linux-stable/fs/timerfd.c
Linus Torvalds bf9aa14fc5 A rather large update for timekeeping and timers:
- The final step to get rid of auto-rearming posix-timers
 
     posix-timers are currently auto-rearmed by the kernel when the signal
     of the timer is ignored so that the timer signal can be delivered once
     the corresponding signal is unignored.
 
     This requires to throttle the timer to prevent a DoS by small intervals
     and keeps the system pointlessly out of low power states for no value.
     This is a long standing non-trivial problem due to the lock order of
     posix-timer lock and the sighand lock along with life time issues as
     the timer and the sigqueue have different life time rules.
 
     Cure this by:
 
      * Embedding the sigqueue into the timer struct to have the same life
        time rules. Aside of that this also avoids the lookup of the timer
        in the signal delivery and rearm path as it's just a always valid
        container_of() now.
 
      * Queuing ignored timer signals onto a seperate ignored list.
 
      * Moving queued timer signals onto the ignored list when the signal is
        switched to SIG_IGN before it could be delivered.
 
      * Walking the ignored list when SIG_IGN is lifted and requeue the
        signals to the actual signal lists. This allows the signal delivery
        code to rearm the timer.
 
     This also required to consolidate the signal delivery rules so they are
     consistent across all situations. With that all self test scenarios
     finally succeed.
 
   - Core infrastructure for VFS multigrain timestamping
 
     This is required to allow the kernel to use coarse grained time stamps
     by default and switch to fine grained time stamps when inode attributes
     are actively observed via getattr().
 
     These changes have been provided to the VFS tree as well, so that the
     VFS specific infrastructure could be built on top.
 
   - Cleanup and consolidation of the sleep() infrastructure
 
     * Move all sleep and timeout functions into one file
 
     * Rework udelay() and ndelay() into proper documented inline functions
       and replace the hardcoded magic numbers by proper defines.
 
     * Rework the fsleep() implementation to take the reality of the timer
       wheel granularity on different HZ values into account. Right now the
       boundaries are hard coded time ranges which fail to provide the
       requested accuracy on different HZ settings.
 
     * Update documentation for all sleep/timeout related functions and fix
       up stale documentation links all over the place
 
     * Fixup a few usage sites
 
   - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP clocks
 
     A system can have multiple PTP clocks which are participating in
     seperate and independent PTP clock domains. So far the kernel only
     considers the PTP clock which is based on CLOCK TAI relevant as that's
     the clock which drives the timekeeping adjustments via the various user
     space daemons through adjtimex(2).
 
     The non TAI based clock domains are accessible via the file descriptor
     based posix clocks, but their usability is very limited. They can't be
     accessed fast as they always go all the way out to the hardware and
     they cannot be utilized in the kernel itself.
 
     As Time Sensitive Networking (TSN) gains traction it is required to
     provide fast user and kernel space access to these clocks.
 
     The approach taken is to utilize the timekeeping and adjtimex(2)
     infrastructure to provide this access in a similar way how the kernel
     provides access to clock MONOTONIC, REALTIME etc.
 
     Instead of creating a duplicated infrastructure this rework converts
     timekeeping and adjtimex(2) into generic functionality which operates
     on pointers to data structures instead of using static variables.
 
     This allows to provide time accessors and adjtimex(2) functionality for
     the independent PTP clocks in a subsequent step.
 
   - Consolidate hrtimer initialization
 
     hrtimers are set up by initializing the data structure and then
     seperately setting the callback function for historical reasons.
 
     That's an extra unnecessary step and makes Rust support less straight
     forward than it should be.
 
     Provide a new set of hrtimer_setup*() functions and convert the core
     code and a few usage sites of the less frequently used interfaces over.
 
     The bulk of the htimer_init() to hrtimer_setup() conversion is already
     prepared and scheduled for the next merge window.
 
   - Drivers:
 
     * Ensure that the global timekeeping clocksource is utilizing the
       cluster 0 timer on MIPS multi-cluster systems.
 
       Otherwise CPUs on different clusters use their cluster specific
       clocksource which is not guaranteed to be synchronized with other
       clusters.
 
     * Mostly boring cleanups, fixes, improvements and code movement
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmc7kPITHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoZKkD/9OUL6fOJrDUmOYBa4QVeMyfTef4EaL
 tvwIMM/29XQFeiq3xxCIn+EMnHjXn2lvIhYGQ7GKsbKYwvJ7ZBDpQb+UMhZ2nKI9
 6D6BP6WomZohKeH2fZbJQAdqOi3KRYdvQdIsVZUexkqiaVPphRvOH9wOr45gHtZM
 EyMRSotPlQTDqcrbUejDMEO94GyjDCYXRsyATLxjmTzL/N4xD4NRIiotjM2vL/a9
 8MuCgIhrKUEyYlFoOxxeokBsF3kk3/ez2jlG9b/N8VLH3SYIc2zgL58FBgWxlmgG
 bY71nVG3nUgEjxBd2dcXAVVqvb+5widk8p6O7xxOAQKTLMcJ4H0tQDkMnzBtUzvB
 DGAJDHAmAr0g+ja9O35Pkhunkh4HYFIbq0Il4d1HMKObhJV0JumcKuQVxrXycdm3
 UZfq3seqHsZJQbPgCAhlFU0/2WWScocbee9bNebGT33KVwSp5FoVv89C/6Vjb+vV
 Gusc3thqrQuMAZW5zV8g4UcBAA/xH4PB0I+vHib+9XPZ4UQ7/6xKl2jE0kd5hX7n
 AAUeZvFNFqIsY+B6vz+Jx/yzyM7u5cuXq87pof5EHVFzv56lyTp4ToGcOGYRgKH5
 JXeYV1OxGziSDrd5vbf9CzdWMzqMvTefXrHbWrjkjhNOe8E1A8O88RZ5uRKZhmSw
 hZZ4hdM9+3T7cg==
 =2VC6
 -----END PGP SIGNATURE-----

Merge tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull timer updates from Thomas Gleixner:
 "A rather large update for timekeeping and timers:

   - The final step to get rid of auto-rearming posix-timers

     posix-timers are currently auto-rearmed by the kernel when the
     signal of the timer is ignored so that the timer signal can be
     delivered once the corresponding signal is unignored.

     This requires to throttle the timer to prevent a DoS by small
     intervals and keeps the system pointlessly out of low power states
     for no value. This is a long standing non-trivial problem due to
     the lock order of posix-timer lock and the sighand lock along with
     life time issues as the timer and the sigqueue have different life
     time rules.

     Cure this by:

       - Embedding the sigqueue into the timer struct to have the same
         life time rules. Aside of that this also avoids the lookup of
         the timer in the signal delivery and rearm path as it's just a
         always valid container_of() now.

       - Queuing ignored timer signals onto a seperate ignored list.

       - Moving queued timer signals onto the ignored list when the
         signal is switched to SIG_IGN before it could be delivered.

       - Walking the ignored list when SIG_IGN is lifted and requeue the
         signals to the actual signal lists. This allows the signal
         delivery code to rearm the timer.

     This also required to consolidate the signal delivery rules so they
     are consistent across all situations. With that all self test
     scenarios finally succeed.

   - Core infrastructure for VFS multigrain timestamping

     This is required to allow the kernel to use coarse grained time
     stamps by default and switch to fine grained time stamps when inode
     attributes are actively observed via getattr().

     These changes have been provided to the VFS tree as well, so that
     the VFS specific infrastructure could be built on top.

   - Cleanup and consolidation of the sleep() infrastructure

       - Move all sleep and timeout functions into one file

       - Rework udelay() and ndelay() into proper documented inline
         functions and replace the hardcoded magic numbers by proper
         defines.

       - Rework the fsleep() implementation to take the reality of the
         timer wheel granularity on different HZ values into account.
         Right now the boundaries are hard coded time ranges which fail
         to provide the requested accuracy on different HZ settings.

       - Update documentation for all sleep/timeout related functions
         and fix up stale documentation links all over the place

       - Fixup a few usage sites

   - Rework of timekeeping and adjtimex(2) to prepare for multiple PTP
     clocks

     A system can have multiple PTP clocks which are participating in
     seperate and independent PTP clock domains. So far the kernel only
     considers the PTP clock which is based on CLOCK TAI relevant as
     that's the clock which drives the timekeeping adjustments via the
     various user space daemons through adjtimex(2).

     The non TAI based clock domains are accessible via the file
     descriptor based posix clocks, but their usability is very limited.
     They can't be accessed fast as they always go all the way out to
     the hardware and they cannot be utilized in the kernel itself.

     As Time Sensitive Networking (TSN) gains traction it is required to
     provide fast user and kernel space access to these clocks.

     The approach taken is to utilize the timekeeping and adjtimex(2)
     infrastructure to provide this access in a similar way how the
     kernel provides access to clock MONOTONIC, REALTIME etc.

     Instead of creating a duplicated infrastructure this rework
     converts timekeeping and adjtimex(2) into generic functionality
     which operates on pointers to data structures instead of using
     static variables.

     This allows to provide time accessors and adjtimex(2) functionality
     for the independent PTP clocks in a subsequent step.

   - Consolidate hrtimer initialization

     hrtimers are set up by initializing the data structure and then
     seperately setting the callback function for historical reasons.

     That's an extra unnecessary step and makes Rust support less
     straight forward than it should be.

     Provide a new set of hrtimer_setup*() functions and convert the
     core code and a few usage sites of the less frequently used
     interfaces over.

     The bulk of the htimer_init() to hrtimer_setup() conversion is
     already prepared and scheduled for the next merge window.

   - Drivers:

       - Ensure that the global timekeeping clocksource is utilizing the
         cluster 0 timer on MIPS multi-cluster systems.

         Otherwise CPUs on different clusters use their cluster specific
         clocksource which is not guaranteed to be synchronized with
         other clusters.

       - Mostly boring cleanups, fixes, improvements and code movement"

* tag 'timers-core-2024-11-18' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (140 commits)
  posix-timers: Fix spurious warning on double enqueue versus do_exit()
  clocksource/drivers/arm_arch_timer: Use of_property_present() for non-boolean properties
  clocksource/drivers/gpx: Remove redundant casts
  clocksource/drivers/timer-ti-dm: Fix child node refcount handling
  dt-bindings: timer: actions,owl-timer: convert to YAML
  clocksource/drivers/ralink: Add Ralink System Tick Counter driver
  clocksource/drivers/mips-gic-timer: Always use cluster 0 counter as clocksource
  clocksource/drivers/timer-ti-dm: Don't fail probe if int not found
  clocksource/drivers:sp804: Make user selectable
  clocksource/drivers/dw_apb: Remove unused dw_apb_clockevent functions
  hrtimers: Delete hrtimer_init_on_stack()
  alarmtimer: Switch to use hrtimer_setup() and hrtimer_setup_on_stack()
  io_uring: Switch to use hrtimer_setup_on_stack()
  sched/idle: Switch to use hrtimer_setup_on_stack()
  hrtimers: Delete hrtimer_init_sleeper_on_stack()
  wait: Switch to use hrtimer_setup_sleeper_on_stack()
  timers: Switch to use hrtimer_setup_sleeper_on_stack()
  net: pktgen: Switch to use hrtimer_setup_sleeper_on_stack()
  futex: Switch to use hrtimer_setup_sleeper_on_stack()
  fs/aio: Switch to use hrtimer_setup_sleeper_on_stack()
  ...
2024-11-19 16:35:06 -08:00

615 lines
14 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/timerfd.c
*
* Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
*
*
* Thanks to Thomas Gleixner for code reviews and useful comments.
*
*/
#include <linux/alarmtimer.h>
#include <linux/file.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/time.h>
#include <linux/hrtimer.h>
#include <linux/anon_inodes.h>
#include <linux/timerfd.h>
#include <linux/syscalls.h>
#include <linux/compat.h>
#include <linux/rcupdate.h>
#include <linux/time_namespace.h>
struct timerfd_ctx {
union {
struct hrtimer tmr;
struct alarm alarm;
} t;
ktime_t tintv;
ktime_t moffs;
wait_queue_head_t wqh;
u64 ticks;
int clockid;
short unsigned expired;
short unsigned settime_flags; /* to show in fdinfo */
struct rcu_head rcu;
struct list_head clist;
spinlock_t cancel_lock;
bool might_cancel;
};
static LIST_HEAD(cancel_list);
static DEFINE_SPINLOCK(cancel_lock);
static inline bool isalarm(struct timerfd_ctx *ctx)
{
return ctx->clockid == CLOCK_REALTIME_ALARM ||
ctx->clockid == CLOCK_BOOTTIME_ALARM;
}
/*
* This gets called when the timer event triggers. We set the "expired"
* flag, but we do not re-arm the timer (in case it's necessary,
* tintv != 0) until the timer is accessed.
*/
static void timerfd_triggered(struct timerfd_ctx *ctx)
{
unsigned long flags;
spin_lock_irqsave(&ctx->wqh.lock, flags);
ctx->expired = 1;
ctx->ticks++;
wake_up_locked_poll(&ctx->wqh, EPOLLIN);
spin_unlock_irqrestore(&ctx->wqh.lock, flags);
}
static enum hrtimer_restart timerfd_tmrproc(struct hrtimer *htmr)
{
struct timerfd_ctx *ctx = container_of(htmr, struct timerfd_ctx,
t.tmr);
timerfd_triggered(ctx);
return HRTIMER_NORESTART;
}
static void timerfd_alarmproc(struct alarm *alarm, ktime_t now)
{
struct timerfd_ctx *ctx = container_of(alarm, struct timerfd_ctx,
t.alarm);
timerfd_triggered(ctx);
}
/*
* Called when the clock was set to cancel the timers in the cancel
* list. This will wake up processes waiting on these timers. The
* wake-up requires ctx->ticks to be non zero, therefore we increment
* it before calling wake_up_locked().
*/
void timerfd_clock_was_set(void)
{
ktime_t moffs = ktime_mono_to_real(0);
struct timerfd_ctx *ctx;
unsigned long flags;
rcu_read_lock();
list_for_each_entry_rcu(ctx, &cancel_list, clist) {
if (!ctx->might_cancel)
continue;
spin_lock_irqsave(&ctx->wqh.lock, flags);
if (ctx->moffs != moffs) {
ctx->moffs = KTIME_MAX;
ctx->ticks++;
wake_up_locked_poll(&ctx->wqh, EPOLLIN);
}
spin_unlock_irqrestore(&ctx->wqh.lock, flags);
}
rcu_read_unlock();
}
static void timerfd_resume_work(struct work_struct *work)
{
timerfd_clock_was_set();
}
static DECLARE_WORK(timerfd_work, timerfd_resume_work);
/*
* Invoked from timekeeping_resume(). Defer the actual update to work so
* timerfd_clock_was_set() runs in task context.
*/
void timerfd_resume(void)
{
schedule_work(&timerfd_work);
}
static void __timerfd_remove_cancel(struct timerfd_ctx *ctx)
{
if (ctx->might_cancel) {
ctx->might_cancel = false;
spin_lock(&cancel_lock);
list_del_rcu(&ctx->clist);
spin_unlock(&cancel_lock);
}
}
static void timerfd_remove_cancel(struct timerfd_ctx *ctx)
{
spin_lock(&ctx->cancel_lock);
__timerfd_remove_cancel(ctx);
spin_unlock(&ctx->cancel_lock);
}
static bool timerfd_canceled(struct timerfd_ctx *ctx)
{
if (!ctx->might_cancel || ctx->moffs != KTIME_MAX)
return false;
ctx->moffs = ktime_mono_to_real(0);
return true;
}
static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
{
spin_lock(&ctx->cancel_lock);
if ((ctx->clockid == CLOCK_REALTIME ||
ctx->clockid == CLOCK_REALTIME_ALARM) &&
(flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) {
if (!ctx->might_cancel) {
ctx->might_cancel = true;
spin_lock(&cancel_lock);
list_add_rcu(&ctx->clist, &cancel_list);
spin_unlock(&cancel_lock);
}
} else {
__timerfd_remove_cancel(ctx);
}
spin_unlock(&ctx->cancel_lock);
}
static ktime_t timerfd_get_remaining(struct timerfd_ctx *ctx)
{
ktime_t remaining;
if (isalarm(ctx))
remaining = alarm_expires_remaining(&ctx->t.alarm);
else
remaining = hrtimer_expires_remaining_adjusted(&ctx->t.tmr);
return remaining < 0 ? 0: remaining;
}
static int timerfd_setup(struct timerfd_ctx *ctx, int flags,
const struct itimerspec64 *ktmr)
{
enum hrtimer_mode htmode;
ktime_t texp;
int clockid = ctx->clockid;
htmode = (flags & TFD_TIMER_ABSTIME) ?
HRTIMER_MODE_ABS: HRTIMER_MODE_REL;
texp = timespec64_to_ktime(ktmr->it_value);
ctx->expired = 0;
ctx->ticks = 0;
ctx->tintv = timespec64_to_ktime(ktmr->it_interval);
if (isalarm(ctx)) {
alarm_init(&ctx->t.alarm,
ctx->clockid == CLOCK_REALTIME_ALARM ?
ALARM_REALTIME : ALARM_BOOTTIME,
timerfd_alarmproc);
} else {
hrtimer_init(&ctx->t.tmr, clockid, htmode);
hrtimer_set_expires(&ctx->t.tmr, texp);
ctx->t.tmr.function = timerfd_tmrproc;
}
if (texp != 0) {
if (flags & TFD_TIMER_ABSTIME)
texp = timens_ktime_to_host(clockid, texp);
if (isalarm(ctx)) {
if (flags & TFD_TIMER_ABSTIME)
alarm_start(&ctx->t.alarm, texp);
else
alarm_start_relative(&ctx->t.alarm, texp);
} else {
hrtimer_start(&ctx->t.tmr, texp, htmode);
}
if (timerfd_canceled(ctx))
return -ECANCELED;
}
ctx->settime_flags = flags & TFD_SETTIME_FLAGS;
return 0;
}
static int timerfd_release(struct inode *inode, struct file *file)
{
struct timerfd_ctx *ctx = file->private_data;
timerfd_remove_cancel(ctx);
if (isalarm(ctx))
alarm_cancel(&ctx->t.alarm);
else
hrtimer_cancel(&ctx->t.tmr);
kfree_rcu(ctx, rcu);
return 0;
}
static __poll_t timerfd_poll(struct file *file, poll_table *wait)
{
struct timerfd_ctx *ctx = file->private_data;
__poll_t events = 0;
unsigned long flags;
poll_wait(file, &ctx->wqh, wait);
spin_lock_irqsave(&ctx->wqh.lock, flags);
if (ctx->ticks)
events |= EPOLLIN;
spin_unlock_irqrestore(&ctx->wqh.lock, flags);
return events;
}
static ssize_t timerfd_read_iter(struct kiocb *iocb, struct iov_iter *to)
{
struct file *file = iocb->ki_filp;
struct timerfd_ctx *ctx = file->private_data;
ssize_t res;
u64 ticks = 0;
if (iov_iter_count(to) < sizeof(ticks))
return -EINVAL;
spin_lock_irq(&ctx->wqh.lock);
if (file->f_flags & O_NONBLOCK || iocb->ki_flags & IOCB_NOWAIT)
res = -EAGAIN;
else
res = wait_event_interruptible_locked_irq(ctx->wqh, ctx->ticks);
/*
* If clock has changed, we do not care about the
* ticks and we do not rearm the timer. Userspace must
* reevaluate anyway.
*/
if (timerfd_canceled(ctx)) {
ctx->ticks = 0;
ctx->expired = 0;
res = -ECANCELED;
}
if (ctx->ticks) {
ticks = ctx->ticks;
if (ctx->expired && ctx->tintv) {
/*
* If tintv != 0, this is a periodic timer that
* needs to be re-armed. We avoid doing it in the timer
* callback to avoid DoS attacks specifying a very
* short timer period.
*/
if (isalarm(ctx)) {
ticks += alarm_forward_now(
&ctx->t.alarm, ctx->tintv) - 1;
alarm_restart(&ctx->t.alarm);
} else {
ticks += hrtimer_forward_now(&ctx->t.tmr,
ctx->tintv) - 1;
hrtimer_restart(&ctx->t.tmr);
}
}
ctx->expired = 0;
ctx->ticks = 0;
}
spin_unlock_irq(&ctx->wqh.lock);
if (ticks) {
res = copy_to_iter(&ticks, sizeof(ticks), to);
if (!res)
res = -EFAULT;
}
return res;
}
#ifdef CONFIG_PROC_FS
static void timerfd_show(struct seq_file *m, struct file *file)
{
struct timerfd_ctx *ctx = file->private_data;
struct timespec64 value, interval;
spin_lock_irq(&ctx->wqh.lock);
value = ktime_to_timespec64(timerfd_get_remaining(ctx));
interval = ktime_to_timespec64(ctx->tintv);
spin_unlock_irq(&ctx->wqh.lock);
seq_printf(m,
"clockid: %d\n"
"ticks: %llu\n"
"settime flags: 0%o\n"
"it_value: (%llu, %llu)\n"
"it_interval: (%llu, %llu)\n",
ctx->clockid,
(unsigned long long)ctx->ticks,
ctx->settime_flags,
(unsigned long long)value.tv_sec,
(unsigned long long)value.tv_nsec,
(unsigned long long)interval.tv_sec,
(unsigned long long)interval.tv_nsec);
}
#else
#define timerfd_show NULL
#endif
#ifdef CONFIG_CHECKPOINT_RESTORE
static long timerfd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
struct timerfd_ctx *ctx = file->private_data;
int ret = 0;
switch (cmd) {
case TFD_IOC_SET_TICKS: {
u64 ticks;
if (copy_from_user(&ticks, (u64 __user *)arg, sizeof(ticks)))
return -EFAULT;
if (!ticks)
return -EINVAL;
spin_lock_irq(&ctx->wqh.lock);
if (!timerfd_canceled(ctx)) {
ctx->ticks = ticks;
wake_up_locked_poll(&ctx->wqh, EPOLLIN);
} else
ret = -ECANCELED;
spin_unlock_irq(&ctx->wqh.lock);
break;
}
default:
ret = -ENOTTY;
break;
}
return ret;
}
#else
#define timerfd_ioctl NULL
#endif
static const struct file_operations timerfd_fops = {
.release = timerfd_release,
.poll = timerfd_poll,
.read_iter = timerfd_read_iter,
.llseek = noop_llseek,
.show_fdinfo = timerfd_show,
.unlocked_ioctl = timerfd_ioctl,
};
SYSCALL_DEFINE2(timerfd_create, int, clockid, int, flags)
{
int ufd;
struct timerfd_ctx *ctx;
struct file *file;
/* Check the TFD_* constants for consistency. */
BUILD_BUG_ON(TFD_CLOEXEC != O_CLOEXEC);
BUILD_BUG_ON(TFD_NONBLOCK != O_NONBLOCK);
if ((flags & ~TFD_CREATE_FLAGS) ||
(clockid != CLOCK_MONOTONIC &&
clockid != CLOCK_REALTIME &&
clockid != CLOCK_REALTIME_ALARM &&
clockid != CLOCK_BOOTTIME &&
clockid != CLOCK_BOOTTIME_ALARM))
return -EINVAL;
if ((clockid == CLOCK_REALTIME_ALARM ||
clockid == CLOCK_BOOTTIME_ALARM) &&
!capable(CAP_WAKE_ALARM))
return -EPERM;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
init_waitqueue_head(&ctx->wqh);
spin_lock_init(&ctx->cancel_lock);
ctx->clockid = clockid;
if (isalarm(ctx))
alarm_init(&ctx->t.alarm,
ctx->clockid == CLOCK_REALTIME_ALARM ?
ALARM_REALTIME : ALARM_BOOTTIME,
timerfd_alarmproc);
else
hrtimer_init(&ctx->t.tmr, clockid, HRTIMER_MODE_ABS);
ctx->moffs = ktime_mono_to_real(0);
ufd = get_unused_fd_flags(flags & TFD_SHARED_FCNTL_FLAGS);
if (ufd < 0) {
kfree(ctx);
return ufd;
}
file = anon_inode_getfile("[timerfd]", &timerfd_fops, ctx,
O_RDWR | (flags & TFD_SHARED_FCNTL_FLAGS));
if (IS_ERR(file)) {
put_unused_fd(ufd);
kfree(ctx);
return PTR_ERR(file);
}
file->f_mode |= FMODE_NOWAIT;
fd_install(ufd, file);
return ufd;
}
static int do_timerfd_settime(int ufd, int flags,
const struct itimerspec64 *new,
struct itimerspec64 *old)
{
struct timerfd_ctx *ctx;
int ret;
if ((flags & ~TFD_SETTIME_FLAGS) ||
!itimerspec64_valid(new))
return -EINVAL;
CLASS(fd, f)(ufd);
if (fd_empty(f))
return -EBADF;
if (fd_file(f)->f_op != &timerfd_fops)
return -EINVAL;
ctx = fd_file(f)->private_data;
if (isalarm(ctx) && !capable(CAP_WAKE_ALARM))
return -EPERM;
timerfd_setup_cancel(ctx, flags);
/*
* We need to stop the existing timer before reprogramming
* it to the new values.
*/
for (;;) {
spin_lock_irq(&ctx->wqh.lock);
if (isalarm(ctx)) {
if (alarm_try_to_cancel(&ctx->t.alarm) >= 0)
break;
} else {
if (hrtimer_try_to_cancel(&ctx->t.tmr) >= 0)
break;
}
spin_unlock_irq(&ctx->wqh.lock);
if (isalarm(ctx))
hrtimer_cancel_wait_running(&ctx->t.alarm.timer);
else
hrtimer_cancel_wait_running(&ctx->t.tmr);
}
/*
* If the timer is expired and it's periodic, we need to advance it
* because the caller may want to know the previous expiration time.
* We do not update "ticks" and "expired" since the timer will be
* re-programmed again in the following timerfd_setup() call.
*/
if (ctx->expired && ctx->tintv) {
if (isalarm(ctx))
alarm_forward_now(&ctx->t.alarm, ctx->tintv);
else
hrtimer_forward_now(&ctx->t.tmr, ctx->tintv);
}
old->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx));
old->it_interval = ktime_to_timespec64(ctx->tintv);
/*
* Re-program the timer to the new value ...
*/
ret = timerfd_setup(ctx, flags, new);
spin_unlock_irq(&ctx->wqh.lock);
return ret;
}
static int do_timerfd_gettime(int ufd, struct itimerspec64 *t)
{
struct timerfd_ctx *ctx;
CLASS(fd, f)(ufd);
if (fd_empty(f))
return -EBADF;
if (fd_file(f)->f_op != &timerfd_fops)
return -EINVAL;
ctx = fd_file(f)->private_data;
spin_lock_irq(&ctx->wqh.lock);
if (ctx->expired && ctx->tintv) {
ctx->expired = 0;
if (isalarm(ctx)) {
ctx->ticks +=
alarm_forward_now(
&ctx->t.alarm, ctx->tintv) - 1;
alarm_restart(&ctx->t.alarm);
} else {
ctx->ticks +=
hrtimer_forward_now(&ctx->t.tmr, ctx->tintv)
- 1;
hrtimer_restart(&ctx->t.tmr);
}
}
t->it_value = ktime_to_timespec64(timerfd_get_remaining(ctx));
t->it_interval = ktime_to_timespec64(ctx->tintv);
spin_unlock_irq(&ctx->wqh.lock);
return 0;
}
SYSCALL_DEFINE4(timerfd_settime, int, ufd, int, flags,
const struct __kernel_itimerspec __user *, utmr,
struct __kernel_itimerspec __user *, otmr)
{
struct itimerspec64 new, old;
int ret;
if (get_itimerspec64(&new, utmr))
return -EFAULT;
ret = do_timerfd_settime(ufd, flags, &new, &old);
if (ret)
return ret;
if (otmr && put_itimerspec64(&old, otmr))
return -EFAULT;
return ret;
}
SYSCALL_DEFINE2(timerfd_gettime, int, ufd, struct __kernel_itimerspec __user *, otmr)
{
struct itimerspec64 kotmr;
int ret = do_timerfd_gettime(ufd, &kotmr);
if (ret)
return ret;
return put_itimerspec64(&kotmr, otmr) ? -EFAULT : 0;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(timerfd_settime32, int, ufd, int, flags,
const struct old_itimerspec32 __user *, utmr,
struct old_itimerspec32 __user *, otmr)
{
struct itimerspec64 new, old;
int ret;
if (get_old_itimerspec32(&new, utmr))
return -EFAULT;
ret = do_timerfd_settime(ufd, flags, &new, &old);
if (ret)
return ret;
if (otmr && put_old_itimerspec32(&old, otmr))
return -EFAULT;
return ret;
}
SYSCALL_DEFINE2(timerfd_gettime32, int, ufd,
struct old_itimerspec32 __user *, otmr)
{
struct itimerspec64 kotmr;
int ret = do_timerfd_gettime(ufd, &kotmr);
if (ret)
return ret;
return put_old_itimerspec32(&kotmr, otmr) ? -EFAULT : 0;
}
#endif