mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 02:36:02 +00:00
5697e94daa
Convert to use folio, so that we can get rid of 'page->index' to prepare for removal of 'index' field in structure page [1]. [1] https://lore.kernel.org/all/Zp8fgUSIBGQ1TN0D@casper.infradead.org/ Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Chao Yu <chao@kernel.org> Reviewed-by: Li Zetao <lizetao1@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2089 lines
49 KiB
C
2089 lines
49 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* f2fs compress support
|
|
*
|
|
* Copyright (c) 2019 Chao Yu <chao@kernel.org>
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/f2fs_fs.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/lzo.h>
|
|
#include <linux/lz4.h>
|
|
#include <linux/zstd.h>
|
|
#include <linux/pagevec.h>
|
|
|
|
#include "f2fs.h"
|
|
#include "node.h"
|
|
#include "segment.h"
|
|
#include <trace/events/f2fs.h>
|
|
|
|
static struct kmem_cache *cic_entry_slab;
|
|
static struct kmem_cache *dic_entry_slab;
|
|
|
|
static void *page_array_alloc(struct inode *inode, int nr)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
unsigned int size = sizeof(struct page *) * nr;
|
|
|
|
if (likely(size <= sbi->page_array_slab_size))
|
|
return f2fs_kmem_cache_alloc(sbi->page_array_slab,
|
|
GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
|
|
return f2fs_kzalloc(sbi, size, GFP_NOFS);
|
|
}
|
|
|
|
static void page_array_free(struct inode *inode, void *pages, int nr)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
unsigned int size = sizeof(struct page *) * nr;
|
|
|
|
if (!pages)
|
|
return;
|
|
|
|
if (likely(size <= sbi->page_array_slab_size))
|
|
kmem_cache_free(sbi->page_array_slab, pages);
|
|
else
|
|
kfree(pages);
|
|
}
|
|
|
|
struct f2fs_compress_ops {
|
|
int (*init_compress_ctx)(struct compress_ctx *cc);
|
|
void (*destroy_compress_ctx)(struct compress_ctx *cc);
|
|
int (*compress_pages)(struct compress_ctx *cc);
|
|
int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
|
|
void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
|
|
int (*decompress_pages)(struct decompress_io_ctx *dic);
|
|
bool (*is_level_valid)(int level);
|
|
};
|
|
|
|
static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
|
|
{
|
|
return index & (cc->cluster_size - 1);
|
|
}
|
|
|
|
static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
|
|
{
|
|
return index >> cc->log_cluster_size;
|
|
}
|
|
|
|
static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
|
|
{
|
|
return cc->cluster_idx << cc->log_cluster_size;
|
|
}
|
|
|
|
bool f2fs_is_compressed_page(struct page *page)
|
|
{
|
|
if (!PagePrivate(page))
|
|
return false;
|
|
if (!page_private(page))
|
|
return false;
|
|
if (page_private_nonpointer(page))
|
|
return false;
|
|
|
|
f2fs_bug_on(F2FS_M_SB(page->mapping),
|
|
*((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
|
|
return true;
|
|
}
|
|
|
|
static void f2fs_set_compressed_page(struct page *page,
|
|
struct inode *inode, pgoff_t index, void *data)
|
|
{
|
|
struct folio *folio = page_folio(page);
|
|
|
|
folio_attach_private(folio, (void *)data);
|
|
|
|
/* i_crypto_info and iv index */
|
|
folio->index = index;
|
|
folio->mapping = inode->i_mapping;
|
|
}
|
|
|
|
static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++) {
|
|
if (!cc->rpages[i])
|
|
continue;
|
|
if (unlock)
|
|
unlock_page(cc->rpages[i]);
|
|
else
|
|
put_page(cc->rpages[i]);
|
|
}
|
|
}
|
|
|
|
static void f2fs_put_rpages(struct compress_ctx *cc)
|
|
{
|
|
f2fs_drop_rpages(cc, cc->cluster_size, false);
|
|
}
|
|
|
|
static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
|
|
{
|
|
f2fs_drop_rpages(cc, len, true);
|
|
}
|
|
|
|
static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
|
|
struct writeback_control *wbc, bool redirty, int unlock)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
if (!cc->rpages[i])
|
|
continue;
|
|
if (redirty)
|
|
redirty_page_for_writepage(wbc, cc->rpages[i]);
|
|
f2fs_put_page(cc->rpages[i], unlock);
|
|
}
|
|
}
|
|
|
|
struct page *f2fs_compress_control_page(struct page *page)
|
|
{
|
|
return ((struct compress_io_ctx *)page_private(page))->rpages[0];
|
|
}
|
|
|
|
int f2fs_init_compress_ctx(struct compress_ctx *cc)
|
|
{
|
|
if (cc->rpages)
|
|
return 0;
|
|
|
|
cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
|
|
return cc->rpages ? 0 : -ENOMEM;
|
|
}
|
|
|
|
void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
|
|
{
|
|
page_array_free(cc->inode, cc->rpages, cc->cluster_size);
|
|
cc->rpages = NULL;
|
|
cc->nr_rpages = 0;
|
|
cc->nr_cpages = 0;
|
|
cc->valid_nr_cpages = 0;
|
|
if (!reuse)
|
|
cc->cluster_idx = NULL_CLUSTER;
|
|
}
|
|
|
|
void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio)
|
|
{
|
|
unsigned int cluster_ofs;
|
|
|
|
if (!f2fs_cluster_can_merge_page(cc, folio->index))
|
|
f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
|
|
|
|
cluster_ofs = offset_in_cluster(cc, folio->index);
|
|
cc->rpages[cluster_ofs] = folio_page(folio, 0);
|
|
cc->nr_rpages++;
|
|
cc->cluster_idx = cluster_idx(cc, folio->index);
|
|
}
|
|
|
|
#ifdef CONFIG_F2FS_FS_LZO
|
|
static int lzo_init_compress_ctx(struct compress_ctx *cc)
|
|
{
|
|
cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
|
|
LZO1X_MEM_COMPRESS, GFP_NOFS);
|
|
if (!cc->private)
|
|
return -ENOMEM;
|
|
|
|
cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
|
|
return 0;
|
|
}
|
|
|
|
static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
|
|
{
|
|
kvfree(cc->private);
|
|
cc->private = NULL;
|
|
}
|
|
|
|
static int lzo_compress_pages(struct compress_ctx *cc)
|
|
{
|
|
int ret;
|
|
|
|
ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
|
|
&cc->clen, cc->private);
|
|
if (ret != LZO_E_OK) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
|
|
"lzo compress failed, ret:%d", ret);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int lzo_decompress_pages(struct decompress_io_ctx *dic)
|
|
{
|
|
int ret;
|
|
|
|
ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
|
|
dic->rbuf, &dic->rlen);
|
|
if (ret != LZO_E_OK) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
|
|
"lzo decompress failed, ret:%d", ret);
|
|
return -EIO;
|
|
}
|
|
|
|
if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
|
|
"lzo invalid rlen:%zu, expected:%lu",
|
|
dic->rlen, PAGE_SIZE << dic->log_cluster_size);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct f2fs_compress_ops f2fs_lzo_ops = {
|
|
.init_compress_ctx = lzo_init_compress_ctx,
|
|
.destroy_compress_ctx = lzo_destroy_compress_ctx,
|
|
.compress_pages = lzo_compress_pages,
|
|
.decompress_pages = lzo_decompress_pages,
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_F2FS_FS_LZ4
|
|
static int lz4_init_compress_ctx(struct compress_ctx *cc)
|
|
{
|
|
unsigned int size = LZ4_MEM_COMPRESS;
|
|
|
|
#ifdef CONFIG_F2FS_FS_LZ4HC
|
|
if (F2FS_I(cc->inode)->i_compress_level)
|
|
size = LZ4HC_MEM_COMPRESS;
|
|
#endif
|
|
|
|
cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
|
|
if (!cc->private)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* we do not change cc->clen to LZ4_compressBound(inputsize) to
|
|
* adapt worst compress case, because lz4 compressor can handle
|
|
* output budget properly.
|
|
*/
|
|
cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
|
|
{
|
|
kvfree(cc->private);
|
|
cc->private = NULL;
|
|
}
|
|
|
|
static int lz4_compress_pages(struct compress_ctx *cc)
|
|
{
|
|
int len = -EINVAL;
|
|
unsigned char level = F2FS_I(cc->inode)->i_compress_level;
|
|
|
|
if (!level)
|
|
len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
|
|
cc->clen, cc->private);
|
|
#ifdef CONFIG_F2FS_FS_LZ4HC
|
|
else
|
|
len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
|
|
cc->clen, level, cc->private);
|
|
#endif
|
|
if (len < 0)
|
|
return len;
|
|
if (!len)
|
|
return -EAGAIN;
|
|
|
|
cc->clen = len;
|
|
return 0;
|
|
}
|
|
|
|
static int lz4_decompress_pages(struct decompress_io_ctx *dic)
|
|
{
|
|
int ret;
|
|
|
|
ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
|
|
dic->clen, dic->rlen);
|
|
if (ret < 0) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
|
|
"lz4 decompress failed, ret:%d", ret);
|
|
return -EIO;
|
|
}
|
|
|
|
if (ret != PAGE_SIZE << dic->log_cluster_size) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
|
|
"lz4 invalid ret:%d, expected:%lu",
|
|
ret, PAGE_SIZE << dic->log_cluster_size);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool lz4_is_level_valid(int lvl)
|
|
{
|
|
#ifdef CONFIG_F2FS_FS_LZ4HC
|
|
return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
|
|
#else
|
|
return lvl == 0;
|
|
#endif
|
|
}
|
|
|
|
static const struct f2fs_compress_ops f2fs_lz4_ops = {
|
|
.init_compress_ctx = lz4_init_compress_ctx,
|
|
.destroy_compress_ctx = lz4_destroy_compress_ctx,
|
|
.compress_pages = lz4_compress_pages,
|
|
.decompress_pages = lz4_decompress_pages,
|
|
.is_level_valid = lz4_is_level_valid,
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_F2FS_FS_ZSTD
|
|
static int zstd_init_compress_ctx(struct compress_ctx *cc)
|
|
{
|
|
zstd_parameters params;
|
|
zstd_cstream *stream;
|
|
void *workspace;
|
|
unsigned int workspace_size;
|
|
unsigned char level = F2FS_I(cc->inode)->i_compress_level;
|
|
|
|
/* Need to remain this for backward compatibility */
|
|
if (!level)
|
|
level = F2FS_ZSTD_DEFAULT_CLEVEL;
|
|
|
|
params = zstd_get_params(level, cc->rlen);
|
|
workspace_size = zstd_cstream_workspace_bound(¶ms.cParams);
|
|
|
|
workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
|
|
workspace_size, GFP_NOFS);
|
|
if (!workspace)
|
|
return -ENOMEM;
|
|
|
|
stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size);
|
|
if (!stream) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
|
|
"%s zstd_init_cstream failed", __func__);
|
|
kvfree(workspace);
|
|
return -EIO;
|
|
}
|
|
|
|
cc->private = workspace;
|
|
cc->private2 = stream;
|
|
|
|
cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
|
|
{
|
|
kvfree(cc->private);
|
|
cc->private = NULL;
|
|
cc->private2 = NULL;
|
|
}
|
|
|
|
static int zstd_compress_pages(struct compress_ctx *cc)
|
|
{
|
|
zstd_cstream *stream = cc->private2;
|
|
zstd_in_buffer inbuf;
|
|
zstd_out_buffer outbuf;
|
|
int src_size = cc->rlen;
|
|
int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
|
|
int ret;
|
|
|
|
inbuf.pos = 0;
|
|
inbuf.src = cc->rbuf;
|
|
inbuf.size = src_size;
|
|
|
|
outbuf.pos = 0;
|
|
outbuf.dst = cc->cbuf->cdata;
|
|
outbuf.size = dst_size;
|
|
|
|
ret = zstd_compress_stream(stream, &outbuf, &inbuf);
|
|
if (zstd_is_error(ret)) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
|
|
"%s zstd_compress_stream failed, ret: %d",
|
|
__func__, zstd_get_error_code(ret));
|
|
return -EIO;
|
|
}
|
|
|
|
ret = zstd_end_stream(stream, &outbuf);
|
|
if (zstd_is_error(ret)) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
|
|
"%s zstd_end_stream returned %d",
|
|
__func__, zstd_get_error_code(ret));
|
|
return -EIO;
|
|
}
|
|
|
|
/*
|
|
* there is compressed data remained in intermediate buffer due to
|
|
* no more space in cbuf.cdata
|
|
*/
|
|
if (ret)
|
|
return -EAGAIN;
|
|
|
|
cc->clen = outbuf.pos;
|
|
return 0;
|
|
}
|
|
|
|
static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
|
|
{
|
|
zstd_dstream *stream;
|
|
void *workspace;
|
|
unsigned int workspace_size;
|
|
unsigned int max_window_size =
|
|
MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
|
|
|
|
workspace_size = zstd_dstream_workspace_bound(max_window_size);
|
|
|
|
workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
|
|
workspace_size, GFP_NOFS);
|
|
if (!workspace)
|
|
return -ENOMEM;
|
|
|
|
stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
|
|
if (!stream) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
|
|
"%s zstd_init_dstream failed", __func__);
|
|
kvfree(workspace);
|
|
return -EIO;
|
|
}
|
|
|
|
dic->private = workspace;
|
|
dic->private2 = stream;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
|
|
{
|
|
kvfree(dic->private);
|
|
dic->private = NULL;
|
|
dic->private2 = NULL;
|
|
}
|
|
|
|
static int zstd_decompress_pages(struct decompress_io_ctx *dic)
|
|
{
|
|
zstd_dstream *stream = dic->private2;
|
|
zstd_in_buffer inbuf;
|
|
zstd_out_buffer outbuf;
|
|
int ret;
|
|
|
|
inbuf.pos = 0;
|
|
inbuf.src = dic->cbuf->cdata;
|
|
inbuf.size = dic->clen;
|
|
|
|
outbuf.pos = 0;
|
|
outbuf.dst = dic->rbuf;
|
|
outbuf.size = dic->rlen;
|
|
|
|
ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
|
|
if (zstd_is_error(ret)) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
|
|
"%s zstd_decompress_stream failed, ret: %d",
|
|
__func__, zstd_get_error_code(ret));
|
|
return -EIO;
|
|
}
|
|
|
|
if (dic->rlen != outbuf.pos) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
|
|
"%s ZSTD invalid rlen:%zu, expected:%lu",
|
|
__func__, dic->rlen,
|
|
PAGE_SIZE << dic->log_cluster_size);
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool zstd_is_level_valid(int lvl)
|
|
{
|
|
return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
|
|
}
|
|
|
|
static const struct f2fs_compress_ops f2fs_zstd_ops = {
|
|
.init_compress_ctx = zstd_init_compress_ctx,
|
|
.destroy_compress_ctx = zstd_destroy_compress_ctx,
|
|
.compress_pages = zstd_compress_pages,
|
|
.init_decompress_ctx = zstd_init_decompress_ctx,
|
|
.destroy_decompress_ctx = zstd_destroy_decompress_ctx,
|
|
.decompress_pages = zstd_decompress_pages,
|
|
.is_level_valid = zstd_is_level_valid,
|
|
};
|
|
#endif
|
|
|
|
#ifdef CONFIG_F2FS_FS_LZO
|
|
#ifdef CONFIG_F2FS_FS_LZORLE
|
|
static int lzorle_compress_pages(struct compress_ctx *cc)
|
|
{
|
|
int ret;
|
|
|
|
ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
|
|
&cc->clen, cc->private);
|
|
if (ret != LZO_E_OK) {
|
|
f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
|
|
"lzo-rle compress failed, ret:%d", ret);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const struct f2fs_compress_ops f2fs_lzorle_ops = {
|
|
.init_compress_ctx = lzo_init_compress_ctx,
|
|
.destroy_compress_ctx = lzo_destroy_compress_ctx,
|
|
.compress_pages = lzorle_compress_pages,
|
|
.decompress_pages = lzo_decompress_pages,
|
|
};
|
|
#endif
|
|
#endif
|
|
|
|
static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
|
|
#ifdef CONFIG_F2FS_FS_LZO
|
|
&f2fs_lzo_ops,
|
|
#else
|
|
NULL,
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_LZ4
|
|
&f2fs_lz4_ops,
|
|
#else
|
|
NULL,
|
|
#endif
|
|
#ifdef CONFIG_F2FS_FS_ZSTD
|
|
&f2fs_zstd_ops,
|
|
#else
|
|
NULL,
|
|
#endif
|
|
#if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
|
|
&f2fs_lzorle_ops,
|
|
#else
|
|
NULL,
|
|
#endif
|
|
};
|
|
|
|
bool f2fs_is_compress_backend_ready(struct inode *inode)
|
|
{
|
|
if (!f2fs_compressed_file(inode))
|
|
return true;
|
|
return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
|
|
}
|
|
|
|
bool f2fs_is_compress_level_valid(int alg, int lvl)
|
|
{
|
|
const struct f2fs_compress_ops *cops = f2fs_cops[alg];
|
|
|
|
if (cops->is_level_valid)
|
|
return cops->is_level_valid(lvl);
|
|
|
|
return lvl == 0;
|
|
}
|
|
|
|
static mempool_t *compress_page_pool;
|
|
static int num_compress_pages = 512;
|
|
module_param(num_compress_pages, uint, 0444);
|
|
MODULE_PARM_DESC(num_compress_pages,
|
|
"Number of intermediate compress pages to preallocate");
|
|
|
|
int __init f2fs_init_compress_mempool(void)
|
|
{
|
|
compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
|
|
return compress_page_pool ? 0 : -ENOMEM;
|
|
}
|
|
|
|
void f2fs_destroy_compress_mempool(void)
|
|
{
|
|
mempool_destroy(compress_page_pool);
|
|
}
|
|
|
|
static struct page *f2fs_compress_alloc_page(void)
|
|
{
|
|
struct page *page;
|
|
|
|
page = mempool_alloc(compress_page_pool, GFP_NOFS);
|
|
lock_page(page);
|
|
|
|
return page;
|
|
}
|
|
|
|
static void f2fs_compress_free_page(struct page *page)
|
|
{
|
|
if (!page)
|
|
return;
|
|
detach_page_private(page);
|
|
page->mapping = NULL;
|
|
unlock_page(page);
|
|
mempool_free(page, compress_page_pool);
|
|
}
|
|
|
|
#define MAX_VMAP_RETRIES 3
|
|
|
|
static void *f2fs_vmap(struct page **pages, unsigned int count)
|
|
{
|
|
int i;
|
|
void *buf = NULL;
|
|
|
|
for (i = 0; i < MAX_VMAP_RETRIES; i++) {
|
|
buf = vm_map_ram(pages, count, -1);
|
|
if (buf)
|
|
break;
|
|
vm_unmap_aliases();
|
|
}
|
|
return buf;
|
|
}
|
|
|
|
static int f2fs_compress_pages(struct compress_ctx *cc)
|
|
{
|
|
struct f2fs_inode_info *fi = F2FS_I(cc->inode);
|
|
const struct f2fs_compress_ops *cops =
|
|
f2fs_cops[fi->i_compress_algorithm];
|
|
unsigned int max_len, new_nr_cpages;
|
|
u32 chksum = 0;
|
|
int i, ret;
|
|
|
|
trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
|
|
cc->cluster_size, fi->i_compress_algorithm);
|
|
|
|
if (cops->init_compress_ctx) {
|
|
ret = cops->init_compress_ctx(cc);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
max_len = COMPRESS_HEADER_SIZE + cc->clen;
|
|
cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
|
|
cc->valid_nr_cpages = cc->nr_cpages;
|
|
|
|
cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
|
|
if (!cc->cpages) {
|
|
ret = -ENOMEM;
|
|
goto destroy_compress_ctx;
|
|
}
|
|
|
|
for (i = 0; i < cc->nr_cpages; i++)
|
|
cc->cpages[i] = f2fs_compress_alloc_page();
|
|
|
|
cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
|
|
if (!cc->rbuf) {
|
|
ret = -ENOMEM;
|
|
goto out_free_cpages;
|
|
}
|
|
|
|
cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
|
|
if (!cc->cbuf) {
|
|
ret = -ENOMEM;
|
|
goto out_vunmap_rbuf;
|
|
}
|
|
|
|
ret = cops->compress_pages(cc);
|
|
if (ret)
|
|
goto out_vunmap_cbuf;
|
|
|
|
max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
|
|
|
|
if (cc->clen > max_len) {
|
|
ret = -EAGAIN;
|
|
goto out_vunmap_cbuf;
|
|
}
|
|
|
|
cc->cbuf->clen = cpu_to_le32(cc->clen);
|
|
|
|
if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
|
|
chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
|
|
cc->cbuf->cdata, cc->clen);
|
|
cc->cbuf->chksum = cpu_to_le32(chksum);
|
|
|
|
for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
|
|
cc->cbuf->reserved[i] = cpu_to_le32(0);
|
|
|
|
new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
|
|
|
|
/* zero out any unused part of the last page */
|
|
memset(&cc->cbuf->cdata[cc->clen], 0,
|
|
(new_nr_cpages * PAGE_SIZE) -
|
|
(cc->clen + COMPRESS_HEADER_SIZE));
|
|
|
|
vm_unmap_ram(cc->cbuf, cc->nr_cpages);
|
|
vm_unmap_ram(cc->rbuf, cc->cluster_size);
|
|
|
|
for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
|
|
f2fs_compress_free_page(cc->cpages[i]);
|
|
cc->cpages[i] = NULL;
|
|
}
|
|
|
|
if (cops->destroy_compress_ctx)
|
|
cops->destroy_compress_ctx(cc);
|
|
|
|
cc->valid_nr_cpages = new_nr_cpages;
|
|
|
|
trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
|
|
cc->clen, ret);
|
|
return 0;
|
|
|
|
out_vunmap_cbuf:
|
|
vm_unmap_ram(cc->cbuf, cc->nr_cpages);
|
|
out_vunmap_rbuf:
|
|
vm_unmap_ram(cc->rbuf, cc->cluster_size);
|
|
out_free_cpages:
|
|
for (i = 0; i < cc->nr_cpages; i++) {
|
|
if (cc->cpages[i])
|
|
f2fs_compress_free_page(cc->cpages[i]);
|
|
}
|
|
page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
|
|
cc->cpages = NULL;
|
|
destroy_compress_ctx:
|
|
if (cops->destroy_compress_ctx)
|
|
cops->destroy_compress_ctx(cc);
|
|
out:
|
|
trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
|
|
cc->clen, ret);
|
|
return ret;
|
|
}
|
|
|
|
static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
|
|
bool pre_alloc);
|
|
static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
|
|
bool bypass_destroy_callback, bool pre_alloc);
|
|
|
|
void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(dic->inode);
|
|
const struct f2fs_compress_ops *cops =
|
|
f2fs_cops[fi->i_compress_algorithm];
|
|
bool bypass_callback = false;
|
|
int ret;
|
|
|
|
trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
|
|
dic->cluster_size, fi->i_compress_algorithm);
|
|
|
|
if (dic->failed) {
|
|
ret = -EIO;
|
|
goto out_end_io;
|
|
}
|
|
|
|
ret = f2fs_prepare_decomp_mem(dic, false);
|
|
if (ret) {
|
|
bypass_callback = true;
|
|
goto out_release;
|
|
}
|
|
|
|
dic->clen = le32_to_cpu(dic->cbuf->clen);
|
|
dic->rlen = PAGE_SIZE << dic->log_cluster_size;
|
|
|
|
if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
|
|
ret = -EFSCORRUPTED;
|
|
|
|
/* Avoid f2fs_commit_super in irq context */
|
|
if (!in_task)
|
|
f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
|
|
else
|
|
f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
|
|
goto out_release;
|
|
}
|
|
|
|
ret = cops->decompress_pages(dic);
|
|
|
|
if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
|
|
u32 provided = le32_to_cpu(dic->cbuf->chksum);
|
|
u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
|
|
|
|
if (provided != calculated) {
|
|
if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
|
|
set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
|
|
f2fs_info_ratelimited(sbi,
|
|
"checksum invalid, nid = %lu, %x vs %x",
|
|
dic->inode->i_ino,
|
|
provided, calculated);
|
|
}
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
}
|
|
}
|
|
|
|
out_release:
|
|
f2fs_release_decomp_mem(dic, bypass_callback, false);
|
|
|
|
out_end_io:
|
|
trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
|
|
dic->clen, ret);
|
|
f2fs_decompress_end_io(dic, ret, in_task);
|
|
}
|
|
|
|
/*
|
|
* This is called when a page of a compressed cluster has been read from disk
|
|
* (or failed to be read from disk). It checks whether this page was the last
|
|
* page being waited on in the cluster, and if so, it decompresses the cluster
|
|
* (or in the case of a failure, cleans up without actually decompressing).
|
|
*/
|
|
void f2fs_end_read_compressed_page(struct page *page, bool failed,
|
|
block_t blkaddr, bool in_task)
|
|
{
|
|
struct decompress_io_ctx *dic =
|
|
(struct decompress_io_ctx *)page_private(page);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
|
|
|
|
dec_page_count(sbi, F2FS_RD_DATA);
|
|
|
|
if (failed)
|
|
WRITE_ONCE(dic->failed, true);
|
|
else if (blkaddr && in_task)
|
|
f2fs_cache_compressed_page(sbi, page,
|
|
dic->inode->i_ino, blkaddr);
|
|
|
|
if (atomic_dec_and_test(&dic->remaining_pages))
|
|
f2fs_decompress_cluster(dic, in_task);
|
|
}
|
|
|
|
static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
|
|
{
|
|
if (cc->cluster_idx == NULL_CLUSTER)
|
|
return true;
|
|
return cc->cluster_idx == cluster_idx(cc, index);
|
|
}
|
|
|
|
bool f2fs_cluster_is_empty(struct compress_ctx *cc)
|
|
{
|
|
return cc->nr_rpages == 0;
|
|
}
|
|
|
|
static bool f2fs_cluster_is_full(struct compress_ctx *cc)
|
|
{
|
|
return cc->cluster_size == cc->nr_rpages;
|
|
}
|
|
|
|
bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
|
|
{
|
|
if (f2fs_cluster_is_empty(cc))
|
|
return true;
|
|
return is_page_in_cluster(cc, index);
|
|
}
|
|
|
|
bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
|
|
int index, int nr_pages, bool uptodate)
|
|
{
|
|
unsigned long pgidx = pages[index]->index;
|
|
int i = uptodate ? 0 : 1;
|
|
|
|
/*
|
|
* when uptodate set to true, try to check all pages in cluster is
|
|
* uptodate or not.
|
|
*/
|
|
if (uptodate && (pgidx % cc->cluster_size))
|
|
return false;
|
|
|
|
if (nr_pages - index < cc->cluster_size)
|
|
return false;
|
|
|
|
for (; i < cc->cluster_size; i++) {
|
|
if (pages[index + i]->index != pgidx + i)
|
|
return false;
|
|
if (uptodate && !PageUptodate(pages[index + i]))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool cluster_has_invalid_data(struct compress_ctx *cc)
|
|
{
|
|
loff_t i_size = i_size_read(cc->inode);
|
|
unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
|
|
int i;
|
|
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
struct page *page = cc->rpages[i];
|
|
|
|
f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
|
|
|
|
/* beyond EOF */
|
|
if (page_folio(page)->index >= nr_pages)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
|
|
{
|
|
#ifdef CONFIG_F2FS_CHECK_FS
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
|
|
unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
|
|
int cluster_end = 0;
|
|
unsigned int count;
|
|
int i;
|
|
char *reason = "";
|
|
|
|
if (dn->data_blkaddr != COMPRESS_ADDR)
|
|
return false;
|
|
|
|
/* [..., COMPR_ADDR, ...] */
|
|
if (dn->ofs_in_node % cluster_size) {
|
|
reason = "[*|C|*|*]";
|
|
goto out;
|
|
}
|
|
|
|
for (i = 1, count = 1; i < cluster_size; i++, count++) {
|
|
block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
|
|
dn->ofs_in_node + i);
|
|
|
|
/* [COMPR_ADDR, ..., COMPR_ADDR] */
|
|
if (blkaddr == COMPRESS_ADDR) {
|
|
reason = "[C|*|C|*]";
|
|
goto out;
|
|
}
|
|
if (!__is_valid_data_blkaddr(blkaddr)) {
|
|
if (!cluster_end)
|
|
cluster_end = i;
|
|
continue;
|
|
}
|
|
/* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
|
|
if (cluster_end) {
|
|
reason = "[C|N|N|V]";
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size &&
|
|
!is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED));
|
|
|
|
return false;
|
|
out:
|
|
f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
|
|
dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
|
|
set_sbi_flag(sbi, SBI_NEED_FSCK);
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static int __f2fs_get_cluster_blocks(struct inode *inode,
|
|
struct dnode_of_data *dn)
|
|
{
|
|
unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
|
|
int count, i;
|
|
|
|
for (i = 0, count = 0; i < cluster_size; i++) {
|
|
block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
|
|
dn->ofs_in_node + i);
|
|
|
|
if (__is_valid_data_blkaddr(blkaddr))
|
|
count++;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static int __f2fs_cluster_blocks(struct inode *inode, unsigned int cluster_idx,
|
|
enum cluster_check_type type)
|
|
{
|
|
struct dnode_of_data dn;
|
|
unsigned int start_idx = cluster_idx <<
|
|
F2FS_I(inode)->i_log_cluster_size;
|
|
int ret;
|
|
|
|
set_new_dnode(&dn, inode, NULL, NULL, 0);
|
|
ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
|
|
if (ret) {
|
|
if (ret == -ENOENT)
|
|
ret = 0;
|
|
goto fail;
|
|
}
|
|
|
|
if (f2fs_sanity_check_cluster(&dn)) {
|
|
ret = -EFSCORRUPTED;
|
|
goto fail;
|
|
}
|
|
|
|
if (dn.data_blkaddr == COMPRESS_ADDR) {
|
|
if (type == CLUSTER_COMPR_BLKS)
|
|
ret = 1 + __f2fs_get_cluster_blocks(inode, &dn);
|
|
else if (type == CLUSTER_IS_COMPR)
|
|
ret = 1;
|
|
} else if (type == CLUSTER_RAW_BLKS) {
|
|
ret = __f2fs_get_cluster_blocks(inode, &dn);
|
|
}
|
|
fail:
|
|
f2fs_put_dnode(&dn);
|
|
return ret;
|
|
}
|
|
|
|
/* return # of compressed blocks in compressed cluster */
|
|
static int f2fs_compressed_blocks(struct compress_ctx *cc)
|
|
{
|
|
return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx,
|
|
CLUSTER_COMPR_BLKS);
|
|
}
|
|
|
|
/* return # of raw blocks in non-compressed cluster */
|
|
static int f2fs_decompressed_blocks(struct inode *inode,
|
|
unsigned int cluster_idx)
|
|
{
|
|
return __f2fs_cluster_blocks(inode, cluster_idx,
|
|
CLUSTER_RAW_BLKS);
|
|
}
|
|
|
|
/* return whether cluster is compressed one or not */
|
|
int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
|
|
{
|
|
return __f2fs_cluster_blocks(inode,
|
|
index >> F2FS_I(inode)->i_log_cluster_size,
|
|
CLUSTER_IS_COMPR);
|
|
}
|
|
|
|
/* return whether cluster contains non raw blocks or not */
|
|
bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index)
|
|
{
|
|
unsigned int cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size;
|
|
|
|
return f2fs_decompressed_blocks(inode, cluster_idx) !=
|
|
F2FS_I(inode)->i_cluster_size;
|
|
}
|
|
|
|
static bool cluster_may_compress(struct compress_ctx *cc)
|
|
{
|
|
if (!f2fs_need_compress_data(cc->inode))
|
|
return false;
|
|
if (f2fs_is_atomic_file(cc->inode))
|
|
return false;
|
|
if (!f2fs_cluster_is_full(cc))
|
|
return false;
|
|
if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
|
|
return false;
|
|
return !cluster_has_invalid_data(cc);
|
|
}
|
|
|
|
static void set_cluster_writeback(struct compress_ctx *cc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
if (cc->rpages[i])
|
|
set_page_writeback(cc->rpages[i]);
|
|
}
|
|
}
|
|
|
|
static void cancel_cluster_writeback(struct compress_ctx *cc,
|
|
struct compress_io_ctx *cic, int submitted)
|
|
{
|
|
int i;
|
|
|
|
/* Wait for submitted IOs. */
|
|
if (submitted > 1) {
|
|
f2fs_submit_merged_write(F2FS_I_SB(cc->inode), DATA);
|
|
while (atomic_read(&cic->pending_pages) !=
|
|
(cc->valid_nr_cpages - submitted + 1))
|
|
f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
|
|
}
|
|
|
|
/* Cancel writeback and stay locked. */
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
if (i < submitted) {
|
|
inode_inc_dirty_pages(cc->inode);
|
|
lock_page(cc->rpages[i]);
|
|
}
|
|
clear_page_private_gcing(cc->rpages[i]);
|
|
if (folio_test_writeback(page_folio(cc->rpages[i])))
|
|
end_page_writeback(cc->rpages[i]);
|
|
}
|
|
}
|
|
|
|
static void set_cluster_dirty(struct compress_ctx *cc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cc->cluster_size; i++)
|
|
if (cc->rpages[i]) {
|
|
set_page_dirty(cc->rpages[i]);
|
|
set_page_private_gcing(cc->rpages[i]);
|
|
}
|
|
}
|
|
|
|
static int prepare_compress_overwrite(struct compress_ctx *cc,
|
|
struct page **pagep, pgoff_t index, void **fsdata)
|
|
{
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
|
|
struct address_space *mapping = cc->inode->i_mapping;
|
|
struct page *page;
|
|
sector_t last_block_in_bio;
|
|
fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
|
|
pgoff_t start_idx = start_idx_of_cluster(cc);
|
|
int i, ret;
|
|
|
|
retry:
|
|
ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
ret = f2fs_init_compress_ctx(cc);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* keep page reference to avoid page reclaim */
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
page = f2fs_pagecache_get_page(mapping, start_idx + i,
|
|
fgp_flag, GFP_NOFS);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto unlock_pages;
|
|
}
|
|
|
|
if (PageUptodate(page))
|
|
f2fs_put_page(page, 1);
|
|
else
|
|
f2fs_compress_ctx_add_page(cc, page_folio(page));
|
|
}
|
|
|
|
if (!f2fs_cluster_is_empty(cc)) {
|
|
struct bio *bio = NULL;
|
|
|
|
ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
|
|
&last_block_in_bio, NULL, true);
|
|
f2fs_put_rpages(cc);
|
|
f2fs_destroy_compress_ctx(cc, true);
|
|
if (ret)
|
|
goto out;
|
|
if (bio)
|
|
f2fs_submit_read_bio(sbi, bio, DATA);
|
|
|
|
ret = f2fs_init_compress_ctx(cc);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
f2fs_bug_on(sbi, cc->rpages[i]);
|
|
|
|
page = find_lock_page(mapping, start_idx + i);
|
|
if (!page) {
|
|
/* page can be truncated */
|
|
goto release_and_retry;
|
|
}
|
|
|
|
f2fs_wait_on_page_writeback(page, DATA, true, true);
|
|
f2fs_compress_ctx_add_page(cc, page_folio(page));
|
|
|
|
if (!PageUptodate(page)) {
|
|
release_and_retry:
|
|
f2fs_put_rpages(cc);
|
|
f2fs_unlock_rpages(cc, i + 1);
|
|
f2fs_destroy_compress_ctx(cc, true);
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
if (likely(!ret)) {
|
|
*fsdata = cc->rpages;
|
|
*pagep = cc->rpages[offset_in_cluster(cc, index)];
|
|
return cc->cluster_size;
|
|
}
|
|
|
|
unlock_pages:
|
|
f2fs_put_rpages(cc);
|
|
f2fs_unlock_rpages(cc, i);
|
|
f2fs_destroy_compress_ctx(cc, true);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int f2fs_prepare_compress_overwrite(struct inode *inode,
|
|
struct page **pagep, pgoff_t index, void **fsdata)
|
|
{
|
|
struct compress_ctx cc = {
|
|
.inode = inode,
|
|
.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
|
|
.cluster_size = F2FS_I(inode)->i_cluster_size,
|
|
.cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
|
|
.rpages = NULL,
|
|
.nr_rpages = 0,
|
|
};
|
|
|
|
return prepare_compress_overwrite(&cc, pagep, index, fsdata);
|
|
}
|
|
|
|
bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
|
|
pgoff_t index, unsigned copied)
|
|
|
|
{
|
|
struct compress_ctx cc = {
|
|
.inode = inode,
|
|
.log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
|
|
.cluster_size = F2FS_I(inode)->i_cluster_size,
|
|
.rpages = fsdata,
|
|
};
|
|
bool first_index = (index == cc.rpages[0]->index);
|
|
|
|
if (copied)
|
|
set_cluster_dirty(&cc);
|
|
|
|
f2fs_put_rpages_wbc(&cc, NULL, false, 1);
|
|
f2fs_destroy_compress_ctx(&cc, false);
|
|
|
|
return first_index;
|
|
}
|
|
|
|
int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
|
|
{
|
|
void *fsdata = NULL;
|
|
struct page *pagep;
|
|
int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
|
|
pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
|
|
log_cluster_size;
|
|
int err;
|
|
|
|
err = f2fs_is_compressed_cluster(inode, start_idx);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
/* truncate normal cluster */
|
|
if (!err)
|
|
return f2fs_do_truncate_blocks(inode, from, lock);
|
|
|
|
/* truncate compressed cluster */
|
|
err = f2fs_prepare_compress_overwrite(inode, &pagep,
|
|
start_idx, &fsdata);
|
|
|
|
/* should not be a normal cluster */
|
|
f2fs_bug_on(F2FS_I_SB(inode), err == 0);
|
|
|
|
if (err <= 0)
|
|
return err;
|
|
|
|
if (err > 0) {
|
|
struct page **rpages = fsdata;
|
|
int cluster_size = F2FS_I(inode)->i_cluster_size;
|
|
int i;
|
|
|
|
for (i = cluster_size - 1; i >= 0; i--) {
|
|
loff_t start = rpages[i]->index << PAGE_SHIFT;
|
|
|
|
if (from <= start) {
|
|
zero_user_segment(rpages[i], 0, PAGE_SIZE);
|
|
} else {
|
|
zero_user_segment(rpages[i], from - start,
|
|
PAGE_SIZE);
|
|
break;
|
|
}
|
|
}
|
|
|
|
f2fs_compress_write_end(inode, fsdata, start_idx, true);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int f2fs_write_compressed_pages(struct compress_ctx *cc,
|
|
int *submitted,
|
|
struct writeback_control *wbc,
|
|
enum iostat_type io_type)
|
|
{
|
|
struct inode *inode = cc->inode;
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
|
|
struct f2fs_inode_info *fi = F2FS_I(inode);
|
|
struct f2fs_io_info fio = {
|
|
.sbi = sbi,
|
|
.ino = cc->inode->i_ino,
|
|
.type = DATA,
|
|
.op = REQ_OP_WRITE,
|
|
.op_flags = wbc_to_write_flags(wbc),
|
|
.old_blkaddr = NEW_ADDR,
|
|
.page = NULL,
|
|
.encrypted_page = NULL,
|
|
.compressed_page = NULL,
|
|
.io_type = io_type,
|
|
.io_wbc = wbc,
|
|
.encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
|
|
1 : 0,
|
|
};
|
|
struct dnode_of_data dn;
|
|
struct node_info ni;
|
|
struct compress_io_ctx *cic;
|
|
pgoff_t start_idx = start_idx_of_cluster(cc);
|
|
unsigned int last_index = cc->cluster_size - 1;
|
|
loff_t psize;
|
|
int i, err;
|
|
bool quota_inode = IS_NOQUOTA(inode);
|
|
|
|
/* we should bypass data pages to proceed the kworker jobs */
|
|
if (unlikely(f2fs_cp_error(sbi))) {
|
|
mapping_set_error(cc->rpages[0]->mapping, -EIO);
|
|
goto out_free;
|
|
}
|
|
|
|
if (quota_inode) {
|
|
/*
|
|
* We need to wait for node_write to avoid block allocation during
|
|
* checkpoint. This can only happen to quota writes which can cause
|
|
* the below discard race condition.
|
|
*/
|
|
f2fs_down_read(&sbi->node_write);
|
|
} else if (!f2fs_trylock_op(sbi)) {
|
|
goto out_free;
|
|
}
|
|
|
|
set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
|
|
|
|
err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
|
|
if (err)
|
|
goto out_unlock_op;
|
|
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
if (data_blkaddr(dn.inode, dn.node_page,
|
|
dn.ofs_in_node + i) == NULL_ADDR)
|
|
goto out_put_dnode;
|
|
}
|
|
|
|
psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
|
|
|
|
err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
|
|
if (err)
|
|
goto out_put_dnode;
|
|
|
|
fio.version = ni.version;
|
|
|
|
cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
|
|
if (!cic)
|
|
goto out_put_dnode;
|
|
|
|
cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
|
|
cic->inode = inode;
|
|
atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
|
|
cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
|
|
if (!cic->rpages)
|
|
goto out_put_cic;
|
|
|
|
cic->nr_rpages = cc->cluster_size;
|
|
|
|
for (i = 0; i < cc->valid_nr_cpages; i++) {
|
|
f2fs_set_compressed_page(cc->cpages[i], inode,
|
|
cc->rpages[i + 1]->index, cic);
|
|
fio.compressed_page = cc->cpages[i];
|
|
|
|
fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
|
|
dn.ofs_in_node + i + 1);
|
|
|
|
/* wait for GCed page writeback via META_MAPPING */
|
|
f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
|
|
|
|
if (fio.encrypted) {
|
|
fio.page = cc->rpages[i + 1];
|
|
err = f2fs_encrypt_one_page(&fio);
|
|
if (err)
|
|
goto out_destroy_crypt;
|
|
cc->cpages[i] = fio.encrypted_page;
|
|
}
|
|
}
|
|
|
|
set_cluster_writeback(cc);
|
|
|
|
for (i = 0; i < cc->cluster_size; i++)
|
|
cic->rpages[i] = cc->rpages[i];
|
|
|
|
for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
|
|
block_t blkaddr;
|
|
|
|
blkaddr = f2fs_data_blkaddr(&dn);
|
|
fio.page = cc->rpages[i];
|
|
fio.old_blkaddr = blkaddr;
|
|
|
|
/* cluster header */
|
|
if (i == 0) {
|
|
if (blkaddr == COMPRESS_ADDR)
|
|
fio.compr_blocks++;
|
|
if (__is_valid_data_blkaddr(blkaddr))
|
|
f2fs_invalidate_blocks(sbi, blkaddr);
|
|
f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
|
|
goto unlock_continue;
|
|
}
|
|
|
|
if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
|
|
fio.compr_blocks++;
|
|
|
|
if (i > cc->valid_nr_cpages) {
|
|
if (__is_valid_data_blkaddr(blkaddr)) {
|
|
f2fs_invalidate_blocks(sbi, blkaddr);
|
|
f2fs_update_data_blkaddr(&dn, NEW_ADDR);
|
|
}
|
|
goto unlock_continue;
|
|
}
|
|
|
|
f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
|
|
|
|
if (fio.encrypted)
|
|
fio.encrypted_page = cc->cpages[i - 1];
|
|
else
|
|
fio.compressed_page = cc->cpages[i - 1];
|
|
|
|
cc->cpages[i - 1] = NULL;
|
|
fio.submitted = 0;
|
|
f2fs_outplace_write_data(&dn, &fio);
|
|
if (unlikely(!fio.submitted)) {
|
|
cancel_cluster_writeback(cc, cic, i);
|
|
|
|
/* To call fscrypt_finalize_bounce_page */
|
|
i = cc->valid_nr_cpages;
|
|
*submitted = 0;
|
|
goto out_destroy_crypt;
|
|
}
|
|
(*submitted)++;
|
|
unlock_continue:
|
|
inode_dec_dirty_pages(cc->inode);
|
|
unlock_page(fio.page);
|
|
}
|
|
|
|
if (fio.compr_blocks)
|
|
f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
|
|
f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
|
|
add_compr_block_stat(inode, cc->valid_nr_cpages);
|
|
|
|
set_inode_flag(cc->inode, FI_APPEND_WRITE);
|
|
|
|
f2fs_put_dnode(&dn);
|
|
if (quota_inode)
|
|
f2fs_up_read(&sbi->node_write);
|
|
else
|
|
f2fs_unlock_op(sbi);
|
|
|
|
spin_lock(&fi->i_size_lock);
|
|
if (fi->last_disk_size < psize)
|
|
fi->last_disk_size = psize;
|
|
spin_unlock(&fi->i_size_lock);
|
|
|
|
f2fs_put_rpages(cc);
|
|
page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
|
|
cc->cpages = NULL;
|
|
f2fs_destroy_compress_ctx(cc, false);
|
|
return 0;
|
|
|
|
out_destroy_crypt:
|
|
page_array_free(cc->inode, cic->rpages, cc->cluster_size);
|
|
|
|
for (--i; i >= 0; i--) {
|
|
if (!cc->cpages[i])
|
|
continue;
|
|
fscrypt_finalize_bounce_page(&cc->cpages[i]);
|
|
}
|
|
out_put_cic:
|
|
kmem_cache_free(cic_entry_slab, cic);
|
|
out_put_dnode:
|
|
f2fs_put_dnode(&dn);
|
|
out_unlock_op:
|
|
if (quota_inode)
|
|
f2fs_up_read(&sbi->node_write);
|
|
else
|
|
f2fs_unlock_op(sbi);
|
|
out_free:
|
|
for (i = 0; i < cc->valid_nr_cpages; i++) {
|
|
f2fs_compress_free_page(cc->cpages[i]);
|
|
cc->cpages[i] = NULL;
|
|
}
|
|
page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
|
|
cc->cpages = NULL;
|
|
return -EAGAIN;
|
|
}
|
|
|
|
void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
|
|
{
|
|
struct f2fs_sb_info *sbi = bio->bi_private;
|
|
struct compress_io_ctx *cic =
|
|
(struct compress_io_ctx *)page_private(page);
|
|
enum count_type type = WB_DATA_TYPE(page,
|
|
f2fs_is_compressed_page(page));
|
|
int i;
|
|
|
|
if (unlikely(bio->bi_status))
|
|
mapping_set_error(cic->inode->i_mapping, -EIO);
|
|
|
|
f2fs_compress_free_page(page);
|
|
|
|
dec_page_count(sbi, type);
|
|
|
|
if (atomic_dec_return(&cic->pending_pages))
|
|
return;
|
|
|
|
for (i = 0; i < cic->nr_rpages; i++) {
|
|
WARN_ON(!cic->rpages[i]);
|
|
clear_page_private_gcing(cic->rpages[i]);
|
|
end_page_writeback(cic->rpages[i]);
|
|
}
|
|
|
|
page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
|
|
kmem_cache_free(cic_entry_slab, cic);
|
|
}
|
|
|
|
static int f2fs_write_raw_pages(struct compress_ctx *cc,
|
|
int *submitted_p,
|
|
struct writeback_control *wbc,
|
|
enum iostat_type io_type)
|
|
{
|
|
struct address_space *mapping = cc->inode->i_mapping;
|
|
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
|
|
int submitted, compr_blocks, i;
|
|
int ret = 0;
|
|
|
|
compr_blocks = f2fs_compressed_blocks(cc);
|
|
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
if (!cc->rpages[i])
|
|
continue;
|
|
|
|
redirty_page_for_writepage(wbc, cc->rpages[i]);
|
|
unlock_page(cc->rpages[i]);
|
|
}
|
|
|
|
if (compr_blocks < 0)
|
|
return compr_blocks;
|
|
|
|
/* overwrite compressed cluster w/ normal cluster */
|
|
if (compr_blocks > 0)
|
|
f2fs_lock_op(sbi);
|
|
|
|
for (i = 0; i < cc->cluster_size; i++) {
|
|
if (!cc->rpages[i])
|
|
continue;
|
|
retry_write:
|
|
lock_page(cc->rpages[i]);
|
|
|
|
if (cc->rpages[i]->mapping != mapping) {
|
|
continue_unlock:
|
|
unlock_page(cc->rpages[i]);
|
|
continue;
|
|
}
|
|
|
|
if (!PageDirty(cc->rpages[i]))
|
|
goto continue_unlock;
|
|
|
|
if (folio_test_writeback(page_folio(cc->rpages[i]))) {
|
|
if (wbc->sync_mode == WB_SYNC_NONE)
|
|
goto continue_unlock;
|
|
f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
|
|
}
|
|
|
|
if (!clear_page_dirty_for_io(cc->rpages[i]))
|
|
goto continue_unlock;
|
|
|
|
ret = f2fs_write_single_data_page(page_folio(cc->rpages[i]),
|
|
&submitted,
|
|
NULL, NULL, wbc, io_type,
|
|
compr_blocks, false);
|
|
if (ret) {
|
|
if (ret == AOP_WRITEPAGE_ACTIVATE) {
|
|
unlock_page(cc->rpages[i]);
|
|
ret = 0;
|
|
} else if (ret == -EAGAIN) {
|
|
ret = 0;
|
|
/*
|
|
* for quota file, just redirty left pages to
|
|
* avoid deadlock caused by cluster update race
|
|
* from foreground operation.
|
|
*/
|
|
if (IS_NOQUOTA(cc->inode))
|
|
goto out;
|
|
f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
|
|
goto retry_write;
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
*submitted_p += submitted;
|
|
}
|
|
|
|
out:
|
|
if (compr_blocks > 0)
|
|
f2fs_unlock_op(sbi);
|
|
|
|
f2fs_balance_fs(sbi, true);
|
|
return ret;
|
|
}
|
|
|
|
int f2fs_write_multi_pages(struct compress_ctx *cc,
|
|
int *submitted,
|
|
struct writeback_control *wbc,
|
|
enum iostat_type io_type)
|
|
{
|
|
int err;
|
|
|
|
*submitted = 0;
|
|
if (cluster_may_compress(cc)) {
|
|
err = f2fs_compress_pages(cc);
|
|
if (err == -EAGAIN) {
|
|
add_compr_block_stat(cc->inode, cc->cluster_size);
|
|
goto write;
|
|
} else if (err) {
|
|
f2fs_put_rpages_wbc(cc, wbc, true, 1);
|
|
goto destroy_out;
|
|
}
|
|
|
|
err = f2fs_write_compressed_pages(cc, submitted,
|
|
wbc, io_type);
|
|
if (!err)
|
|
return 0;
|
|
f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
|
|
}
|
|
write:
|
|
f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
|
|
|
|
err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
|
|
f2fs_put_rpages_wbc(cc, wbc, false, 0);
|
|
destroy_out:
|
|
f2fs_destroy_compress_ctx(cc, false);
|
|
return err;
|
|
}
|
|
|
|
static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
|
|
bool pre_alloc)
|
|
{
|
|
return pre_alloc ^ f2fs_low_mem_mode(sbi);
|
|
}
|
|
|
|
static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
|
|
bool pre_alloc)
|
|
{
|
|
const struct f2fs_compress_ops *cops =
|
|
f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
|
|
int i;
|
|
|
|
if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
|
|
return 0;
|
|
|
|
dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
|
|
if (!dic->tpages)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < dic->cluster_size; i++) {
|
|
if (dic->rpages[i]) {
|
|
dic->tpages[i] = dic->rpages[i];
|
|
continue;
|
|
}
|
|
|
|
dic->tpages[i] = f2fs_compress_alloc_page();
|
|
}
|
|
|
|
dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
|
|
if (!dic->rbuf)
|
|
return -ENOMEM;
|
|
|
|
dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
|
|
if (!dic->cbuf)
|
|
return -ENOMEM;
|
|
|
|
if (cops->init_decompress_ctx)
|
|
return cops->init_decompress_ctx(dic);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
|
|
bool bypass_destroy_callback, bool pre_alloc)
|
|
{
|
|
const struct f2fs_compress_ops *cops =
|
|
f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
|
|
|
|
if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
|
|
return;
|
|
|
|
if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
|
|
cops->destroy_decompress_ctx(dic);
|
|
|
|
if (dic->cbuf)
|
|
vm_unmap_ram(dic->cbuf, dic->nr_cpages);
|
|
|
|
if (dic->rbuf)
|
|
vm_unmap_ram(dic->rbuf, dic->cluster_size);
|
|
}
|
|
|
|
static void f2fs_free_dic(struct decompress_io_ctx *dic,
|
|
bool bypass_destroy_callback);
|
|
|
|
struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
|
|
{
|
|
struct decompress_io_ctx *dic;
|
|
pgoff_t start_idx = start_idx_of_cluster(cc);
|
|
struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
|
|
int i, ret;
|
|
|
|
dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
|
|
if (!dic)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
|
|
if (!dic->rpages) {
|
|
kmem_cache_free(dic_entry_slab, dic);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
|
|
dic->inode = cc->inode;
|
|
atomic_set(&dic->remaining_pages, cc->nr_cpages);
|
|
dic->cluster_idx = cc->cluster_idx;
|
|
dic->cluster_size = cc->cluster_size;
|
|
dic->log_cluster_size = cc->log_cluster_size;
|
|
dic->nr_cpages = cc->nr_cpages;
|
|
refcount_set(&dic->refcnt, 1);
|
|
dic->failed = false;
|
|
dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
|
|
|
|
for (i = 0; i < dic->cluster_size; i++)
|
|
dic->rpages[i] = cc->rpages[i];
|
|
dic->nr_rpages = cc->cluster_size;
|
|
|
|
dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
|
|
if (!dic->cpages) {
|
|
ret = -ENOMEM;
|
|
goto out_free;
|
|
}
|
|
|
|
for (i = 0; i < dic->nr_cpages; i++) {
|
|
struct page *page;
|
|
|
|
page = f2fs_compress_alloc_page();
|
|
f2fs_set_compressed_page(page, cc->inode,
|
|
start_idx + i + 1, dic);
|
|
dic->cpages[i] = page;
|
|
}
|
|
|
|
ret = f2fs_prepare_decomp_mem(dic, true);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
return dic;
|
|
|
|
out_free:
|
|
f2fs_free_dic(dic, true);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static void f2fs_free_dic(struct decompress_io_ctx *dic,
|
|
bool bypass_destroy_callback)
|
|
{
|
|
int i;
|
|
|
|
f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
|
|
|
|
if (dic->tpages) {
|
|
for (i = 0; i < dic->cluster_size; i++) {
|
|
if (dic->rpages[i])
|
|
continue;
|
|
if (!dic->tpages[i])
|
|
continue;
|
|
f2fs_compress_free_page(dic->tpages[i]);
|
|
}
|
|
page_array_free(dic->inode, dic->tpages, dic->cluster_size);
|
|
}
|
|
|
|
if (dic->cpages) {
|
|
for (i = 0; i < dic->nr_cpages; i++) {
|
|
if (!dic->cpages[i])
|
|
continue;
|
|
f2fs_compress_free_page(dic->cpages[i]);
|
|
}
|
|
page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
|
|
}
|
|
|
|
page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
|
|
kmem_cache_free(dic_entry_slab, dic);
|
|
}
|
|
|
|
static void f2fs_late_free_dic(struct work_struct *work)
|
|
{
|
|
struct decompress_io_ctx *dic =
|
|
container_of(work, struct decompress_io_ctx, free_work);
|
|
|
|
f2fs_free_dic(dic, false);
|
|
}
|
|
|
|
static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
|
|
{
|
|
if (refcount_dec_and_test(&dic->refcnt)) {
|
|
if (in_task) {
|
|
f2fs_free_dic(dic, false);
|
|
} else {
|
|
INIT_WORK(&dic->free_work, f2fs_late_free_dic);
|
|
queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
|
|
&dic->free_work);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void f2fs_verify_cluster(struct work_struct *work)
|
|
{
|
|
struct decompress_io_ctx *dic =
|
|
container_of(work, struct decompress_io_ctx, verity_work);
|
|
int i;
|
|
|
|
/* Verify, update, and unlock the decompressed pages. */
|
|
for (i = 0; i < dic->cluster_size; i++) {
|
|
struct page *rpage = dic->rpages[i];
|
|
|
|
if (!rpage)
|
|
continue;
|
|
|
|
if (fsverity_verify_page(rpage))
|
|
SetPageUptodate(rpage);
|
|
else
|
|
ClearPageUptodate(rpage);
|
|
unlock_page(rpage);
|
|
}
|
|
|
|
f2fs_put_dic(dic, true);
|
|
}
|
|
|
|
/*
|
|
* This is called when a compressed cluster has been decompressed
|
|
* (or failed to be read and/or decompressed).
|
|
*/
|
|
void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
|
|
bool in_task)
|
|
{
|
|
int i;
|
|
|
|
if (!failed && dic->need_verity) {
|
|
/*
|
|
* Note that to avoid deadlocks, the verity work can't be done
|
|
* on the decompression workqueue. This is because verifying
|
|
* the data pages can involve reading metadata pages from the
|
|
* file, and these metadata pages may be compressed.
|
|
*/
|
|
INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
|
|
fsverity_enqueue_verify_work(&dic->verity_work);
|
|
return;
|
|
}
|
|
|
|
/* Update and unlock the cluster's pagecache pages. */
|
|
for (i = 0; i < dic->cluster_size; i++) {
|
|
struct page *rpage = dic->rpages[i];
|
|
|
|
if (!rpage)
|
|
continue;
|
|
|
|
if (failed)
|
|
ClearPageUptodate(rpage);
|
|
else
|
|
SetPageUptodate(rpage);
|
|
unlock_page(rpage);
|
|
}
|
|
|
|
/*
|
|
* Release the reference to the decompress_io_ctx that was being held
|
|
* for I/O completion.
|
|
*/
|
|
f2fs_put_dic(dic, in_task);
|
|
}
|
|
|
|
/*
|
|
* Put a reference to a compressed page's decompress_io_ctx.
|
|
*
|
|
* This is called when the page is no longer needed and can be freed.
|
|
*/
|
|
void f2fs_put_page_dic(struct page *page, bool in_task)
|
|
{
|
|
struct decompress_io_ctx *dic =
|
|
(struct decompress_io_ctx *)page_private(page);
|
|
|
|
f2fs_put_dic(dic, in_task);
|
|
}
|
|
|
|
/*
|
|
* check whether cluster blocks are contiguous, and add extent cache entry
|
|
* only if cluster blocks are logically and physically contiguous.
|
|
*/
|
|
unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
|
|
unsigned int ofs_in_node)
|
|
{
|
|
bool compressed = data_blkaddr(dn->inode, dn->node_page,
|
|
ofs_in_node) == COMPRESS_ADDR;
|
|
int i = compressed ? 1 : 0;
|
|
block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
|
|
ofs_in_node + i);
|
|
|
|
for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
|
|
block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
|
|
ofs_in_node + i);
|
|
|
|
if (!__is_valid_data_blkaddr(blkaddr))
|
|
break;
|
|
if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
|
|
return 0;
|
|
}
|
|
|
|
return compressed ? i - 1 : i;
|
|
}
|
|
|
|
const struct address_space_operations f2fs_compress_aops = {
|
|
.release_folio = f2fs_release_folio,
|
|
.invalidate_folio = f2fs_invalidate_folio,
|
|
.migrate_folio = filemap_migrate_folio,
|
|
};
|
|
|
|
struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
|
|
{
|
|
return sbi->compress_inode->i_mapping;
|
|
}
|
|
|
|
void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
|
|
{
|
|
if (!sbi->compress_inode)
|
|
return;
|
|
invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
|
|
}
|
|
|
|
void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
|
|
nid_t ino, block_t blkaddr)
|
|
{
|
|
struct page *cpage;
|
|
int ret;
|
|
|
|
if (!test_opt(sbi, COMPRESS_CACHE))
|
|
return;
|
|
|
|
if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
|
|
return;
|
|
|
|
if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
|
|
return;
|
|
|
|
cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
|
|
if (cpage) {
|
|
f2fs_put_page(cpage, 0);
|
|
return;
|
|
}
|
|
|
|
cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
|
|
if (!cpage)
|
|
return;
|
|
|
|
ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
|
|
blkaddr, GFP_NOFS);
|
|
if (ret) {
|
|
f2fs_put_page(cpage, 0);
|
|
return;
|
|
}
|
|
|
|
set_page_private_data(cpage, ino);
|
|
|
|
memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
|
|
SetPageUptodate(cpage);
|
|
f2fs_put_page(cpage, 1);
|
|
}
|
|
|
|
bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
|
|
block_t blkaddr)
|
|
{
|
|
struct page *cpage;
|
|
bool hitted = false;
|
|
|
|
if (!test_opt(sbi, COMPRESS_CACHE))
|
|
return false;
|
|
|
|
cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
|
|
blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
|
|
if (cpage) {
|
|
if (PageUptodate(cpage)) {
|
|
atomic_inc(&sbi->compress_page_hit);
|
|
memcpy(page_address(page),
|
|
page_address(cpage), PAGE_SIZE);
|
|
hitted = true;
|
|
}
|
|
f2fs_put_page(cpage, 1);
|
|
}
|
|
|
|
return hitted;
|
|
}
|
|
|
|
void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
|
|
{
|
|
struct address_space *mapping = COMPRESS_MAPPING(sbi);
|
|
struct folio_batch fbatch;
|
|
pgoff_t index = 0;
|
|
pgoff_t end = MAX_BLKADDR(sbi);
|
|
|
|
if (!mapping->nrpages)
|
|
return;
|
|
|
|
folio_batch_init(&fbatch);
|
|
|
|
do {
|
|
unsigned int nr, i;
|
|
|
|
nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
|
|
if (!nr)
|
|
break;
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
struct folio *folio = fbatch.folios[i];
|
|
|
|
folio_lock(folio);
|
|
if (folio->mapping != mapping) {
|
|
folio_unlock(folio);
|
|
continue;
|
|
}
|
|
|
|
if (ino != get_page_private_data(&folio->page)) {
|
|
folio_unlock(folio);
|
|
continue;
|
|
}
|
|
|
|
generic_error_remove_folio(mapping, folio);
|
|
folio_unlock(folio);
|
|
}
|
|
folio_batch_release(&fbatch);
|
|
cond_resched();
|
|
} while (index < end);
|
|
}
|
|
|
|
int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
|
|
{
|
|
struct inode *inode;
|
|
|
|
if (!test_opt(sbi, COMPRESS_CACHE))
|
|
return 0;
|
|
|
|
inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
|
|
if (IS_ERR(inode))
|
|
return PTR_ERR(inode);
|
|
sbi->compress_inode = inode;
|
|
|
|
sbi->compress_percent = COMPRESS_PERCENT;
|
|
sbi->compress_watermark = COMPRESS_WATERMARK;
|
|
|
|
atomic_set(&sbi->compress_page_hit, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
|
|
{
|
|
if (!sbi->compress_inode)
|
|
return;
|
|
iput(sbi->compress_inode);
|
|
sbi->compress_inode = NULL;
|
|
}
|
|
|
|
int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
|
|
{
|
|
dev_t dev = sbi->sb->s_bdev->bd_dev;
|
|
char slab_name[35];
|
|
|
|
if (!f2fs_sb_has_compression(sbi))
|
|
return 0;
|
|
|
|
sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
|
|
|
|
sbi->page_array_slab_size = sizeof(struct page *) <<
|
|
F2FS_OPTION(sbi).compress_log_size;
|
|
|
|
sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
|
|
sbi->page_array_slab_size);
|
|
return sbi->page_array_slab ? 0 : -ENOMEM;
|
|
}
|
|
|
|
void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
|
|
{
|
|
kmem_cache_destroy(sbi->page_array_slab);
|
|
}
|
|
|
|
int __init f2fs_init_compress_cache(void)
|
|
{
|
|
cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
|
|
sizeof(struct compress_io_ctx));
|
|
if (!cic_entry_slab)
|
|
return -ENOMEM;
|
|
dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
|
|
sizeof(struct decompress_io_ctx));
|
|
if (!dic_entry_slab)
|
|
goto free_cic;
|
|
return 0;
|
|
free_cic:
|
|
kmem_cache_destroy(cic_entry_slab);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void f2fs_destroy_compress_cache(void)
|
|
{
|
|
kmem_cache_destroy(dic_entry_slab);
|
|
kmem_cache_destroy(cic_entry_slab);
|
|
}
|