW_NAND 3
#define HC_CFG_SLV_ACT(x) ((x) << 21)
#define HC_CFG_CLK_PH_EN BIT(20)
#define HC_CFG_CLK_POL_INV BIT(19)
#define HC_CFG_BIG_ENDIAN BIT(18)
#define HC_CFG_DATA_PASS BIT(17)
#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
#define HC_CFG_MAN_START_EN BIT(3)
#define HC_CFG_MAN_START BIT(2)
#define HC_CFG_MAN_CS_EN BIT(1)
#define HC_CFG_MAN_CS_ASSERT BIT(0)
#define INT_STS 0x4
#define INT_STS_EN 0x8
#define INT_SIG_EN 0xc
#define INT_STS_ALL GENMASK(31, 0)
#define INT_RDY_PIN BIT(26)
#define INT_RDY_SR BIT(25)
#define INT_LNR_SUSP BIT(24)
#define INT_ECC_ERR BIT(17)
#define INT_CRC_ERR BIT(16)
#define INT_LWR_DIS BIT(12)
#define INT_LRD_DIS BIT(11)
#define INT_SDMA_INT BIT(10)
#define INT_DMA_FINISH BIT(9)
#define INT_RX_NOT_FULL BIT(3)
#define INT_RX_NOT_EMPTY BIT(2)
#define INT_TX_NOT_FULL BIT(1)
#define INT_TX_EMPTY BIT(0)
#define HC_EN 0x10
#define HC_EN_BIT BIT(0)
#define TXD(x) (0x14 + ((x) * 4))
#define RXD 0x24
#define SS_CTRL(s) (0x30 + ((s) * 4))
#define LRD_CFG 0x44
#define LWR_CFG 0x80
#define RWW_CFG 0x70
#define OP_READ BIT(23)
#define OP_DUMMY_CYC(x) ((x) << 17)
#define OP_ADDR_BYTES(x) ((x) << 14)
#define OP_CMD_BYTES(x) (((x) - 1) << 13)
#define OP_OCTA_CRC_EN BIT(12)
#define OP_DQS_EN BIT(11)
#define OP_ENHC_EN BIT(10)
#define OP_PREAMBLE_EN BIT(9)
#define OP_DATA_DDR BIT(8)
#define OP_DATA_BUSW(x) ((x) << 6)
#define OP_ADDR_DDR BIT(5)
#define OP_ADDR_BUSW(x) ((x) << 3)
#define OP_CMD_DDR BIT(2)
#define OP_CMD_BUSW(x) (x)
#define OP_BUSW_1 0
#define OP_BUSW_2 1
#define OP_BUSW_4 2
#define OP_BUSW_8 3
#define OCTA_CRC 0x38
#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
#define ONFI_DIN_CNT(s) (0x3c + (s))
#define LRD_CTRL 0x48
#define RWW_CTRL 0x74
#define LWR_CTRL 0x84
#define LMODE_EN BIT(31)
#define LMODE_SLV_ACT(x) ((x) << 21)
#define LMODE_CMD1(x) ((x) << 8)
#define LMODE_CMD0(x) (x)
#define LRD_ADDR 0x4c
#define LWR_ADDR 0x88
#define LRD_RANGE 0x50
#define LWR_RANGE 0x8c
#define AXI_SLV_ADDR 0x54
#define DMAC_RD_CFG 0x58
#define DMAC_WR_CFG 0x94
#define DMAC_CFG_PERIPH_EN BIT(31)
#define DMAC_CFG_ALLFLUSH_EN BIT(30)
#define DMAC_CFG_LASTFLUSH_EN BIT(29)
#define DMAC_CFG_QE(x) (((x) + 1) << 16)
#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
#define DMAC_CFG_DIR_READ BIT(1)
#define DMAC_CFG_START BIT(0)
#define DMAC_RD_CNT 0x5c
#define DMAC_WR_CNT 0x98
#define SDMA_ADDR 0x60
#define DMAM_CFG 0x64
#define DMAM_CFG_START BIT(31)
#define DMAM_CFG_CONT BIT(30)
#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
#define DMAM_CFG_DIR_READ BIT(1)
#define DMAM_CFG_EN BIT(0)
#define DMAM_CNT 0x68
#define LNR_TIMER_TH 0x6c
#define RDM_CFG0 0x78
#define RDM_CFG0_POLY(x) (x)
#define RDM_CFG1 0x7c
#define RDM_CFG1_RDM_EN BIT(31)
#define RDM_CFG1_SEED(x) (x)
#define LWR_SUSP_CTRL 0x90
#define LWR_SUSP_CTRL_EN BIT(31)
#define DMAS_CTRL 0x9c
#define DMAS_CTRL_EN BIT(31)
#define DMAS_CTRL_DIR_READ BIT(30)
#define DATA_STROB 0xa0
#define DATA_STROB_EDO_EN BIT(2)
#define DATA_STROB_INV_POL BIT(1)
#define DATA_STROB_DELAY_2CYC BIT(0)
#define IDLY_CODE(x) (0xa4 + ((x) * 4))
#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
#define GPIO 0xc4
#define GPIO_PT(x) BIT(3 + ((x) * 16))
#define GPIO_RESET(x) BIT(2 + ((x) * 16))
#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
#define GPIO_WPB(x) BIT((x) * 16)
#define HC_VER 0xd0
#define HW_TEST(x) (0xe0 + ((x) * 4))
struct mxic_spi {
struct device *dev;
struct clk *ps_clk;
struct clk *send_clk;
struct clk *send_dly_clk;
void __iomem *regs;
u32 cur_speed_hz;
struct {
void __iomem *map;
dma_addr_t dma;
size_t size;
} linear;
struct {
bool use_pipelined_conf;
struct nand_ecc_engine *pipelined_engine;
void *ctx;
} ecc;
};
static int mxic_spi_clk_enable(struct mxic_spi *mxic)
{
int ret;
ret = clk_prepare_enable(mxic->send_clk);
if (ret)
return ret;
ret = clk_prepare_enable(mxic->send_dly_clk);
if (ret)
goto err_send_dly_clk;
return ret;
err_send_dly_clk:
clk_disable_unprepare(mxic->send_clk);
return ret;
}
static void mxic_spi_clk_disable(struct mxic_spi *mxic)
{
clk_disable_unprepare(mxic->send_clk);
clk_disable_unprepare(mxic->send_dly_clk);
}
static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
{
writel(IDLY_CODE_VAL(0, idly_code) |
IDLY_CODE_VAL(1, idly_code) |
IDLY_CODE_VAL(2, idly_code) |
IDLY_CODE_VAL(3, idly_code),
mxic->regs + IDLY_CODE(0));
writel(IDLY_CODE_VAL(4, idly_code) |
IDLY_CODE_VAL(5, idly_code) |
IDLY_CODE_VAL(6, idly_code) |
IDLY_CODE_VAL(7, idly_code),
mxic->regs + IDLY_CODE(1));
}
static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
{
int ret;
ret = clk_set_rate(mxic->send_clk, freq);
if (ret)
return ret;
ret = clk_set_rate(mxic->send_dly_clk, freq);
if (ret)
return ret;
/*
* A constant delay range from 0x0 ~ 0x1F for input delay,
* the unit is 78 ps, the max input delay is 2.418 ns.
*/
mxic_spi_set_input_delay_dqs(mxic, 0xf);
/*
* Phase degree = 360 * freq * output-delay
* where output-delay is a constant value 1 ns in FPGA.
*
* Get Phase degree = 360 * freq * 1 ns
* = 360 * freq * 1 sec / 1000000000
* = 9 * freq / 25000000
*/
ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
if (ret)
return ret;
return 0;
}
static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
{
int ret;
if (mxic->cur_speed_hz == freq)
return 0;
mxic_spi_clk_disable(mxic);
ret = mxic_spi_clk_setup(mxic, freq);
if (ret)
return ret;
ret = mxic_spi_clk_enable(mxic);
if (ret)
return ret;
mxic->cur_speed_hz = freq;
return 0;
}
static void mxic_spi_hw_init(struct mxic_spi *mxic)
{
writel(0, mxic->regs + DATA_STROB);
writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
writel(0, mxic->regs + HC_EN);
writel(0, mxic->regs + LRD_CFG);
writel(0, mxic->regs + LRD_CTRL);
writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) |
HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
mxic->regs + HC_CFG);
}
static u32 mxic_spi_prep_hc_cfg(struct spi_device *spi, u32 flags,
bool swap16)
{
int nio = 1;
if (spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL))
nio = 8;
else if (spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
nio = 4;
else if (spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
nio = 2;
if (swap16)
flags &= ~HC_CFG_DATA_PASS;
else
flags |= HC_CFG_DATA_PASS;
return flags | HC_CFG_NIO(nio) |
HC_CFG_TYPE(spi_get_chipselect(spi, 0), HC_CFG_TYPE_SPI_NOR) |
HC_CFG_SLV_ACT(spi_get_chipselect(spi, 0)) | HC_CFG_IDLE_SIO_LVL(1);
}
static u32 mxic_spi_mem_prep_op_cfg(const struct spi_mem_op *op,
unsigned int data_len)
{
u32 cfg = OP_CMD_BYTES(op->cmd.nbytes) |
OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) |
(op->cmd.dtr ? OP_CMD_DDR : 0);
if (op->addr.nbytes)
cfg |= OP_ADDR_BYTES(op->addr.nbytes) |
OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) |
(op->addr.dtr ? OP_ADDR_DDR : 0);
if (op->dummy.nbytes)
cfg |= OP_DUMMY_CYC(op->dummy.nbytes);
/* Direct mapping data.nbytes field is not populated */
if (data_len) {
cfg |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) |
(op->data.dtr ? OP_DATA_DDR : 0);
if (op->data.dir == SPI_MEM_DATA_IN) {
cfg |= OP_READ;
if (op->data.dtr)
cfg |= OP_DQS_EN;
}
}
return cfg;
}
static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
void *rxbuf, unsigned int len)
{
unsigned int pos = 0;
while (pos < len) {
unsigned int nbytes = len - pos;
u32 data = 0xffffffff;
u32 sts;
int ret;
if (nbytes > 4)
nbytes = 4;
if (txbuf)
memcpy(&data, txbuf + pos, nbytes);
ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
writel(data, mxic->regs + TXD(nbytes % 4));
ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
sts & INT_RX_NOT_EMPTY, 0,
USEC_PER_SEC);
if (ret)
return ret;
data = readl(mxic->regs + RXD);
if (rxbuf) {
data >>= (8 * (4 - nbytes));
memcpy(rxbuf + pos, &data, nbytes);
}
WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
pos += nbytes;
}
return 0;
}
static ssize_t mxic_spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len, void *buf)
{
struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
int ret;
u32 sts;
if (WARN_ON(offs + desc->info.offset + len > U32_MAX))
return -EINVAL;
writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0, desc->info.op_tmpl.data.swap16),
mxic->regs + HC_CFG);
writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len),
mxic->regs + LRD_CFG);
writel(desc->info.offset + offs, mxic->regs + LRD_ADDR);
len = min_t(size_t, len, mxic->linear.size);
writel(len, mxic->regs + LRD_RANGE);
writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) |
LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) |
LMODE_EN,
mxic->regs + LRD_CTRL);
if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) {
ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine,
NAND_PAGE_READ,
mxic->linear.dma + offs);
if (ret)
return ret;
} else {
memcpy_fromio(buf, mxic->linear.map, len);
}
writel(INT_LRD_DIS, mxic->regs + INT_STS);
writel(0, mxic->regs + LRD_CTRL);
ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
sts & INT_LRD_DIS, 0, USEC_PER_SEC);
if (ret)
return ret;
return len;
}
static ssize_t mxic_spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
u64 offs, size_t len,
const void *buf)
{
struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
u32 sts;
int ret;
if (WARN_ON(offs + desc->info.offset + len > U32_MAX))
return -EINVAL;
writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0, desc->info.op_tmpl.data.swap16),
mxic->regs + HC_CFG);
writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len),
mxic->regs + LWR_CFG);
writel(desc->info.offset + offs, mxic->regs + LWR_ADDR);
len = min_t(size_t, len, mxic->linear.size);
writel(len, mxic->regs + LWR_RANGE);
writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) |
LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) |
LMODE_EN,
mxic->regs + LWR_CTRL);
if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) {
ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine,
NAND_PAGE_WRITE,
mxic->linear.dma + offs);
if (ret)
return ret;
} else {
memcpy_toio(mxic->linear.map, buf, len);
}
writel(INT_LWR_DIS, mxic->regs + INT_STS);
writel(0, mxic->regs + LWR_CTRL);
ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
sts & INT_LWR_DIS, 0, USEC_PER_SEC);
if (ret)
return ret;
return len;
}
static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (op->data.buswidth > 8 || op->addr.buswidth > 8 ||
op->dummy.buswidth > 8 || op->cmd.buswidth > 8)
return false;
if (op->data.nbytes && op->dummy.nbytes &&
op->data.buswidth != op->dummy.buswidth)
return false;
if (op->addr.nbytes > 7)
return false;
return spi_mem_default_supports_op(mem, op);
}
static int mxic_spi_mem_dirmap_create(struct spi_mem_dirmap_desc *desc)
{
struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
if (!mxic->linear.map)
return -EOPNOTSUPP;
if (desc->info.offset + desc->info.length > U32_MAX)
return -EINVAL;
if (!mxic_spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
return -EOPNOTSUPP;
return 0;
}
static int mxic_spi_mem_exec_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct mxic_spi *mxic = spi_controller_get_devdata(mem->spi->controller);
int i, ret;
u8 addr[8], cmd[2];
ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz);
if (ret)
return ret;
writel(mxic_spi_prep_hc_cfg(mem->spi, HC_CFG_MAN_CS_EN, op->data.swap16),
mxic->regs + HC_CFG);
writel(HC_EN_BIT, mxic->regs + HC_EN);
writel(mxic_spi_mem_prep_op_cfg(op, op->data.nbytes),
mxic->regs + SS_CTRL(spi_get_chipselect(mem->spi, 0)));
writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
for (i = 0; i < op->cmd.nbytes; i++)
cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1));
ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes);
if (ret)
goto out;
for (i = 0; i < op->addr.nbytes; i++)
addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
if (ret)
goto out;
ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
if (ret)
goto out;
ret = mxic_spi_data_xfer(mxic,
op->data.dir == SPI_MEM_DATA_OUT ?
op->data.buf.out : NULL,
op->data.dir == SPI_MEM_DATA_IN ?
op->data.buf.in : NULL,
op->data.nbytes);
out:
writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
writel(0, mxic->regs + HC_EN);
return ret;
}
static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
.supports_op = mxic_spi_mem_supports_op,
.exec_op = mxic_spi_mem_exec_op,
.dirmap_create = mxic_spi_mem_dirmap_create,
.dirmap_read = mxic_spi_mem_dirmap_read,
.dirmap_write = mxic_spi_mem_dirmap_write,
};
static const struct spi_controller_mem_caps mxic_spi_mem_caps = {
.dtr = true,
.ecc = true,
.swap16 = true,
};
static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
{
struct mxic_spi *mxic = spi_controller_get_devdata(spi->controller);
if (!lvl) {
writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
mxic->regs + HC_CFG);
writel(HC_EN_BIT, mxic->regs + HC_EN);
writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
} else {
writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
mxic->regs + HC_CFG);
writel(0, mxic->regs + HC_EN);
}
}
static int mxic_spi_transfer_one(struct spi_controller *host,
struct spi_device *spi,
struct spi_transfer *t)
{
struct mxic_spi *mxic = spi_controller_get_devdata(host);
unsigned int busw = OP_BUSW_1;
int ret;
if (t->rx_buf && t->tx_buf) {
if (((spi->mode & SPI_TX_QUAD) &&
!(spi->mode & SPI_RX_QUAD)) ||
((spi->mode & SPI_TX_DUAL) &&
!(spi->mode & SPI_RX_DUAL)))
return -ENOTSUPP;
}
ret = mxic_spi_set_freq(mxic, t->speed_hz);
if (ret)
return ret;
if (t->tx_buf) {
if (spi->mode & SPI_TX_QUAD)
busw = OP_BUSW_4;
else if (spi->mode & SPI_TX_DUAL)
busw = OP_BUSW_2;
} else if (t->rx_buf) {
if (spi->mode & SPI_RX_QUAD)
busw = OP_BUSW_4;
else if (spi->mode & SPI_RX_DUAL)
busw = OP_BUSW_2;
}
writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
mxic->regs + SS_CTRL(0));
ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
if (ret)
return ret;
spi_finalize_current_transfer(host);
return 0;
}
/* ECC wrapper */
static int mxic_spi_mem_ecc_init_ctx(struct nand_device *nand)
{
const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
struct mxic_spi *mxic = nand->ecc.engine->priv;
mxic->ecc.use_pipelined_conf = true;
return ops->init_ctx(nand);
}
static void mxic_spi_mem_ecc_cleanup_ctx(struct nand_device *nand)
{
const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
struct mxic_spi *mxic = nand->ecc.engine->priv;
mxic->ecc.use_pipelined_conf = false;
ops->cleanup_ctx(nand);
}
static int mxic_spi_mem_ecc_prepare_io_req(struct nand_device *nand,
struct nand_page_io_req *req)
{
const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
return ops->prepare_io_req(nand, req);
}
static int mxic_spi_mem_ecc_finish_io_req(struct nand_device *nand,
struct nand_page_io_req *req)
{
const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
return ops->finish_io_req(nand, req);
}
static const struct nand_ecc_engine_ops mxic_spi_mem_ecc_engine_pipelined_ops = {
.init_ctx = mxic_spi_mem_ecc_init_ctx,
.cleanup_ctx = mxic_spi_mem_ecc_cleanup_ctx,
.prepare_io_req = mxic_spi_mem_ecc_prepare_io_req,
.finish_io_req = mxic_spi_mem_ecc_finish_io_req,
};
static void mxic_spi_mem_ecc_remove(struct mxic_spi *mxic)
{
if (mxic->ecc.pipelined_engine) {
mxic_ecc_put_pipelined_engine(mxic->ecc.pipelined_engine);
nand_ecc_unregister_on_host_hw_engine(mxic->ecc.pipelined_engine);
}
}
static int mxic_spi_mem_ecc_probe(struct platform_device *pdev,
struct mxic_spi *mxic)
{
struct nand_ecc_engine *eng;
if (!mxic_ecc_get_pipelined_ops())
return -EOPNOTSUPP;
eng = mxic_ecc_get_pipelined_engine(pdev);
if (IS_ERR(eng))
return PTR_ERR(eng);
eng->dev = &pdev->dev;
eng->integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
eng->ops = &mxic_spi_mem_ecc_engine_pipelined_ops;
eng->priv = mxic;
mxic->ecc.pipelined_engine = eng;
nand_ecc_register_on_host_hw_engine(eng);
return 0;
}
static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
{
struct spi_controller *host = dev_get_drvdata(dev);
struct mxic_spi *mxic = spi_controller_get_devdata(host);
mxic_spi_clk_disable(mxic);
clk_disable_unprepare(mxic->ps_clk);
return 0;
}
static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
{
struct spi_controller *host = dev_get_drvdata(dev);
struct mxic_spi *mxic = spi_controller_get_devdata(host);
int ret;
ret = clk_prepare_enable(mxic->ps_clk);
if (ret) {
dev_err(dev, "Cannot enable ps_clock.\n");
return ret;
}
return mxic_spi_clk_enable(mxic);
}
static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
mxic_spi_runtime_resume, NULL)
};
static int mxic_spi_probe(struct platform_device *pdev)
{
struct spi_controller *host;
struct resource *res;
struct mxic_spi *mxic;
int ret;
host = devm_spi_alloc_host(&pdev->dev, sizeof(struct mxic_spi));
if (!host)
return -ENOMEM;
platform_set_drvdata(pdev, host);
mxic = spi_controller_get_devdata(host);
mxic->dev = &pdev->dev;
host->dev.of_node = pdev->dev.of_node;
mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
if (IS_ERR(mxic->ps_clk))
return PTR_ERR(mxic->ps_clk);
mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
if (IS_ERR(mxic->send_clk))
return PTR_ERR(mxic->send_clk);
mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
if (IS_ERR(mxic->send_dly_clk))
return PTR_ERR(mxic->send_dly_clk);
mxic->regs = devm_platform_ioremap_resource_byname(pdev, "regs");
if (IS_ERR(mxic->regs))
return PTR_ERR(mxic->regs);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap");
mxic->linear.map = devm_ioremap_resource(&pdev->dev, res);
if (!IS_ERR(mxic->linear.map)) {
mxic->linear.dma = res->start;
mxic->linear.size = resource_size(res);
} else {
mxic->linear.map = NULL;
}
pm_runtime_enable(&pdev->dev);
host->auto_runtime_pm = true;
host->num_chipselect = 1;
host->mem_ops = &mxic_spi_mem_ops;
host->mem_caps = &mxic_spi_mem_caps;
host->set_cs = mxic_spi_set_cs;
host->transfer_one = mxic_spi_transfer_one;
host->bits_per_word_mask = SPI_BPW_MASK(8);
host->mode_bits = SPI_CPOL | SPI_CPHA |
SPI_RX_DUAL | SPI_TX_DUAL |
SPI_RX_QUAD | SPI_TX_QUAD |
SPI_RX_OCTAL | SPI_TX_OCTAL;
mxic_spi_hw_init(mxic);
ret = mxic_spi_mem_ecc_probe(pdev, mxic);
if (ret == -EPROBE_DEFER) {
pm_runtime_disable(&pdev->dev);
return ret;
}
ret = spi_register_controller(host);
if (ret) {
dev_err(&pdev->dev, "spi_register_controller failed\n");
pm_runtime_disable(&pdev->dev);
mxic_spi_mem_ecc_remove(mxic);
}
return ret;
}
static void mxic_spi_remove(struct platform_device *pdev)
{
struct spi_controller *host = platform_get_drvdata(pdev);
struct mxic_spi *mxic = spi_controller_get_devdata(host);
pm_runtime_disable(&pdev->dev);
mxic_spi_mem_ecc_remove(mxic);
spi_unregister_controller(host);
}
static const struct of_device_id mxic_spi_of_ids[] = {
{ .compatible = "mxicy,mx25f0a-spi", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
static struct platform_driver mxic_spi_driver = {
.probe = mxic_spi_probe,
.remove = mxic_spi_remove,
.driver = {
.name = "mxic-spi",
.of_match_table = mxic_spi_of_ids,
.pm = &mxic_spi_dev_pm_ops,
},
};
module_platform_driver(mxic_spi_driver);
MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
MODULE_DESCRIPTION("MX25F0A SPI controller driver");
MODULE_LICENSE("GPL v2");