linux-stable/fs/bcachefs/replicas.c
Kent Overstreet 7d84d9f449 bcachefs: Fix bch2_have_enough_devs() for BCH_SB_MEMBER_INVALID
This fixes a kasan splat in the ec device removal tests.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2024-10-11 22:20:51 -04:00

920 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "buckets.h"
#include "disk_accounting.h"
#include "journal.h"
#include "replicas.h"
#include "super-io.h"
#include <linux/sort.h>
static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *,
struct bch_replicas_cpu *);
/* Some (buggy!) compilers don't allow memcmp to be passed as a pointer */
static int bch2_memcmp(const void *l, const void *r, const void *priv)
{
size_t size = (size_t) priv;
return memcmp(l, r, size);
}
/* Replicas tracking - in memory: */
static void verify_replicas_entry(struct bch_replicas_entry_v1 *e)
{
#ifdef CONFIG_BCACHEFS_DEBUG
BUG_ON(!e->nr_devs);
BUG_ON(e->nr_required > 1 &&
e->nr_required >= e->nr_devs);
for (unsigned i = 0; i + 1 < e->nr_devs; i++)
BUG_ON(e->devs[i] >= e->devs[i + 1]);
#endif
}
void bch2_replicas_entry_sort(struct bch_replicas_entry_v1 *e)
{
bubble_sort(e->devs, e->nr_devs, u8_cmp);
}
static void bch2_cpu_replicas_sort(struct bch_replicas_cpu *r)
{
eytzinger0_sort_r(r->entries, r->nr, r->entry_size,
bch2_memcmp, NULL, (void *)(size_t)r->entry_size);
}
static void bch2_replicas_entry_v0_to_text(struct printbuf *out,
struct bch_replicas_entry_v0 *e)
{
bch2_prt_data_type(out, e->data_type);
prt_printf(out, ": %u [", e->nr_devs);
for (unsigned i = 0; i < e->nr_devs; i++)
prt_printf(out, i ? " %u" : "%u", e->devs[i]);
prt_printf(out, "]");
}
void bch2_replicas_entry_to_text(struct printbuf *out,
struct bch_replicas_entry_v1 *e)
{
bch2_prt_data_type(out, e->data_type);
prt_printf(out, ": %u/%u [", e->nr_required, e->nr_devs);
for (unsigned i = 0; i < e->nr_devs; i++)
prt_printf(out, i ? " %u" : "%u", e->devs[i]);
prt_printf(out, "]");
}
static int bch2_replicas_entry_sb_validate(struct bch_replicas_entry_v1 *r,
struct bch_sb *sb,
struct printbuf *err)
{
if (!r->nr_devs) {
prt_printf(err, "no devices in entry ");
goto bad;
}
if (r->nr_required > 1 &&
r->nr_required >= r->nr_devs) {
prt_printf(err, "bad nr_required in entry ");
goto bad;
}
for (unsigned i = 0; i < r->nr_devs; i++)
if (r->devs[i] != BCH_SB_MEMBER_INVALID &&
!bch2_member_exists(sb, r->devs[i])) {
prt_printf(err, "invalid device %u in entry ", r->devs[i]);
goto bad;
}
return 0;
bad:
bch2_replicas_entry_to_text(err, r);
return -BCH_ERR_invalid_replicas_entry;
}
int bch2_replicas_entry_validate(struct bch_replicas_entry_v1 *r,
struct bch_fs *c,
struct printbuf *err)
{
if (!r->nr_devs) {
prt_printf(err, "no devices in entry ");
goto bad;
}
if (r->nr_required > 1 &&
r->nr_required >= r->nr_devs) {
prt_printf(err, "bad nr_required in entry ");
goto bad;
}
for (unsigned i = 0; i < r->nr_devs; i++)
if (r->devs[i] != BCH_SB_MEMBER_INVALID &&
!bch2_dev_exists(c, r->devs[i])) {
prt_printf(err, "invalid device %u in entry ", r->devs[i]);
goto bad;
}
return 0;
bad:
bch2_replicas_entry_to_text(err, r);
return -BCH_ERR_invalid_replicas_entry;
}
void bch2_cpu_replicas_to_text(struct printbuf *out,
struct bch_replicas_cpu *r)
{
struct bch_replicas_entry_v1 *e;
bool first = true;
for_each_cpu_replicas_entry(r, e) {
if (!first)
prt_printf(out, " ");
first = false;
bch2_replicas_entry_to_text(out, e);
}
}
static void extent_to_replicas(struct bkey_s_c k,
struct bch_replicas_entry_v1 *r)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
struct extent_ptr_decoded p;
r->nr_required = 1;
bkey_for_each_ptr_decode(k.k, ptrs, p, entry) {
if (p.ptr.cached)
continue;
if (!p.has_ec)
replicas_entry_add_dev(r, p.ptr.dev);
else
r->nr_required = 0;
}
}
static void stripe_to_replicas(struct bkey_s_c k,
struct bch_replicas_entry_v1 *r)
{
struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k);
const struct bch_extent_ptr *ptr;
r->nr_required = s.v->nr_blocks - s.v->nr_redundant;
for (ptr = s.v->ptrs;
ptr < s.v->ptrs + s.v->nr_blocks;
ptr++)
replicas_entry_add_dev(r, ptr->dev);
}
void bch2_bkey_to_replicas(struct bch_replicas_entry_v1 *e,
struct bkey_s_c k)
{
e->nr_devs = 0;
switch (k.k->type) {
case KEY_TYPE_btree_ptr:
case KEY_TYPE_btree_ptr_v2:
e->data_type = BCH_DATA_btree;
extent_to_replicas(k, e);
break;
case KEY_TYPE_extent:
case KEY_TYPE_reflink_v:
e->data_type = BCH_DATA_user;
extent_to_replicas(k, e);
break;
case KEY_TYPE_stripe:
e->data_type = BCH_DATA_parity;
stripe_to_replicas(k, e);
break;
}
bch2_replicas_entry_sort(e);
}
void bch2_devlist_to_replicas(struct bch_replicas_entry_v1 *e,
enum bch_data_type data_type,
struct bch_devs_list devs)
{
BUG_ON(!data_type ||
data_type == BCH_DATA_sb ||
data_type >= BCH_DATA_NR);
e->data_type = data_type;
e->nr_devs = 0;
e->nr_required = 1;
darray_for_each(devs, i)
replicas_entry_add_dev(e, *i);
bch2_replicas_entry_sort(e);
}
static struct bch_replicas_cpu
cpu_replicas_add_entry(struct bch_fs *c,
struct bch_replicas_cpu *old,
struct bch_replicas_entry_v1 *new_entry)
{
struct bch_replicas_cpu new = {
.nr = old->nr + 1,
.entry_size = max_t(unsigned, old->entry_size,
replicas_entry_bytes(new_entry)),
};
new.entries = kcalloc(new.nr, new.entry_size, GFP_KERNEL);
if (!new.entries)
return new;
for (unsigned i = 0; i < old->nr; i++)
memcpy(cpu_replicas_entry(&new, i),
cpu_replicas_entry(old, i),
old->entry_size);
memcpy(cpu_replicas_entry(&new, old->nr),
new_entry,
replicas_entry_bytes(new_entry));
bch2_cpu_replicas_sort(&new);
return new;
}
static inline int __replicas_entry_idx(struct bch_replicas_cpu *r,
struct bch_replicas_entry_v1 *search)
{
int idx, entry_size = replicas_entry_bytes(search);
if (unlikely(entry_size > r->entry_size))
return -1;
#define entry_cmp(_l, _r) memcmp(_l, _r, entry_size)
idx = eytzinger0_find(r->entries, r->nr, r->entry_size,
entry_cmp, search);
#undef entry_cmp
return idx < r->nr ? idx : -1;
}
int bch2_replicas_entry_idx(struct bch_fs *c,
struct bch_replicas_entry_v1 *search)
{
bch2_replicas_entry_sort(search);
return __replicas_entry_idx(&c->replicas, search);
}
static bool __replicas_has_entry(struct bch_replicas_cpu *r,
struct bch_replicas_entry_v1 *search)
{
return __replicas_entry_idx(r, search) >= 0;
}
bool bch2_replicas_marked_locked(struct bch_fs *c,
struct bch_replicas_entry_v1 *search)
{
verify_replicas_entry(search);
return !search->nr_devs ||
(__replicas_has_entry(&c->replicas, search) &&
(likely((!c->replicas_gc.entries)) ||
__replicas_has_entry(&c->replicas_gc, search)));
}
bool bch2_replicas_marked(struct bch_fs *c,
struct bch_replicas_entry_v1 *search)
{
percpu_down_read(&c->mark_lock);
bool ret = bch2_replicas_marked_locked(c, search);
percpu_up_read(&c->mark_lock);
return ret;
}
noinline
static int bch2_mark_replicas_slowpath(struct bch_fs *c,
struct bch_replicas_entry_v1 *new_entry)
{
struct bch_replicas_cpu new_r, new_gc;
int ret = 0;
verify_replicas_entry(new_entry);
memset(&new_r, 0, sizeof(new_r));
memset(&new_gc, 0, sizeof(new_gc));
mutex_lock(&c->sb_lock);
if (c->replicas_gc.entries &&
!__replicas_has_entry(&c->replicas_gc, new_entry)) {
new_gc = cpu_replicas_add_entry(c, &c->replicas_gc, new_entry);
if (!new_gc.entries) {
ret = -BCH_ERR_ENOMEM_cpu_replicas;
goto err;
}
}
if (!__replicas_has_entry(&c->replicas, new_entry)) {
new_r = cpu_replicas_add_entry(c, &c->replicas, new_entry);
if (!new_r.entries) {
ret = -BCH_ERR_ENOMEM_cpu_replicas;
goto err;
}
ret = bch2_cpu_replicas_to_sb_replicas(c, &new_r);
if (ret)
goto err;
}
if (!new_r.entries &&
!new_gc.entries)
goto out;
/* allocations done, now commit: */
if (new_r.entries)
bch2_write_super(c);
/* don't update in memory replicas until changes are persistent */
percpu_down_write(&c->mark_lock);
if (new_r.entries)
swap(c->replicas, new_r);
if (new_gc.entries)
swap(new_gc, c->replicas_gc);
percpu_up_write(&c->mark_lock);
out:
mutex_unlock(&c->sb_lock);
kfree(new_r.entries);
kfree(new_gc.entries);
return ret;
err:
bch_err_msg(c, ret, "adding replicas entry");
goto out;
}
int bch2_mark_replicas(struct bch_fs *c, struct bch_replicas_entry_v1 *r)
{
return likely(bch2_replicas_marked(c, r))
? 0 : bch2_mark_replicas_slowpath(c, r);
}
/*
* Old replicas_gc mechanism: only used for journal replicas entries now, should
* die at some point:
*/
int bch2_replicas_gc_end(struct bch_fs *c, int ret)
{
lockdep_assert_held(&c->replicas_gc_lock);
mutex_lock(&c->sb_lock);
percpu_down_write(&c->mark_lock);
ret = ret ?:
bch2_cpu_replicas_to_sb_replicas(c, &c->replicas_gc);
if (!ret)
swap(c->replicas, c->replicas_gc);
kfree(c->replicas_gc.entries);
c->replicas_gc.entries = NULL;
percpu_up_write(&c->mark_lock);
if (!ret)
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return ret;
}
int bch2_replicas_gc_start(struct bch_fs *c, unsigned typemask)
{
struct bch_replicas_entry_v1 *e;
unsigned i = 0;
lockdep_assert_held(&c->replicas_gc_lock);
mutex_lock(&c->sb_lock);
BUG_ON(c->replicas_gc.entries);
c->replicas_gc.nr = 0;
c->replicas_gc.entry_size = 0;
for_each_cpu_replicas_entry(&c->replicas, e) {
/* Preserve unknown data types */
if (e->data_type >= BCH_DATA_NR ||
!((1 << e->data_type) & typemask)) {
c->replicas_gc.nr++;
c->replicas_gc.entry_size =
max_t(unsigned, c->replicas_gc.entry_size,
replicas_entry_bytes(e));
}
}
c->replicas_gc.entries = kcalloc(c->replicas_gc.nr,
c->replicas_gc.entry_size,
GFP_KERNEL);
if (!c->replicas_gc.entries) {
mutex_unlock(&c->sb_lock);
bch_err(c, "error allocating c->replicas_gc");
return -BCH_ERR_ENOMEM_replicas_gc;
}
for_each_cpu_replicas_entry(&c->replicas, e)
if (e->data_type >= BCH_DATA_NR ||
!((1 << e->data_type) & typemask))
memcpy(cpu_replicas_entry(&c->replicas_gc, i++),
e, c->replicas_gc.entry_size);
bch2_cpu_replicas_sort(&c->replicas_gc);
mutex_unlock(&c->sb_lock);
return 0;
}
/*
* New much simpler mechanism for clearing out unneeded replicas entries - drop
* replicas entries that have 0 sectors used.
*
* However, we don't track sector counts for journal usage, so this doesn't drop
* any BCH_DATA_journal entries; the old bch2_replicas_gc_(start|end) mechanism
* is retained for that.
*/
int bch2_replicas_gc2(struct bch_fs *c)
{
struct bch_replicas_cpu new = { 0 };
unsigned nr;
int ret = 0;
bch2_accounting_mem_gc(c);
retry:
nr = READ_ONCE(c->replicas.nr);
new.entry_size = READ_ONCE(c->replicas.entry_size);
new.entries = kcalloc(nr, new.entry_size, GFP_KERNEL);
if (!new.entries) {
bch_err(c, "error allocating c->replicas_gc");
return -BCH_ERR_ENOMEM_replicas_gc;
}
mutex_lock(&c->sb_lock);
percpu_down_write(&c->mark_lock);
if (nr != c->replicas.nr ||
new.entry_size != c->replicas.entry_size) {
percpu_up_write(&c->mark_lock);
mutex_unlock(&c->sb_lock);
kfree(new.entries);
goto retry;
}
for (unsigned i = 0; i < c->replicas.nr; i++) {
struct bch_replicas_entry_v1 *e =
cpu_replicas_entry(&c->replicas, i);
struct disk_accounting_pos k = {
.type = BCH_DISK_ACCOUNTING_replicas,
};
unsafe_memcpy(&k.replicas, e, replicas_entry_bytes(e),
"embedded variable length struct");
struct bpos p = disk_accounting_pos_to_bpos(&k);
struct bch_accounting_mem *acc = &c->accounting;
bool kill = eytzinger0_find(acc->k.data, acc->k.nr, sizeof(acc->k.data[0]),
accounting_pos_cmp, &p) >= acc->k.nr;
if (e->data_type == BCH_DATA_journal || !kill)
memcpy(cpu_replicas_entry(&new, new.nr++),
e, new.entry_size);
}
bch2_cpu_replicas_sort(&new);
ret = bch2_cpu_replicas_to_sb_replicas(c, &new);
if (!ret)
swap(c->replicas, new);
kfree(new.entries);
percpu_up_write(&c->mark_lock);
if (!ret)
bch2_write_super(c);
mutex_unlock(&c->sb_lock);
return ret;
}
/* Replicas tracking - superblock: */
static int
__bch2_sb_replicas_to_cpu_replicas(struct bch_sb_field_replicas *sb_r,
struct bch_replicas_cpu *cpu_r)
{
struct bch_replicas_entry_v1 *e, *dst;
unsigned nr = 0, entry_size = 0, idx = 0;
for_each_replicas_entry(sb_r, e) {
entry_size = max_t(unsigned, entry_size,
replicas_entry_bytes(e));
nr++;
}
cpu_r->entries = kcalloc(nr, entry_size, GFP_KERNEL);
if (!cpu_r->entries)
return -BCH_ERR_ENOMEM_cpu_replicas;
cpu_r->nr = nr;
cpu_r->entry_size = entry_size;
for_each_replicas_entry(sb_r, e) {
dst = cpu_replicas_entry(cpu_r, idx++);
memcpy(dst, e, replicas_entry_bytes(e));
bch2_replicas_entry_sort(dst);
}
return 0;
}
static int
__bch2_sb_replicas_v0_to_cpu_replicas(struct bch_sb_field_replicas_v0 *sb_r,
struct bch_replicas_cpu *cpu_r)
{
struct bch_replicas_entry_v0 *e;
unsigned nr = 0, entry_size = 0, idx = 0;
for_each_replicas_entry(sb_r, e) {
entry_size = max_t(unsigned, entry_size,
replicas_entry_bytes(e));
nr++;
}
entry_size += sizeof(struct bch_replicas_entry_v1) -
sizeof(struct bch_replicas_entry_v0);
cpu_r->entries = kcalloc(nr, entry_size, GFP_KERNEL);
if (!cpu_r->entries)
return -BCH_ERR_ENOMEM_cpu_replicas;
cpu_r->nr = nr;
cpu_r->entry_size = entry_size;
for_each_replicas_entry(sb_r, e) {
struct bch_replicas_entry_v1 *dst =
cpu_replicas_entry(cpu_r, idx++);
dst->data_type = e->data_type;
dst->nr_devs = e->nr_devs;
dst->nr_required = 1;
memcpy(dst->devs, e->devs, e->nr_devs);
bch2_replicas_entry_sort(dst);
}
return 0;
}
int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *c)
{
struct bch_sb_field_replicas *sb_v1;
struct bch_sb_field_replicas_v0 *sb_v0;
struct bch_replicas_cpu new_r = { 0, 0, NULL };
int ret = 0;
if ((sb_v1 = bch2_sb_field_get(c->disk_sb.sb, replicas)))
ret = __bch2_sb_replicas_to_cpu_replicas(sb_v1, &new_r);
else if ((sb_v0 = bch2_sb_field_get(c->disk_sb.sb, replicas_v0)))
ret = __bch2_sb_replicas_v0_to_cpu_replicas(sb_v0, &new_r);
if (ret)
return ret;
bch2_cpu_replicas_sort(&new_r);
percpu_down_write(&c->mark_lock);
swap(c->replicas, new_r);
percpu_up_write(&c->mark_lock);
kfree(new_r.entries);
return 0;
}
static int bch2_cpu_replicas_to_sb_replicas_v0(struct bch_fs *c,
struct bch_replicas_cpu *r)
{
struct bch_sb_field_replicas_v0 *sb_r;
struct bch_replicas_entry_v0 *dst;
struct bch_replicas_entry_v1 *src;
size_t bytes;
bytes = sizeof(struct bch_sb_field_replicas);
for_each_cpu_replicas_entry(r, src)
bytes += replicas_entry_bytes(src) - 1;
sb_r = bch2_sb_field_resize(&c->disk_sb, replicas_v0,
DIV_ROUND_UP(bytes, sizeof(u64)));
if (!sb_r)
return -BCH_ERR_ENOSPC_sb_replicas;
bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas);
sb_r = bch2_sb_field_get(c->disk_sb.sb, replicas_v0);
memset(&sb_r->entries, 0,
vstruct_end(&sb_r->field) -
(void *) &sb_r->entries);
dst = sb_r->entries;
for_each_cpu_replicas_entry(r, src) {
dst->data_type = src->data_type;
dst->nr_devs = src->nr_devs;
memcpy(dst->devs, src->devs, src->nr_devs);
dst = replicas_entry_next(dst);
BUG_ON((void *) dst > vstruct_end(&sb_r->field));
}
return 0;
}
static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *c,
struct bch_replicas_cpu *r)
{
struct bch_sb_field_replicas *sb_r;
struct bch_replicas_entry_v1 *dst, *src;
bool need_v1 = false;
size_t bytes;
bytes = sizeof(struct bch_sb_field_replicas);
for_each_cpu_replicas_entry(r, src) {
bytes += replicas_entry_bytes(src);
if (src->nr_required != 1)
need_v1 = true;
}
if (!need_v1)
return bch2_cpu_replicas_to_sb_replicas_v0(c, r);
sb_r = bch2_sb_field_resize(&c->disk_sb, replicas,
DIV_ROUND_UP(bytes, sizeof(u64)));
if (!sb_r)
return -BCH_ERR_ENOSPC_sb_replicas;
bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas_v0);
sb_r = bch2_sb_field_get(c->disk_sb.sb, replicas);
memset(&sb_r->entries, 0,
vstruct_end(&sb_r->field) -
(void *) &sb_r->entries);
dst = sb_r->entries;
for_each_cpu_replicas_entry(r, src) {
memcpy(dst, src, replicas_entry_bytes(src));
dst = replicas_entry_next(dst);
BUG_ON((void *) dst > vstruct_end(&sb_r->field));
}
return 0;
}
static int bch2_cpu_replicas_validate(struct bch_replicas_cpu *cpu_r,
struct bch_sb *sb,
struct printbuf *err)
{
unsigned i;
sort_r(cpu_r->entries,
cpu_r->nr,
cpu_r->entry_size,
bch2_memcmp, NULL,
(void *)(size_t)cpu_r->entry_size);
for (i = 0; i < cpu_r->nr; i++) {
struct bch_replicas_entry_v1 *e =
cpu_replicas_entry(cpu_r, i);
int ret = bch2_replicas_entry_sb_validate(e, sb, err);
if (ret)
return ret;
if (i + 1 < cpu_r->nr) {
struct bch_replicas_entry_v1 *n =
cpu_replicas_entry(cpu_r, i + 1);
BUG_ON(memcmp(e, n, cpu_r->entry_size) > 0);
if (!memcmp(e, n, cpu_r->entry_size)) {
prt_printf(err, "duplicate replicas entry ");
bch2_replicas_entry_to_text(err, e);
return -BCH_ERR_invalid_sb_replicas;
}
}
}
return 0;
}
static int bch2_sb_replicas_validate(struct bch_sb *sb, struct bch_sb_field *f,
enum bch_validate_flags flags, struct printbuf *err)
{
struct bch_sb_field_replicas *sb_r = field_to_type(f, replicas);
struct bch_replicas_cpu cpu_r;
int ret;
ret = __bch2_sb_replicas_to_cpu_replicas(sb_r, &cpu_r);
if (ret)
return ret;
ret = bch2_cpu_replicas_validate(&cpu_r, sb, err);
kfree(cpu_r.entries);
return ret;
}
static void bch2_sb_replicas_to_text(struct printbuf *out,
struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_replicas *r = field_to_type(f, replicas);
struct bch_replicas_entry_v1 *e;
bool first = true;
for_each_replicas_entry(r, e) {
if (!first)
prt_printf(out, " ");
first = false;
bch2_replicas_entry_to_text(out, e);
}
prt_newline(out);
}
const struct bch_sb_field_ops bch_sb_field_ops_replicas = {
.validate = bch2_sb_replicas_validate,
.to_text = bch2_sb_replicas_to_text,
};
static int bch2_sb_replicas_v0_validate(struct bch_sb *sb, struct bch_sb_field *f,
enum bch_validate_flags flags, struct printbuf *err)
{
struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0);
struct bch_replicas_cpu cpu_r;
int ret;
ret = __bch2_sb_replicas_v0_to_cpu_replicas(sb_r, &cpu_r);
if (ret)
return ret;
ret = bch2_cpu_replicas_validate(&cpu_r, sb, err);
kfree(cpu_r.entries);
return ret;
}
static void bch2_sb_replicas_v0_to_text(struct printbuf *out,
struct bch_sb *sb,
struct bch_sb_field *f)
{
struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0);
struct bch_replicas_entry_v0 *e;
bool first = true;
for_each_replicas_entry(sb_r, e) {
if (!first)
prt_printf(out, " ");
first = false;
bch2_replicas_entry_v0_to_text(out, e);
}
prt_newline(out);
}
const struct bch_sb_field_ops bch_sb_field_ops_replicas_v0 = {
.validate = bch2_sb_replicas_v0_validate,
.to_text = bch2_sb_replicas_v0_to_text,
};
/* Query replicas: */
bool bch2_have_enough_devs(struct bch_fs *c, struct bch_devs_mask devs,
unsigned flags, bool print)
{
struct bch_replicas_entry_v1 *e;
bool ret = true;
percpu_down_read(&c->mark_lock);
for_each_cpu_replicas_entry(&c->replicas, e) {
unsigned nr_online = 0, nr_failed = 0, dflags = 0;
bool metadata = e->data_type < BCH_DATA_user;
if (e->data_type == BCH_DATA_cached)
continue;
rcu_read_lock();
for (unsigned i = 0; i < e->nr_devs; i++) {
if (e->devs[i] == BCH_SB_MEMBER_INVALID) {
nr_failed++;
continue;
}
nr_online += test_bit(e->devs[i], devs.d);
struct bch_dev *ca = bch2_dev_rcu_noerror(c, e->devs[i]);
nr_failed += !ca || ca->mi.state == BCH_MEMBER_STATE_failed;
}
rcu_read_unlock();
if (nr_online + nr_failed == e->nr_devs)
continue;
if (nr_online < e->nr_required)
dflags |= metadata
? BCH_FORCE_IF_METADATA_LOST
: BCH_FORCE_IF_DATA_LOST;
if (nr_online < e->nr_devs)
dflags |= metadata
? BCH_FORCE_IF_METADATA_DEGRADED
: BCH_FORCE_IF_DATA_DEGRADED;
if (dflags & ~flags) {
if (print) {
struct printbuf buf = PRINTBUF;
bch2_replicas_entry_to_text(&buf, e);
bch_err(c, "insufficient devices online (%u) for replicas entry %s",
nr_online, buf.buf);
printbuf_exit(&buf);
}
ret = false;
break;
}
}
percpu_up_read(&c->mark_lock);
return ret;
}
unsigned bch2_sb_dev_has_data(struct bch_sb *sb, unsigned dev)
{
struct bch_sb_field_replicas *replicas;
struct bch_sb_field_replicas_v0 *replicas_v0;
unsigned data_has = 0;
replicas = bch2_sb_field_get(sb, replicas);
replicas_v0 = bch2_sb_field_get(sb, replicas_v0);
if (replicas) {
struct bch_replicas_entry_v1 *r;
for_each_replicas_entry(replicas, r) {
if (r->data_type >= sizeof(data_has) * 8)
continue;
for (unsigned i = 0; i < r->nr_devs; i++)
if (r->devs[i] == dev)
data_has |= 1 << r->data_type;
}
} else if (replicas_v0) {
struct bch_replicas_entry_v0 *r;
for_each_replicas_entry_v0(replicas_v0, r) {
if (r->data_type >= sizeof(data_has) * 8)
continue;
for (unsigned i = 0; i < r->nr_devs; i++)
if (r->devs[i] == dev)
data_has |= 1 << r->data_type;
}
}
return data_has;
}
unsigned bch2_dev_has_data(struct bch_fs *c, struct bch_dev *ca)
{
mutex_lock(&c->sb_lock);
unsigned ret = bch2_sb_dev_has_data(c->disk_sb.sb, ca->dev_idx);
mutex_unlock(&c->sb_lock);
return ret;
}
void bch2_fs_replicas_exit(struct bch_fs *c)
{
kfree(c->replicas.entries);
kfree(c->replicas_gc.entries);
}