linux-stable/fs/unicode/mkutf8data.c
Linus Torvalds 060fc106b6 unicode updates
This update includes:
 
   - A patch by Thomas Weißschuh constifying a read-only struct.
 
   - A patch by André Almeida fixing the error path of unicode_load,
   which might trigger a kernel oops if it fails to find the unicode
   module.
 
   - One documentation fix by Gan Jie, updating a filename in the README.
 
   - A patch by André Almeida adding the link of my tree to MAINTAINERS.
 
 All but the MAINTAINERS patch have been sitting on my tree and in
 linux-next since early in the 6.12 cycle.
 
 Signed-off-by: Gabriel Krisman Bertazi <krisman@suse.de>
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQS3XO7QfvpFoONBhH1OwQgI3t8RJgUCZ0D4JwAKCRBOwQgI3t8R
 JmjZAP988O9eB4ITF6KHKsHyY3pOhxSRXU5jpr78v7ofDDuGwAD/UBJZyF35wgJz
 S2q295kCAEP8bUKxj6RJtyMyQnamQg8=
 =irw2
 -----END PGP SIGNATURE-----

Merge tag 'unicode-next-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/krisman/unicode

Pull unicode updates from Gabriel Krisman Bertazi:

 - constify a read-only struct (Thomas Weißschuh)

 - fix the error path of unicode_load, avoiding a possible kernel oops
   if it fails to find the unicode module (André Almeida)

 - documentation fix, updating a filename in the README (Gan Jie)

 - add the link of my tree to MAINTAINERS (André Almeida)

* tag 'unicode-next-6.13' of git://git.kernel.org/pub/scm/linux/kernel/git/krisman/unicode:
  MAINTAINERS: Add Unicode tree
  unicode: change the reference of database file
  unicode: Fix utf8_load() error path
  unicode: constify utf8 data table
2024-11-22 20:50:55 -08:00

3365 lines
78 KiB
C

/*
* Copyright (c) 2014 SGI.
* All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
/* Generator for a compact trie for unicode normalization */
#include <sys/types.h>
#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <assert.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
/* Default names of the in- and output files. */
#define AGE_NAME "DerivedAge.txt"
#define CCC_NAME "DerivedCombiningClass.txt"
#define PROP_NAME "DerivedCoreProperties.txt"
#define DATA_NAME "UnicodeData.txt"
#define FOLD_NAME "CaseFolding.txt"
#define NORM_NAME "NormalizationCorrections.txt"
#define TEST_NAME "NormalizationTest.txt"
#define UTF8_NAME "utf8data.c"
const char *age_name = AGE_NAME;
const char *ccc_name = CCC_NAME;
const char *prop_name = PROP_NAME;
const char *data_name = DATA_NAME;
const char *fold_name = FOLD_NAME;
const char *norm_name = NORM_NAME;
const char *test_name = TEST_NAME;
const char *utf8_name = UTF8_NAME;
int verbose = 0;
/* An arbitrary line size limit on input lines. */
#define LINESIZE 1024
char line[LINESIZE];
char buf0[LINESIZE];
char buf1[LINESIZE];
char buf2[LINESIZE];
char buf3[LINESIZE];
const char *argv0;
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
/* ------------------------------------------------------------------ */
/*
* Unicode version numbers consist of three parts: major, minor, and a
* revision. These numbers are packed into an unsigned int to obtain
* a single version number.
*
* To save space in the generated trie, the unicode version is not
* stored directly, instead we calculate a generation number from the
* unicode versions seen in the DerivedAge file, and use that as an
* index into a table of unicode versions.
*/
#define UNICODE_MAJ_SHIFT (16)
#define UNICODE_MIN_SHIFT (8)
#define UNICODE_MAJ_MAX ((unsigned short)-1)
#define UNICODE_MIN_MAX ((unsigned char)-1)
#define UNICODE_REV_MAX ((unsigned char)-1)
#define UNICODE_AGE(MAJ,MIN,REV) \
(((unsigned int)(MAJ) << UNICODE_MAJ_SHIFT) | \
((unsigned int)(MIN) << UNICODE_MIN_SHIFT) | \
((unsigned int)(REV)))
unsigned int *ages;
int ages_count;
unsigned int unicode_maxage;
static int age_valid(unsigned int major, unsigned int minor,
unsigned int revision)
{
if (major > UNICODE_MAJ_MAX)
return 0;
if (minor > UNICODE_MIN_MAX)
return 0;
if (revision > UNICODE_REV_MAX)
return 0;
return 1;
}
/* ------------------------------------------------------------------ */
/*
* utf8trie_t
*
* A compact binary tree, used to decode UTF-8 characters.
*
* Internal nodes are one byte for the node itself, and up to three
* bytes for an offset into the tree. The first byte contains the
* following information:
* NEXTBYTE - flag - advance to next byte if set
* BITNUM - 3 bit field - the bit number to tested
* OFFLEN - 2 bit field - number of bytes in the offset
* if offlen == 0 (non-branching node)
* RIGHTPATH - 1 bit field - set if the following node is for the
* right-hand path (tested bit is set)
* TRIENODE - 1 bit field - set if the following node is an internal
* node, otherwise it is a leaf node
* if offlen != 0 (branching node)
* LEFTNODE - 1 bit field - set if the left-hand node is internal
* RIGHTNODE - 1 bit field - set if the right-hand node is internal
*
* Due to the way utf8 works, there cannot be branching nodes with
* NEXTBYTE set, and moreover those nodes always have a righthand
* descendant.
*/
typedef unsigned char utf8trie_t;
#define BITNUM 0x07
#define NEXTBYTE 0x08
#define OFFLEN 0x30
#define OFFLEN_SHIFT 4
#define RIGHTPATH 0x40
#define TRIENODE 0x80
#define RIGHTNODE 0x40
#define LEFTNODE 0x80
/*
* utf8leaf_t
*
* The leaves of the trie are embedded in the trie, and so the same
* underlying datatype, unsigned char.
*
* leaf[0]: The unicode version, stored as a generation number that is
* an index into utf8agetab[]. With this we can filter code
* points based on the unicode version in which they were
* defined. The CCC of a non-defined code point is 0.
* leaf[1]: Canonical Combining Class. During normalization, we need
* to do a stable sort into ascending order of all characters
* with a non-zero CCC that occur between two characters with
* a CCC of 0, or at the begin or end of a string.
* The unicode standard guarantees that all CCC values are
* between 0 and 254 inclusive, which leaves 255 available as
* a special value.
* Code points with CCC 0 are known as stoppers.
* leaf[2]: Decomposition. If leaf[1] == 255, then leaf[2] is the
* start of a NUL-terminated string that is the decomposition
* of the character.
* The CCC of a decomposable character is the same as the CCC
* of the first character of its decomposition.
* Some characters decompose as the empty string: these are
* characters with the Default_Ignorable_Code_Point property.
* These do affect normalization, as they all have CCC 0.
*
* The decompositions in the trie have been fully expanded.
*
* Casefolding, if applicable, is also done using decompositions.
*/
typedef unsigned char utf8leaf_t;
#define LEAF_GEN(LEAF) ((LEAF)[0])
#define LEAF_CCC(LEAF) ((LEAF)[1])
#define LEAF_STR(LEAF) ((const char*)((LEAF) + 2))
#define MAXGEN (255)
#define MINCCC (0)
#define MAXCCC (254)
#define STOPPER (0)
#define DECOMPOSE (255)
#define HANGUL ((char)(255))
#define UTF8HANGULLEAF (12)
struct tree;
static utf8leaf_t *utf8nlookup(struct tree *, unsigned char *,
const char *, size_t);
static utf8leaf_t *utf8lookup(struct tree *, unsigned char *, const char *);
unsigned char *utf8data;
size_t utf8data_size;
utf8trie_t *nfdi;
utf8trie_t *nfdicf;
/* ------------------------------------------------------------------ */
/*
* UTF8 valid ranges.
*
* The UTF-8 encoding spreads the bits of a 32bit word over several
* bytes. This table gives the ranges that can be held and how they'd
* be represented.
*
* 0x00000000 0x0000007F: 0xxxxxxx
* 0x00000000 0x000007FF: 110xxxxx 10xxxxxx
* 0x00000000 0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
* 0x00000000 0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
* 0x00000000 0x03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
* 0x00000000 0x7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
*
* There is an additional requirement on UTF-8, in that only the
* shortest representation of a 32bit value is to be used. A decoder
* must not decode sequences that do not satisfy this requirement.
* Thus the allowed ranges have a lower bound.
*
* 0x00000000 0x0000007F: 0xxxxxxx
* 0x00000080 0x000007FF: 110xxxxx 10xxxxxx
* 0x00000800 0x0000FFFF: 1110xxxx 10xxxxxx 10xxxxxx
* 0x00010000 0x001FFFFF: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
* 0x00200000 0x03FFFFFF: 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
* 0x04000000 0x7FFFFFFF: 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx
*
* Actual unicode characters are limited to the range 0x0 - 0x10FFFF,
* 17 planes of 65536 values. This limits the sequences actually seen
* even more, to just the following.
*
* 0 - 0x7f: 0 0x7f
* 0x80 - 0x7ff: 0xc2 0x80 0xdf 0xbf
* 0x800 - 0xffff: 0xe0 0xa0 0x80 0xef 0xbf 0xbf
* 0x10000 - 0x10ffff: 0xf0 0x90 0x80 0x80 0xf4 0x8f 0xbf 0xbf
*
* Even within those ranges not all values are allowed: the surrogates
* 0xd800 - 0xdfff should never be seen.
*
* Note that the longest sequence seen with valid usage is 4 bytes,
* the same a single UTF-32 character. This makes the UTF-8
* representation of Unicode strictly smaller than UTF-32.
*
* The shortest sequence requirement was introduced by:
* Corrigendum #1: UTF-8 Shortest Form
* It can be found here:
* http://www.unicode.org/versions/corrigendum1.html
*
*/
#define UTF8_2_BITS 0xC0
#define UTF8_3_BITS 0xE0
#define UTF8_4_BITS 0xF0
#define UTF8_N_BITS 0x80
#define UTF8_2_MASK 0xE0
#define UTF8_3_MASK 0xF0
#define UTF8_4_MASK 0xF8
#define UTF8_N_MASK 0xC0
#define UTF8_V_MASK 0x3F
#define UTF8_V_SHIFT 6
static int utf8encode(char *str, unsigned int val)
{
int len;
if (val < 0x80) {
str[0] = val;
len = 1;
} else if (val < 0x800) {
str[1] = val & UTF8_V_MASK;
str[1] |= UTF8_N_BITS;
val >>= UTF8_V_SHIFT;
str[0] = val;
str[0] |= UTF8_2_BITS;
len = 2;
} else if (val < 0x10000) {
str[2] = val & UTF8_V_MASK;
str[2] |= UTF8_N_BITS;
val >>= UTF8_V_SHIFT;
str[1] = val & UTF8_V_MASK;
str[1] |= UTF8_N_BITS;
val >>= UTF8_V_SHIFT;
str[0] = val;
str[0] |= UTF8_3_BITS;
len = 3;
} else if (val < 0x110000) {
str[3] = val & UTF8_V_MASK;
str[3] |= UTF8_N_BITS;
val >>= UTF8_V_SHIFT;
str[2] = val & UTF8_V_MASK;
str[2] |= UTF8_N_BITS;
val >>= UTF8_V_SHIFT;
str[1] = val & UTF8_V_MASK;
str[1] |= UTF8_N_BITS;
val >>= UTF8_V_SHIFT;
str[0] = val;
str[0] |= UTF8_4_BITS;
len = 4;
} else {
printf("%#x: illegal val\n", val);
len = 0;
}
return len;
}
static unsigned int utf8decode(const char *str)
{
const unsigned char *s = (const unsigned char*)str;
unsigned int unichar = 0;
if (*s < 0x80) {
unichar = *s;
} else if (*s < UTF8_3_BITS) {
unichar = *s++ & 0x1F;
unichar <<= UTF8_V_SHIFT;
unichar |= *s & 0x3F;
} else if (*s < UTF8_4_BITS) {
unichar = *s++ & 0x0F;
unichar <<= UTF8_V_SHIFT;
unichar |= *s++ & 0x3F;
unichar <<= UTF8_V_SHIFT;
unichar |= *s & 0x3F;
} else {
unichar = *s++ & 0x0F;
unichar <<= UTF8_V_SHIFT;
unichar |= *s++ & 0x3F;
unichar <<= UTF8_V_SHIFT;
unichar |= *s++ & 0x3F;
unichar <<= UTF8_V_SHIFT;
unichar |= *s & 0x3F;
}
return unichar;
}
static int utf32valid(unsigned int unichar)
{
return unichar < 0x110000;
}
#define HANGUL_SYLLABLE(U) ((U) >= 0xAC00 && (U) <= 0xD7A3)
#define NODE 1
#define LEAF 0
struct tree {
void *root;
int childnode;
const char *type;
unsigned int maxage;
struct tree *next;
int (*leaf_equal)(void *, void *);
void (*leaf_print)(void *, int);
int (*leaf_mark)(void *);
int (*leaf_size)(void *);
int *(*leaf_index)(struct tree *, void *);
unsigned char *(*leaf_emit)(void *, unsigned char *);
int leafindex[0x110000];
int index;
};
struct node {
int index;
int offset;
int mark;
int size;
struct node *parent;
void *left;
void *right;
unsigned char bitnum;
unsigned char nextbyte;
unsigned char leftnode;
unsigned char rightnode;
unsigned int keybits;
unsigned int keymask;
};
/*
* Example lookup function for a tree.
*/
static void *lookup(struct tree *tree, const char *key)
{
struct node *node;
void *leaf = NULL;
node = tree->root;
while (!leaf && node) {
if (node->nextbyte)
key++;
if (*key & (1 << (node->bitnum & 7))) {
/* Right leg */
if (node->rightnode == NODE) {
node = node->right;
} else if (node->rightnode == LEAF) {
leaf = node->right;
} else {
node = NULL;
}
} else {
/* Left leg */
if (node->leftnode == NODE) {
node = node->left;
} else if (node->leftnode == LEAF) {
leaf = node->left;
} else {
node = NULL;
}
}
}
return leaf;
}
/*
* A simple non-recursive tree walker: keep track of visits to the
* left and right branches in the leftmask and rightmask.
*/
static void tree_walk(struct tree *tree)
{
struct node *node;
unsigned int leftmask;
unsigned int rightmask;
unsigned int bitmask;
int indent = 1;
int nodes, singletons, leaves;
nodes = singletons = leaves = 0;
printf("%s_%x root %p\n", tree->type, tree->maxage, tree->root);
if (tree->childnode == LEAF) {
assert(tree->root);
tree->leaf_print(tree->root, indent);
leaves = 1;
} else {
assert(tree->childnode == NODE);
node = tree->root;
leftmask = rightmask = 0;
while (node) {
printf("%*snode @ %p bitnum %d nextbyte %d"
" left %p right %p mask %x bits %x\n",
indent, "", node,
node->bitnum, node->nextbyte,
node->left, node->right,
node->keymask, node->keybits);
nodes += 1;
if (!(node->left && node->right))
singletons += 1;
while (node) {
bitmask = 1 << node->bitnum;
if ((leftmask & bitmask) == 0) {
leftmask |= bitmask;
if (node->leftnode == LEAF) {
assert(node->left);
tree->leaf_print(node->left,
indent+1);
leaves += 1;
} else if (node->left) {
assert(node->leftnode == NODE);
indent += 1;
node = node->left;
break;
}
}
if ((rightmask & bitmask) == 0) {
rightmask |= bitmask;
if (node->rightnode == LEAF) {
assert(node->right);
tree->leaf_print(node->right,
indent+1);
leaves += 1;
} else if (node->right) {
assert(node->rightnode == NODE);
indent += 1;
node = node->right;
break;
}
}
leftmask &= ~bitmask;
rightmask &= ~bitmask;
node = node->parent;
indent -= 1;
}
}
}
printf("nodes %d leaves %d singletons %d\n",
nodes, leaves, singletons);
}
/*
* Allocate an initialize a new internal node.
*/
static struct node *alloc_node(struct node *parent)
{
struct node *node;
int bitnum;
node = malloc(sizeof(*node));
node->left = node->right = NULL;
node->parent = parent;
node->leftnode = NODE;
node->rightnode = NODE;
node->keybits = 0;
node->keymask = 0;
node->mark = 0;
node->index = 0;
node->offset = -1;
node->size = 4;
if (node->parent) {
bitnum = parent->bitnum;
if ((bitnum & 7) == 0) {
node->bitnum = bitnum + 7 + 8;
node->nextbyte = 1;
} else {
node->bitnum = bitnum - 1;
node->nextbyte = 0;
}
} else {
node->bitnum = 7;
node->nextbyte = 0;
}
return node;
}
/*
* Insert a new leaf into the tree, and collapse any subtrees that are
* fully populated and end in identical leaves. A nextbyte tagged
* internal node will not be removed to preserve the tree's integrity.
* Note that due to the structure of utf8, no nextbyte tagged node
* will be a candidate for removal.
*/
static int insert(struct tree *tree, char *key, int keylen, void *leaf)
{
struct node *node;
struct node *parent;
void **cursor;
int keybits;
assert(keylen >= 1 && keylen <= 4);
node = NULL;
cursor = &tree->root;
keybits = 8 * keylen;
/* Insert, creating path along the way. */
while (keybits) {
if (!*cursor)
*cursor = alloc_node(node);
node = *cursor;
if (node->nextbyte)
key++;
if (*key & (1 << (node->bitnum & 7)))
cursor = &node->right;
else
cursor = &node->left;
keybits--;
}
*cursor = leaf;
/* Merge subtrees if possible. */
while (node) {
if (*key & (1 << (node->bitnum & 7)))
node->rightnode = LEAF;
else
node->leftnode = LEAF;
if (node->nextbyte)
break;
if (node->leftnode == NODE || node->rightnode == NODE)
break;
assert(node->left);
assert(node->right);
/* Compare */
if (! tree->leaf_equal(node->left, node->right))
break;
/* Keep left, drop right leaf. */
leaf = node->left;
/* Check in parent */
parent = node->parent;
if (!parent) {
/* root of tree! */
tree->root = leaf;
tree->childnode = LEAF;
} else if (parent->left == node) {
parent->left = leaf;
parent->leftnode = LEAF;
if (parent->right) {
parent->keymask = 0;
parent->keybits = 0;
} else {
parent->keymask |= (1 << node->bitnum);
}
} else if (parent->right == node) {
parent->right = leaf;
parent->rightnode = LEAF;
if (parent->left) {
parent->keymask = 0;
parent->keybits = 0;
} else {
parent->keymask |= (1 << node->bitnum);
parent->keybits |= (1 << node->bitnum);
}
} else {
/* internal tree error */
assert(0);
}
free(node);
node = parent;
}
/* Propagate keymasks up along singleton chains. */
while (node) {
parent = node->parent;
if (!parent)
break;
/* Nix the mask for parents with two children. */
if (node->keymask == 0) {
parent->keymask = 0;
parent->keybits = 0;
} else if (parent->left && parent->right) {
parent->keymask = 0;
parent->keybits = 0;
} else {
assert((parent->keymask & node->keymask) == 0);
parent->keymask |= node->keymask;
parent->keymask |= (1 << parent->bitnum);
parent->keybits |= node->keybits;
if (parent->right)
parent->keybits |= (1 << parent->bitnum);
}
node = parent;
}
return 0;
}
/*
* Prune internal nodes.
*
* Fully populated subtrees that end at the same leaf have already
* been collapsed. There are still internal nodes that have for both
* their left and right branches a sequence of singletons that make
* identical choices and end in identical leaves. The keymask and
* keybits collected in the nodes describe the choices made in these
* singleton chains. When they are identical for the left and right
* branch of a node, and the two leaves comare identical, the node in
* question can be removed.
*
* Note that nodes with the nextbyte tag set will not be removed by
* this to ensure tree integrity. Note as well that the structure of
* utf8 ensures that these nodes would not have been candidates for
* removal in any case.
*/
static void prune(struct tree *tree)
{
struct node *node;
struct node *left;
struct node *right;
struct node *parent;
void *leftleaf;
void *rightleaf;
unsigned int leftmask;
unsigned int rightmask;
unsigned int bitmask;
int count;
if (verbose > 0)
printf("Pruning %s_%x\n", tree->type, tree->maxage);
count = 0;
if (tree->childnode == LEAF)
return;
if (!tree->root)
return;
leftmask = rightmask = 0;
node = tree->root;
while (node) {
if (node->nextbyte)
goto advance;
if (node->leftnode == LEAF)
goto advance;
if (node->rightnode == LEAF)
goto advance;
if (!node->left)
goto advance;
if (!node->right)
goto advance;
left = node->left;
right = node->right;
if (left->keymask == 0)
goto advance;
if (right->keymask == 0)
goto advance;
if (left->keymask != right->keymask)
goto advance;
if (left->keybits != right->keybits)
goto advance;
leftleaf = NULL;
while (!leftleaf) {
assert(left->left || left->right);
if (left->leftnode == LEAF)
leftleaf = left->left;
else if (left->rightnode == LEAF)
leftleaf = left->right;
else if (left->left)
left = left->left;
else if (left->right)
left = left->right;
else
assert(0);
}
rightleaf = NULL;
while (!rightleaf) {
assert(right->left || right->right);
if (right->leftnode == LEAF)
rightleaf = right->left;
else if (right->rightnode == LEAF)
rightleaf = right->right;
else if (right->left)
right = right->left;
else if (right->right)
right = right->right;
else
assert(0);
}
if (! tree->leaf_equal(leftleaf, rightleaf))
goto advance;
/*
* This node has identical singleton-only subtrees.
* Remove it.
*/
parent = node->parent;
left = node->left;
right = node->right;
if (parent->left == node)
parent->left = left;
else if (parent->right == node)
parent->right = left;
else
assert(0);
left->parent = parent;
left->keymask |= (1 << node->bitnum);
node->left = NULL;
while (node) {
bitmask = 1 << node->bitnum;
leftmask &= ~bitmask;
rightmask &= ~bitmask;
if (node->leftnode == NODE && node->left) {
left = node->left;
free(node);
count++;
node = left;
} else if (node->rightnode == NODE && node->right) {
right = node->right;
free(node);
count++;
node = right;
} else {
node = NULL;
}
}
/* Propagate keymasks up along singleton chains. */
node = parent;
/* Force re-check */
bitmask = 1 << node->bitnum;
leftmask &= ~bitmask;
rightmask &= ~bitmask;
for (;;) {
if (node->left && node->right)
break;
if (node->left) {
left = node->left;
node->keymask |= left->keymask;
node->keybits |= left->keybits;
}
if (node->right) {
right = node->right;
node->keymask |= right->keymask;
node->keybits |= right->keybits;
}
node->keymask |= (1 << node->bitnum);
node = node->parent;
/* Force re-check */
bitmask = 1 << node->bitnum;
leftmask &= ~bitmask;
rightmask &= ~bitmask;
}
advance:
bitmask = 1 << node->bitnum;
if ((leftmask & bitmask) == 0 &&
node->leftnode == NODE &&
node->left) {
leftmask |= bitmask;
node = node->left;
} else if ((rightmask & bitmask) == 0 &&
node->rightnode == NODE &&
node->right) {
rightmask |= bitmask;
node = node->right;
} else {
leftmask &= ~bitmask;
rightmask &= ~bitmask;
node = node->parent;
}
}
if (verbose > 0)
printf("Pruned %d nodes\n", count);
}
/*
* Mark the nodes in the tree that lead to leaves that must be
* emitted.
*/
static void mark_nodes(struct tree *tree)
{
struct node *node;
struct node *n;
unsigned int leftmask;
unsigned int rightmask;
unsigned int bitmask;
int marked;
marked = 0;
if (verbose > 0)
printf("Marking %s_%x\n", tree->type, tree->maxage);
if (tree->childnode == LEAF)
goto done;
assert(tree->childnode == NODE);
node = tree->root;
leftmask = rightmask = 0;
while (node) {
bitmask = 1 << node->bitnum;
if ((leftmask & bitmask) == 0) {
leftmask |= bitmask;
if (node->leftnode == LEAF) {
assert(node->left);
if (tree->leaf_mark(node->left)) {
n = node;
while (n && !n->mark) {
marked++;
n->mark = 1;
n = n->parent;
}
}
} else if (node->left) {
assert(node->leftnode == NODE);
node = node->left;
continue;
}
}
if ((rightmask & bitmask) == 0) {
rightmask |= bitmask;
if (node->rightnode == LEAF) {
assert(node->right);
if (tree->leaf_mark(node->right)) {
n = node;
while (n && !n->mark) {
marked++;
n->mark = 1;
n = n->parent;
}
}
} else if (node->right) {
assert(node->rightnode == NODE);
node = node->right;
continue;
}
}
leftmask &= ~bitmask;
rightmask &= ~bitmask;
node = node->parent;
}
/* second pass: left siblings and singletons */
assert(tree->childnode == NODE);
node = tree->root;
leftmask = rightmask = 0;
while (node) {
bitmask = 1 << node->bitnum;
if ((leftmask & bitmask) == 0) {
leftmask |= bitmask;
if (node->leftnode == LEAF) {
assert(node->left);
if (tree->leaf_mark(node->left)) {
n = node;
while (n && !n->mark) {
marked++;
n->mark = 1;
n = n->parent;
}
}
} else if (node->left) {
assert(node->leftnode == NODE);
node = node->left;
if (!node->mark && node->parent->mark) {
marked++;
node->mark = 1;
}
continue;
}
}
if ((rightmask & bitmask) == 0) {
rightmask |= bitmask;
if (node->rightnode == LEAF) {
assert(node->right);
if (tree->leaf_mark(node->right)) {
n = node;
while (n && !n->mark) {
marked++;
n->mark = 1;
n = n->parent;
}
}
} else if (node->right) {
assert(node->rightnode == NODE);
node = node->right;
if (!node->mark && node->parent->mark &&
!node->parent->left) {
marked++;
node->mark = 1;
}
continue;
}
}
leftmask &= ~bitmask;
rightmask &= ~bitmask;
node = node->parent;
}
done:
if (verbose > 0)
printf("Marked %d nodes\n", marked);
}
/*
* Compute the index of each node and leaf, which is the offset in the
* emitted trie. These values must be pre-computed because relative
* offsets between nodes are used to navigate the tree.
*/
static int index_nodes(struct tree *tree, int index)
{
struct node *node;
unsigned int leftmask;
unsigned int rightmask;
unsigned int bitmask;
int count;
int indent;
/* Align to a cache line (or half a cache line?). */
while (index % 64)
index++;
tree->index = index;
indent = 1;
count = 0;
if (verbose > 0)
printf("Indexing %s_%x: %d\n", tree->type, tree->maxage, index);
if (tree->childnode == LEAF) {
index += tree->leaf_size(tree->root);
goto done;
}
assert(tree->childnode == NODE);
node = tree->root;
leftmask = rightmask = 0;
while (node) {
if (!node->mark)
goto skip;
count++;
if (node->index != index)
node->index = index;
index += node->size;
skip:
while (node) {
bitmask = 1 << node->bitnum;
if (node->mark && (leftmask & bitmask) == 0) {
leftmask |= bitmask;
if (node->leftnode == LEAF) {
assert(node->left);
*tree->leaf_index(tree, node->left) =
index;
index += tree->leaf_size(node->left);
count++;
} else if (node->left) {
assert(node->leftnode == NODE);
indent += 1;
node = node->left;
break;
}
}
if (node->mark && (rightmask & bitmask) == 0) {
rightmask |= bitmask;
if (node->rightnode == LEAF) {
assert(node->right);
*tree->leaf_index(tree, node->right) = index;
index += tree->leaf_size(node->right);
count++;
} else if (node->right) {
assert(node->rightnode == NODE);
indent += 1;
node = node->right;
break;
}
}
leftmask &= ~bitmask;
rightmask &= ~bitmask;
node = node->parent;
indent -= 1;
}
}
done:
/* Round up to a multiple of 16 */
while (index % 16)
index++;
if (verbose > 0)
printf("Final index %d\n", index);
return index;
}
/*
* Mark the nodes in a subtree, helper for size_nodes().
*/
static int mark_subtree(struct node *node)
{
int changed;
if (!node || node->mark)
return 0;
node->mark = 1;
node->index = node->parent->index;
changed = 1;
if (node->leftnode == NODE)
changed += mark_subtree(node->left);
if (node->rightnode == NODE)
changed += mark_subtree(node->right);
return changed;
}
/*
* Compute the size of nodes and leaves. We start by assuming that
* each node needs to store a three-byte offset. The indexes of the
* nodes are calculated based on that, and then this function is
* called to see if the sizes of some nodes can be reduced. This is
* repeated until no more changes are seen.
*/
static int size_nodes(struct tree *tree)
{
struct tree *next;
struct node *node;
struct node *right;
struct node *n;
unsigned int leftmask;
unsigned int rightmask;
unsigned int bitmask;
unsigned int pathbits;
unsigned int pathmask;
unsigned int nbit;
int changed;
int offset;
int size;
int indent;
indent = 1;
changed = 0;
size = 0;
if (verbose > 0)
printf("Sizing %s_%x\n", tree->type, tree->maxage);
if (tree->childnode == LEAF)
goto done;
assert(tree->childnode == NODE);
pathbits = 0;
pathmask = 0;
node = tree->root;
leftmask = rightmask = 0;
while (node) {
if (!node->mark)
goto skip;
offset = 0;
if (!node->left || !node->right) {
size = 1;
} else {
if (node->rightnode == NODE) {
/*
* If the right node is not marked,
* look for a corresponding node in
* the next tree. Such a node need
* not exist.
*/
right = node->right;
next = tree->next;
while (!right->mark) {
assert(next);
n = next->root;
while (n->bitnum != node->bitnum) {
nbit = 1 << n->bitnum;
if (!(pathmask & nbit))
break;
if (pathbits & nbit) {
if (n->rightnode == LEAF)
break;
n = n->right;
} else {
if (n->leftnode == LEAF)
break;
n = n->left;
}
}
if (n->bitnum != node->bitnum)
break;
n = n->right;
right = n;
next = next->next;
}
/* Make sure the right node is marked. */
if (!right->mark)
changed += mark_subtree(right);
offset = right->index - node->index;
} else {
offset = *tree->leaf_index(tree, node->right);
offset -= node->index;
}
assert(offset >= 0);
assert(offset <= 0xffffff);
if (offset <= 0xff) {
size = 2;
} else if (offset <= 0xffff) {
size = 3;
} else { /* offset <= 0xffffff */
size = 4;
}
}
if (node->size != size || node->offset != offset) {
node->size = size;
node->offset = offset;
changed++;
}
skip:
while (node) {
bitmask = 1 << node->bitnum;
pathmask |= bitmask;
if (node->mark && (leftmask & bitmask) == 0) {
leftmask |= bitmask;
if (node->leftnode == LEAF) {
assert(node->left);
} else if (node->left) {
assert(node->leftnode == NODE);
indent += 1;
node = node->left;
break;
}
}
if (node->mark && (rightmask & bitmask) == 0) {
rightmask |= bitmask;
pathbits |= bitmask;
if (node->rightnode == LEAF) {
assert(node->right);
} else if (node->right) {
assert(node->rightnode == NODE);
indent += 1;
node = node->right;
break;
}
}
leftmask &= ~bitmask;
rightmask &= ~bitmask;
pathmask &= ~bitmask;
pathbits &= ~bitmask;
node = node->parent;
indent -= 1;
}
}
done:
if (verbose > 0)
printf("Found %d changes\n", changed);
return changed;
}
/*
* Emit a trie for the given tree into the data array.
*/
static void emit(struct tree *tree, unsigned char *data)
{
struct node *node;
unsigned int leftmask;
unsigned int rightmask;
unsigned int bitmask;
int offlen;
int offset;
int index;
int indent;
int size;
int bytes;
int leaves;
int nodes[4];
unsigned char byte;
nodes[0] = nodes[1] = nodes[2] = nodes[3] = 0;
leaves = 0;
bytes = 0;
index = tree->index;
data += index;
indent = 1;
if (verbose > 0)
printf("Emitting %s_%x\n", tree->type, tree->maxage);
if (tree->childnode == LEAF) {
assert(tree->root);
tree->leaf_emit(tree->root, data);
size = tree->leaf_size(tree->root);
index += size;
leaves++;
goto done;
}
assert(tree->childnode == NODE);
node = tree->root;
leftmask = rightmask = 0;
while (node) {
if (!node->mark)
goto skip;
assert(node->offset != -1);
assert(node->index == index);
byte = 0;
if (node->nextbyte)
byte |= NEXTBYTE;
byte |= (node->bitnum & BITNUM);
if (node->left && node->right) {
if (node->leftnode == NODE)
byte |= LEFTNODE;
if (node->rightnode == NODE)
byte |= RIGHTNODE;
if (node->offset <= 0xff)
offlen = 1;
else if (node->offset <= 0xffff)
offlen = 2;
else
offlen = 3;
nodes[offlen]++;
offset = node->offset;
byte |= offlen << OFFLEN_SHIFT;
*data++ = byte;
index++;
while (offlen--) {
*data++ = offset & 0xff;
index++;
offset >>= 8;
}
} else if (node->left) {
if (node->leftnode == NODE)
byte |= TRIENODE;
nodes[0]++;
*data++ = byte;
index++;
} else if (node->right) {
byte |= RIGHTNODE;
if (node->rightnode == NODE)
byte |= TRIENODE;
nodes[0]++;
*data++ = byte;
index++;
} else {
assert(0);
}
skip:
while (node) {
bitmask = 1 << node->bitnum;
if (node->mark && (leftmask & bitmask) == 0) {
leftmask |= bitmask;
if (node->leftnode == LEAF) {
assert(node->left);
data = tree->leaf_emit(node->left,
data);
size = tree->leaf_size(node->left);
index += size;
bytes += size;
leaves++;
} else if (node->left) {
assert(node->leftnode == NODE);
indent += 1;
node = node->left;
break;
}
}
if (node->mark && (rightmask & bitmask) == 0) {
rightmask |= bitmask;
if (node->rightnode == LEAF) {
assert(node->right);
data = tree->leaf_emit(node->right,
data);
size = tree->leaf_size(node->right);
index += size;
bytes += size;
leaves++;
} else if (node->right) {
assert(node->rightnode == NODE);
indent += 1;
node = node->right;
break;
}
}
leftmask &= ~bitmask;
rightmask &= ~bitmask;
node = node->parent;
indent -= 1;
}
}
done:
if (verbose > 0) {
printf("Emitted %d (%d) leaves",
leaves, bytes);
printf(" %d (%d+%d+%d+%d) nodes",
nodes[0] + nodes[1] + nodes[2] + nodes[3],
nodes[0], nodes[1], nodes[2], nodes[3]);
printf(" %d total\n", index - tree->index);
}
}
/* ------------------------------------------------------------------ */
/*
* Unicode data.
*
* We need to keep track of the Canonical Combining Class, the Age,
* and decompositions for a code point.
*
* For the Age, we store the index into the ages table. Effectively
* this is a generation number that the table maps to a unicode
* version.
*
* The correction field is used to indicate that this entry is in the
* corrections array, which contains decompositions that were
* corrected in later revisions. The value of the correction field is
* the Unicode version in which the mapping was corrected.
*/
struct unicode_data {
unsigned int code;
int ccc;
int gen;
int correction;
unsigned int *utf32nfdi;
unsigned int *utf32nfdicf;
char *utf8nfdi;
char *utf8nfdicf;
};
struct unicode_data unicode_data[0x110000];
struct unicode_data *corrections;
int corrections_count;
struct tree *nfdi_tree;
struct tree *nfdicf_tree;
struct tree *trees;
int trees_count;
/*
* Check the corrections array to see if this entry was corrected at
* some point.
*/
static struct unicode_data *corrections_lookup(struct unicode_data *u)
{
int i;
for (i = 0; i != corrections_count; i++)
if (u->code == corrections[i].code)
return &corrections[i];
return u;
}
static int nfdi_equal(void *l, void *r)
{
struct unicode_data *left = l;
struct unicode_data *right = r;
if (left->gen != right->gen)
return 0;
if (left->ccc != right->ccc)
return 0;
if (left->utf8nfdi && right->utf8nfdi &&
strcmp(left->utf8nfdi, right->utf8nfdi) == 0)
return 1;
if (left->utf8nfdi || right->utf8nfdi)
return 0;
return 1;
}
static int nfdicf_equal(void *l, void *r)
{
struct unicode_data *left = l;
struct unicode_data *right = r;
if (left->gen != right->gen)
return 0;
if (left->ccc != right->ccc)
return 0;
if (left->utf8nfdicf && right->utf8nfdicf &&
strcmp(left->utf8nfdicf, right->utf8nfdicf) == 0)
return 1;
if (left->utf8nfdicf && right->utf8nfdicf)
return 0;
if (left->utf8nfdicf || right->utf8nfdicf)
return 0;
if (left->utf8nfdi && right->utf8nfdi &&
strcmp(left->utf8nfdi, right->utf8nfdi) == 0)
return 1;
if (left->utf8nfdi || right->utf8nfdi)
return 0;
return 1;
}
static void nfdi_print(void *l, int indent)
{
struct unicode_data *leaf = l;
printf("%*sleaf @ %p code %X ccc %d gen %d", indent, "", leaf,
leaf->code, leaf->ccc, leaf->gen);
if (leaf->utf8nfdi && leaf->utf8nfdi[0] == HANGUL)
printf(" nfdi \"%s\"", "HANGUL SYLLABLE");
else if (leaf->utf8nfdi)
printf(" nfdi \"%s\"", (const char*)leaf->utf8nfdi);
printf("\n");
}
static void nfdicf_print(void *l, int indent)
{
struct unicode_data *leaf = l;
printf("%*sleaf @ %p code %X ccc %d gen %d", indent, "", leaf,
leaf->code, leaf->ccc, leaf->gen);
if (leaf->utf8nfdicf)
printf(" nfdicf \"%s\"", (const char*)leaf->utf8nfdicf);
else if (leaf->utf8nfdi && leaf->utf8nfdi[0] == HANGUL)
printf(" nfdi \"%s\"", "HANGUL SYLLABLE");
else if (leaf->utf8nfdi)
printf(" nfdi \"%s\"", (const char*)leaf->utf8nfdi);
printf("\n");
}
static int nfdi_mark(void *l)
{
return 1;
}
static int nfdicf_mark(void *l)
{
struct unicode_data *leaf = l;
if (leaf->utf8nfdicf)
return 1;
return 0;
}
static int correction_mark(void *l)
{
struct unicode_data *leaf = l;
return leaf->correction;
}
static int nfdi_size(void *l)
{
struct unicode_data *leaf = l;
int size = 2;
if (HANGUL_SYLLABLE(leaf->code))
size += 1;
else if (leaf->utf8nfdi)
size += strlen(leaf->utf8nfdi) + 1;
return size;
}
static int nfdicf_size(void *l)
{
struct unicode_data *leaf = l;
int size = 2;
if (HANGUL_SYLLABLE(leaf->code))
size += 1;
else if (leaf->utf8nfdicf)
size += strlen(leaf->utf8nfdicf) + 1;
else if (leaf->utf8nfdi)
size += strlen(leaf->utf8nfdi) + 1;
return size;
}
static int *nfdi_index(struct tree *tree, void *l)
{
struct unicode_data *leaf = l;
return &tree->leafindex[leaf->code];
}
static int *nfdicf_index(struct tree *tree, void *l)
{
struct unicode_data *leaf = l;
return &tree->leafindex[leaf->code];
}
static unsigned char *nfdi_emit(void *l, unsigned char *data)
{
struct unicode_data *leaf = l;
unsigned char *s;
*data++ = leaf->gen;
if (HANGUL_SYLLABLE(leaf->code)) {
*data++ = DECOMPOSE;
*data++ = HANGUL;
} else if (leaf->utf8nfdi) {
*data++ = DECOMPOSE;
s = (unsigned char*)leaf->utf8nfdi;
while ((*data++ = *s++) != 0)
;
} else {
*data++ = leaf->ccc;
}
return data;
}
static unsigned char *nfdicf_emit(void *l, unsigned char *data)
{
struct unicode_data *leaf = l;
unsigned char *s;
*data++ = leaf->gen;
if (HANGUL_SYLLABLE(leaf->code)) {
*data++ = DECOMPOSE;
*data++ = HANGUL;
} else if (leaf->utf8nfdicf) {
*data++ = DECOMPOSE;
s = (unsigned char*)leaf->utf8nfdicf;
while ((*data++ = *s++) != 0)
;
} else if (leaf->utf8nfdi) {
*data++ = DECOMPOSE;
s = (unsigned char*)leaf->utf8nfdi;
while ((*data++ = *s++) != 0)
;
} else {
*data++ = leaf->ccc;
}
return data;
}
static void utf8_create(struct unicode_data *data)
{
char utf[18*4+1];
char *u;
unsigned int *um;
int i;
if (data->utf8nfdi) {
assert(data->utf8nfdi[0] == HANGUL);
return;
}
u = utf;
um = data->utf32nfdi;
if (um) {
for (i = 0; um[i]; i++)
u += utf8encode(u, um[i]);
*u = '\0';
data->utf8nfdi = strdup(utf);
}
u = utf;
um = data->utf32nfdicf;
if (um) {
for (i = 0; um[i]; i++)
u += utf8encode(u, um[i]);
*u = '\0';
if (!data->utf8nfdi || strcmp(data->utf8nfdi, utf))
data->utf8nfdicf = strdup(utf);
}
}
static void utf8_init(void)
{
unsigned int unichar;
int i;
for (unichar = 0; unichar != 0x110000; unichar++)
utf8_create(&unicode_data[unichar]);
for (i = 0; i != corrections_count; i++)
utf8_create(&corrections[i]);
}
static void trees_init(void)
{
struct unicode_data *data;
unsigned int maxage;
unsigned int nextage;
int count;
int i;
int j;
/* Count the number of different ages. */
count = 0;
nextage = (unsigned int)-1;
do {
maxage = nextage;
nextage = 0;
for (i = 0; i <= corrections_count; i++) {
data = &corrections[i];
if (nextage < data->correction &&
data->correction < maxage)
nextage = data->correction;
}
count++;
} while (nextage);
/* Two trees per age: nfdi and nfdicf */
trees_count = count * 2;
trees = calloc(trees_count, sizeof(struct tree));
/* Assign ages to the trees. */
count = trees_count;
nextage = (unsigned int)-1;
do {
maxage = nextage;
trees[--count].maxage = maxage;
trees[--count].maxage = maxage;
nextage = 0;
for (i = 0; i <= corrections_count; i++) {
data = &corrections[i];
if (nextage < data->correction &&
data->correction < maxage)
nextage = data->correction;
}
} while (nextage);
/* The ages assigned above are off by one. */
for (i = 0; i != trees_count; i++) {
j = 0;
while (ages[j] < trees[i].maxage)
j++;
trees[i].maxage = ages[j-1];
}
/* Set up the forwarding between trees. */
trees[trees_count-2].next = &trees[trees_count-1];
trees[trees_count-1].leaf_mark = nfdi_mark;
trees[trees_count-2].leaf_mark = nfdicf_mark;
for (i = 0; i != trees_count-2; i += 2) {
trees[i].next = &trees[trees_count-2];
trees[i].leaf_mark = correction_mark;
trees[i+1].next = &trees[trees_count-1];
trees[i+1].leaf_mark = correction_mark;
}
/* Assign the callouts. */
for (i = 0; i != trees_count; i += 2) {
trees[i].type = "nfdicf";
trees[i].leaf_equal = nfdicf_equal;
trees[i].leaf_print = nfdicf_print;
trees[i].leaf_size = nfdicf_size;
trees[i].leaf_index = nfdicf_index;
trees[i].leaf_emit = nfdicf_emit;
trees[i+1].type = "nfdi";
trees[i+1].leaf_equal = nfdi_equal;
trees[i+1].leaf_print = nfdi_print;
trees[i+1].leaf_size = nfdi_size;
trees[i+1].leaf_index = nfdi_index;
trees[i+1].leaf_emit = nfdi_emit;
}
/* Finish init. */
for (i = 0; i != trees_count; i++)
trees[i].childnode = NODE;
}
static void trees_populate(void)
{
struct unicode_data *data;
unsigned int unichar;
char keyval[4];
int keylen;
int i;
for (i = 0; i != trees_count; i++) {
if (verbose > 0) {
printf("Populating %s_%x\n",
trees[i].type, trees[i].maxage);
}
for (unichar = 0; unichar != 0x110000; unichar++) {
if (unicode_data[unichar].gen < 0)
continue;
keylen = utf8encode(keyval, unichar);
data = corrections_lookup(&unicode_data[unichar]);
if (data->correction <= trees[i].maxage)
data = &unicode_data[unichar];
insert(&trees[i], keyval, keylen, data);
}
}
}
static void trees_reduce(void)
{
int i;
int size;
int changed;
for (i = 0; i != trees_count; i++)
prune(&trees[i]);
for (i = 0; i != trees_count; i++)
mark_nodes(&trees[i]);
do {
size = 0;
for (i = 0; i != trees_count; i++)
size = index_nodes(&trees[i], size);
changed = 0;
for (i = 0; i != trees_count; i++)
changed += size_nodes(&trees[i]);
} while (changed);
utf8data = calloc(size, 1);
utf8data_size = size;
for (i = 0; i != trees_count; i++)
emit(&trees[i], utf8data);
if (verbose > 0) {
for (i = 0; i != trees_count; i++) {
printf("%s_%x idx %d\n",
trees[i].type, trees[i].maxage, trees[i].index);
}
}
nfdi = utf8data + trees[trees_count-1].index;
nfdicf = utf8data + trees[trees_count-2].index;
nfdi_tree = &trees[trees_count-1];
nfdicf_tree = &trees[trees_count-2];
}
static void verify(struct tree *tree)
{
struct unicode_data *data;
utf8leaf_t *leaf;
unsigned int unichar;
char key[4];
unsigned char hangul[UTF8HANGULLEAF];
int report;
int nocf;
if (verbose > 0)
printf("Verifying %s_%x\n", tree->type, tree->maxage);
nocf = strcmp(tree->type, "nfdicf");
for (unichar = 0; unichar != 0x110000; unichar++) {
report = 0;
data = corrections_lookup(&unicode_data[unichar]);
if (data->correction <= tree->maxage)
data = &unicode_data[unichar];
utf8encode(key,unichar);
leaf = utf8lookup(tree, hangul, key);
if (!leaf) {
if (data->gen != -1)
report++;
if (unichar < 0xd800 || unichar > 0xdfff)
report++;
} else {
if (unichar >= 0xd800 && unichar <= 0xdfff)
report++;
if (data->gen == -1)
report++;
if (data->gen != LEAF_GEN(leaf))
report++;
if (LEAF_CCC(leaf) == DECOMPOSE) {
if (HANGUL_SYLLABLE(data->code)) {
if (data->utf8nfdi[0] != HANGUL)
report++;
} else if (nocf) {
if (!data->utf8nfdi) {
report++;
} else if (strcmp(data->utf8nfdi,
LEAF_STR(leaf))) {
report++;
}
} else {
if (!data->utf8nfdicf &&
!data->utf8nfdi) {
report++;
} else if (data->utf8nfdicf) {
if (strcmp(data->utf8nfdicf,
LEAF_STR(leaf)))
report++;
} else if (strcmp(data->utf8nfdi,
LEAF_STR(leaf))) {
report++;
}
}
} else if (data->ccc != LEAF_CCC(leaf)) {
report++;
}
}
if (report) {
printf("%X code %X gen %d ccc %d"
" nfdi -> \"%s\"",
unichar, data->code, data->gen,
data->ccc,
data->utf8nfdi);
if (leaf) {
printf(" gen %d ccc %d"
" nfdi -> \"%s\"",
LEAF_GEN(leaf),
LEAF_CCC(leaf),
LEAF_CCC(leaf) == DECOMPOSE ?
LEAF_STR(leaf) : "");
}
printf("\n");
}
}
}
static void trees_verify(void)
{
int i;
for (i = 0; i != trees_count; i++)
verify(&trees[i]);
}
/* ------------------------------------------------------------------ */
static void help(void)
{
printf("Usage: %s [options]\n", argv0);
printf("\n");
printf("This program creates an a data trie used for parsing and\n");
printf("normalization of UTF-8 strings. The trie is derived from\n");
printf("a set of input files from the Unicode character database\n");
printf("found at: http://www.unicode.org/Public/UCD/latest/ucd/\n");
printf("\n");
printf("The generated tree supports two normalization forms:\n");
printf("\n");
printf("\tnfdi:\n");
printf("\t- Apply unicode normalization form NFD.\n");
printf("\t- Remove any Default_Ignorable_Code_Point.\n");
printf("\n");
printf("\tnfdicf:\n");
printf("\t- Apply unicode normalization form NFD.\n");
printf("\t- Remove any Default_Ignorable_Code_Point.\n");
printf("\t- Apply a full casefold (C + F).\n");
printf("\n");
printf("These forms were chosen as being most useful when dealing\n");
printf("with file names: NFD catches most cases where characters\n");
printf("should be considered equivalent. The ignorables are mostly\n");
printf("invisible, making names hard to type.\n");
printf("\n");
printf("The options to specify the files to be used are listed\n");
printf("below with their default values, which are the names used\n");
printf("by version 11.0.0 of the Unicode Character Database.\n");
printf("\n");
printf("The input files:\n");
printf("\t-a %s\n", AGE_NAME);
printf("\t-c %s\n", CCC_NAME);
printf("\t-p %s\n", PROP_NAME);
printf("\t-d %s\n", DATA_NAME);
printf("\t-f %s\n", FOLD_NAME);
printf("\t-n %s\n", NORM_NAME);
printf("\n");
printf("Additionally, the generated tables are tested using:\n");
printf("\t-t %s\n", TEST_NAME);
printf("\n");
printf("Finally, the output file:\n");
printf("\t-o %s\n", UTF8_NAME);
printf("\n");
}
static void usage(void)
{
help();
exit(1);
}
static void open_fail(const char *name, int error)
{
printf("Error %d opening %s: %s\n", error, name, strerror(error));
exit(1);
}
static void file_fail(const char *filename)
{
printf("Error parsing %s\n", filename);
exit(1);
}
static void line_fail(const char *filename, const char *line)
{
printf("Error parsing %s:%s\n", filename, line);
exit(1);
}
/* ------------------------------------------------------------------ */
static void print_utf32(unsigned int *utf32str)
{
int i;
for (i = 0; utf32str[i]; i++)
printf(" %X", utf32str[i]);
}
static void print_utf32nfdi(unsigned int unichar)
{
printf(" %X ->", unichar);
print_utf32(unicode_data[unichar].utf32nfdi);
printf("\n");
}
static void print_utf32nfdicf(unsigned int unichar)
{
printf(" %X ->", unichar);
print_utf32(unicode_data[unichar].utf32nfdicf);
printf("\n");
}
/* ------------------------------------------------------------------ */
static void age_init(void)
{
FILE *file;
unsigned int first;
unsigned int last;
unsigned int unichar;
unsigned int major;
unsigned int minor;
unsigned int revision;
int gen;
int count;
int ret;
if (verbose > 0)
printf("Parsing %s\n", age_name);
file = fopen(age_name, "r");
if (!file)
open_fail(age_name, errno);
count = 0;
gen = 0;
while (fgets(line, LINESIZE, file)) {
ret = sscanf(line, "# Age=V%d_%d_%d",
&major, &minor, &revision);
if (ret == 3) {
ages_count++;
if (verbose > 1)
printf(" Age V%d_%d_%d\n",
major, minor, revision);
if (!age_valid(major, minor, revision))
line_fail(age_name, line);
continue;
}
ret = sscanf(line, "# Age=V%d_%d", &major, &minor);
if (ret == 2) {
ages_count++;
if (verbose > 1)
printf(" Age V%d_%d\n", major, minor);
if (!age_valid(major, minor, 0))
line_fail(age_name, line);
continue;
}
}
/* We must have found something above. */
if (verbose > 1)
printf("%d age entries\n", ages_count);
if (ages_count == 0 || ages_count > MAXGEN)
file_fail(age_name);
/* There is a 0 entry. */
ages_count++;
ages = calloc(ages_count + 1, sizeof(*ages));
/* And a guard entry. */
ages[ages_count] = (unsigned int)-1;
rewind(file);
count = 0;
gen = 0;
while (fgets(line, LINESIZE, file)) {
ret = sscanf(line, "# Age=V%d_%d_%d",
&major, &minor, &revision);
if (ret == 3) {
ages[++gen] =
UNICODE_AGE(major, minor, revision);
if (verbose > 1)
printf(" Age V%d_%d_%d = gen %d\n",
major, minor, revision, gen);
if (!age_valid(major, minor, revision))
line_fail(age_name, line);
continue;
}
ret = sscanf(line, "# Age=V%d_%d", &major, &minor);
if (ret == 2) {
ages[++gen] = UNICODE_AGE(major, minor, 0);
if (verbose > 1)
printf(" Age V%d_%d = %d\n",
major, minor, gen);
if (!age_valid(major, minor, 0))
line_fail(age_name, line);
continue;
}
ret = sscanf(line, "%X..%X ; %d.%d #",
&first, &last, &major, &minor);
if (ret == 4) {
for (unichar = first; unichar <= last; unichar++)
unicode_data[unichar].gen = gen;
count += 1 + last - first;
if (verbose > 1)
printf(" %X..%X gen %d\n", first, last, gen);
if (!utf32valid(first) || !utf32valid(last))
line_fail(age_name, line);
continue;
}
ret = sscanf(line, "%X ; %d.%d #", &unichar, &major, &minor);
if (ret == 3) {
unicode_data[unichar].gen = gen;
count++;
if (verbose > 1)
printf(" %X gen %d\n", unichar, gen);
if (!utf32valid(unichar))
line_fail(age_name, line);
continue;
}
}
unicode_maxage = ages[gen];
fclose(file);
/* Nix surrogate block */
if (verbose > 1)
printf(" Removing surrogate block D800..DFFF\n");
for (unichar = 0xd800; unichar <= 0xdfff; unichar++)
unicode_data[unichar].gen = -1;
if (verbose > 0)
printf("Found %d entries\n", count);
if (count == 0)
file_fail(age_name);
}
static void ccc_init(void)
{
FILE *file;
unsigned int first;
unsigned int last;
unsigned int unichar;
unsigned int value;
int count;
int ret;
if (verbose > 0)
printf("Parsing %s\n", ccc_name);
file = fopen(ccc_name, "r");
if (!file)
open_fail(ccc_name, errno);
count = 0;
while (fgets(line, LINESIZE, file)) {
ret = sscanf(line, "%X..%X ; %d #", &first, &last, &value);
if (ret == 3) {
for (unichar = first; unichar <= last; unichar++) {
unicode_data[unichar].ccc = value;
count++;
}
if (verbose > 1)
printf(" %X..%X ccc %d\n", first, last, value);
if (!utf32valid(first) || !utf32valid(last))
line_fail(ccc_name, line);
continue;
}
ret = sscanf(line, "%X ; %d #", &unichar, &value);
if (ret == 2) {
unicode_data[unichar].ccc = value;
count++;
if (verbose > 1)
printf(" %X ccc %d\n", unichar, value);
if (!utf32valid(unichar))
line_fail(ccc_name, line);
continue;
}
}
fclose(file);
if (verbose > 0)
printf("Found %d entries\n", count);
if (count == 0)
file_fail(ccc_name);
}
static int ignore_compatibility_form(char *type)
{
int i;
char *ignored_types[] = {"font", "noBreak", "initial", "medial",
"final", "isolated", "circle", "super",
"sub", "vertical", "wide", "narrow",
"small", "square", "fraction", "compat"};
for (i = 0 ; i < ARRAY_SIZE(ignored_types); i++)
if (strcmp(type, ignored_types[i]) == 0)
return 1;
return 0;
}
static void nfdi_init(void)
{
FILE *file;
unsigned int unichar;
unsigned int mapping[19]; /* Magic - guaranteed not to be exceeded. */
char *s;
char *type;
unsigned int *um;
int count;
int i;
int ret;
if (verbose > 0)
printf("Parsing %s\n", data_name);
file = fopen(data_name, "r");
if (!file)
open_fail(data_name, errno);
count = 0;
while (fgets(line, LINESIZE, file)) {
ret = sscanf(line, "%X;%*[^;];%*[^;];%*[^;];%*[^;];%[^;];",
&unichar, buf0);
if (ret != 2)
continue;
if (!utf32valid(unichar))
line_fail(data_name, line);
s = buf0;
/* skip over <tag> */
if (*s == '<') {
type = ++s;
while (*++s != '>');
*s++ = '\0';
if(ignore_compatibility_form(type))
continue;
}
/* decode the decomposition into UTF-32 */
i = 0;
while (*s) {
mapping[i] = strtoul(s, &s, 16);
if (!utf32valid(mapping[i]))
line_fail(data_name, line);
i++;
}
mapping[i++] = 0;
um = malloc(i * sizeof(unsigned int));
memcpy(um, mapping, i * sizeof(unsigned int));
unicode_data[unichar].utf32nfdi = um;
if (verbose > 1)
print_utf32nfdi(unichar);
count++;
}
fclose(file);
if (verbose > 0)
printf("Found %d entries\n", count);
if (count == 0)
file_fail(data_name);
}
static void nfdicf_init(void)
{
FILE *file;
unsigned int unichar;
unsigned int mapping[19]; /* Magic - guaranteed not to be exceeded. */
char status;
char *s;
unsigned int *um;
int i;
int count;
int ret;
if (verbose > 0)
printf("Parsing %s\n", fold_name);
file = fopen(fold_name, "r");
if (!file)
open_fail(fold_name, errno);
count = 0;
while (fgets(line, LINESIZE, file)) {
ret = sscanf(line, "%X; %c; %[^;];", &unichar, &status, buf0);
if (ret != 3)
continue;
if (!utf32valid(unichar))
line_fail(fold_name, line);
/* Use the C+F casefold. */
if (status != 'C' && status != 'F')
continue;
s = buf0;
if (*s == '<')
while (*s++ != ' ')
;
i = 0;
while (*s) {
mapping[i] = strtoul(s, &s, 16);
if (!utf32valid(mapping[i]))
line_fail(fold_name, line);
i++;
}
mapping[i++] = 0;
um = malloc(i * sizeof(unsigned int));
memcpy(um, mapping, i * sizeof(unsigned int));
unicode_data[unichar].utf32nfdicf = um;
if (verbose > 1)
print_utf32nfdicf(unichar);
count++;
}
fclose(file);
if (verbose > 0)
printf("Found %d entries\n", count);
if (count == 0)
file_fail(fold_name);
}
static void corrections_init(void)
{
FILE *file;
unsigned int unichar;
unsigned int major;
unsigned int minor;
unsigned int revision;
unsigned int age;
unsigned int *um;
unsigned int mapping[19]; /* Magic - guaranteed not to be exceeded. */
char *s;
int i;
int count;
int ret;
if (verbose > 0)
printf("Parsing %s\n", norm_name);
file = fopen(norm_name, "r");
if (!file)
open_fail(norm_name, errno);
count = 0;
while (fgets(line, LINESIZE, file)) {
ret = sscanf(line, "%X;%[^;];%[^;];%d.%d.%d #",
&unichar, buf0, buf1,
&major, &minor, &revision);
if (ret != 6)
continue;
if (!utf32valid(unichar) || !age_valid(major, minor, revision))
line_fail(norm_name, line);
count++;
}
corrections = calloc(count, sizeof(struct unicode_data));
corrections_count = count;
rewind(file);
count = 0;
while (fgets(line, LINESIZE, file)) {
ret = sscanf(line, "%X;%[^;];%[^;];%d.%d.%d #",
&unichar, buf0, buf1,
&major, &minor, &revision);
if (ret != 6)
continue;
if (!utf32valid(unichar) || !age_valid(major, minor, revision))
line_fail(norm_name, line);
corrections[count] = unicode_data[unichar];
assert(corrections[count].code == unichar);
age = UNICODE_AGE(major, minor, revision);
corrections[count].correction = age;
i = 0;
s = buf0;
while (*s) {
mapping[i] = strtoul(s, &s, 16);
if (!utf32valid(mapping[i]))
line_fail(norm_name, line);
i++;
}
mapping[i++] = 0;
um = malloc(i * sizeof(unsigned int));
memcpy(um, mapping, i * sizeof(unsigned int));
corrections[count].utf32nfdi = um;
if (verbose > 1)
printf(" %X -> %s -> %s V%d_%d_%d\n",
unichar, buf0, buf1, major, minor, revision);
count++;
}
fclose(file);
if (verbose > 0)
printf("Found %d entries\n", count);
if (count == 0)
file_fail(norm_name);
}
/* ------------------------------------------------------------------ */
/*
* Hangul decomposition (algorithm from Section 3.12 of Unicode 6.3.0)
*
* AC00;<Hangul Syllable, First>;Lo;0;L;;;;;N;;;;;
* D7A3;<Hangul Syllable, Last>;Lo;0;L;;;;;N;;;;;
*
* SBase = 0xAC00
* LBase = 0x1100
* VBase = 0x1161
* TBase = 0x11A7
* LCount = 19
* VCount = 21
* TCount = 28
* NCount = 588 (VCount * TCount)
* SCount = 11172 (LCount * NCount)
*
* Decomposition:
* SIndex = s - SBase
*
* LV (Canonical/Full)
* LIndex = SIndex / NCount
* VIndex = (Sindex % NCount) / TCount
* LPart = LBase + LIndex
* VPart = VBase + VIndex
*
* LVT (Canonical)
* LVIndex = (SIndex / TCount) * TCount
* TIndex = (Sindex % TCount)
* LVPart = SBase + LVIndex
* TPart = TBase + TIndex
*
* LVT (Full)
* LIndex = SIndex / NCount
* VIndex = (Sindex % NCount) / TCount
* TIndex = (Sindex % TCount)
* LPart = LBase + LIndex
* VPart = VBase + VIndex
* if (TIndex == 0) {
* d = <LPart, VPart>
* } else {
* TPart = TBase + TIndex
* d = <LPart, VPart, TPart>
* }
*
*/
static void hangul_decompose(void)
{
unsigned int sb = 0xAC00;
unsigned int lb = 0x1100;
unsigned int vb = 0x1161;
unsigned int tb = 0x11a7;
/* unsigned int lc = 19; */
unsigned int vc = 21;
unsigned int tc = 28;
unsigned int nc = (vc * tc);
/* unsigned int sc = (lc * nc); */
unsigned int unichar;
unsigned int mapping[4];
unsigned int *um;
int count;
int i;
if (verbose > 0)
printf("Decomposing hangul\n");
/* Hangul */
count = 0;
for (unichar = 0xAC00; unichar <= 0xD7A3; unichar++) {
unsigned int si = unichar - sb;
unsigned int li = si / nc;
unsigned int vi = (si % nc) / tc;
unsigned int ti = si % tc;
i = 0;
mapping[i++] = lb + li;
mapping[i++] = vb + vi;
if (ti)
mapping[i++] = tb + ti;
mapping[i++] = 0;
assert(!unicode_data[unichar].utf32nfdi);
um = malloc(i * sizeof(unsigned int));
memcpy(um, mapping, i * sizeof(unsigned int));
unicode_data[unichar].utf32nfdi = um;
assert(!unicode_data[unichar].utf32nfdicf);
um = malloc(i * sizeof(unsigned int));
memcpy(um, mapping, i * sizeof(unsigned int));
unicode_data[unichar].utf32nfdicf = um;
/*
* Add a cookie as a reminder that the hangul syllable
* decompositions must not be stored in the generated
* trie.
*/
unicode_data[unichar].utf8nfdi = malloc(2);
unicode_data[unichar].utf8nfdi[0] = HANGUL;
unicode_data[unichar].utf8nfdi[1] = '\0';
if (verbose > 1)
print_utf32nfdi(unichar);
count++;
}
if (verbose > 0)
printf("Created %d entries\n", count);
}
static void nfdi_decompose(void)
{
unsigned int unichar;
unsigned int mapping[19]; /* Magic - guaranteed not to be exceeded. */
unsigned int *um;
unsigned int *dc;
int count;
int i;
int j;
int ret;
if (verbose > 0)
printf("Decomposing nfdi\n");
count = 0;
for (unichar = 0; unichar != 0x110000; unichar++) {
if (!unicode_data[unichar].utf32nfdi)
continue;
for (;;) {
ret = 1;
i = 0;
um = unicode_data[unichar].utf32nfdi;
while (*um) {
dc = unicode_data[*um].utf32nfdi;
if (dc) {
for (j = 0; dc[j]; j++)
mapping[i++] = dc[j];
ret = 0;
} else {
mapping[i++] = *um;
}
um++;
}
mapping[i++] = 0;
if (ret)
break;
free(unicode_data[unichar].utf32nfdi);
um = malloc(i * sizeof(unsigned int));
memcpy(um, mapping, i * sizeof(unsigned int));
unicode_data[unichar].utf32nfdi = um;
}
/* Add this decomposition to nfdicf if there is no entry. */
if (!unicode_data[unichar].utf32nfdicf) {
um = malloc(i * sizeof(unsigned int));
memcpy(um, mapping, i * sizeof(unsigned int));
unicode_data[unichar].utf32nfdicf = um;
}
if (verbose > 1)
print_utf32nfdi(unichar);
count++;
}
if (verbose > 0)
printf("Processed %d entries\n", count);
}
static void nfdicf_decompose(void)
{
unsigned int unichar;
unsigned int mapping[19]; /* Magic - guaranteed not to be exceeded. */
unsigned int *um;
unsigned int *dc;
int count;
int i;
int j;
int ret;
if (verbose > 0)
printf("Decomposing nfdicf\n");
count = 0;
for (unichar = 0; unichar != 0x110000; unichar++) {
if (!unicode_data[unichar].utf32nfdicf)
continue;
for (;;) {
ret = 1;
i = 0;
um = unicode_data[unichar].utf32nfdicf;
while (*um) {
dc = unicode_data[*um].utf32nfdicf;
if (dc) {
for (j = 0; dc[j]; j++)
mapping[i++] = dc[j];
ret = 0;
} else {
mapping[i++] = *um;
}
um++;
}
mapping[i++] = 0;
if (ret)
break;
free(unicode_data[unichar].utf32nfdicf);
um = malloc(i * sizeof(unsigned int));
memcpy(um, mapping, i * sizeof(unsigned int));
unicode_data[unichar].utf32nfdicf = um;
}
if (verbose > 1)
print_utf32nfdicf(unichar);
count++;
}
if (verbose > 0)
printf("Processed %d entries\n", count);
}
/* ------------------------------------------------------------------ */
int utf8agemax(struct tree *, const char *);
int utf8nagemax(struct tree *, const char *, size_t);
int utf8agemin(struct tree *, const char *);
int utf8nagemin(struct tree *, const char *, size_t);
ssize_t utf8len(struct tree *, const char *);
ssize_t utf8nlen(struct tree *, const char *, size_t);
struct utf8cursor;
int utf8cursor(struct utf8cursor *, struct tree *, const char *);
int utf8ncursor(struct utf8cursor *, struct tree *, const char *, size_t);
int utf8byte(struct utf8cursor *);
/*
* Hangul decomposition (algorithm from Section 3.12 of Unicode 6.3.0)
*
* AC00;<Hangul Syllable, First>;Lo;0;L;;;;;N;;;;;
* D7A3;<Hangul Syllable, Last>;Lo;0;L;;;;;N;;;;;
*
* SBase = 0xAC00
* LBase = 0x1100
* VBase = 0x1161
* TBase = 0x11A7
* LCount = 19
* VCount = 21
* TCount = 28
* NCount = 588 (VCount * TCount)
* SCount = 11172 (LCount * NCount)
*
* Decomposition:
* SIndex = s - SBase
*
* LV (Canonical/Full)
* LIndex = SIndex / NCount
* VIndex = (Sindex % NCount) / TCount
* LPart = LBase + LIndex
* VPart = VBase + VIndex
*
* LVT (Canonical)
* LVIndex = (SIndex / TCount) * TCount
* TIndex = (Sindex % TCount)
* LVPart = SBase + LVIndex
* TPart = TBase + TIndex
*
* LVT (Full)
* LIndex = SIndex / NCount
* VIndex = (Sindex % NCount) / TCount
* TIndex = (Sindex % TCount)
* LPart = LBase + LIndex
* VPart = VBase + VIndex
* if (TIndex == 0) {
* d = <LPart, VPart>
* } else {
* TPart = TBase + TIndex
* d = <LPart, VPart, TPart>
* }
*/
/* Constants */
#define SB (0xAC00)
#define LB (0x1100)
#define VB (0x1161)
#define TB (0x11A7)
#define LC (19)
#define VC (21)
#define TC (28)
#define NC (VC * TC)
#define SC (LC * NC)
/* Algorithmic decomposition of hangul syllable. */
static utf8leaf_t *utf8hangul(const char *str, unsigned char *hangul)
{
unsigned int si;
unsigned int li;
unsigned int vi;
unsigned int ti;
unsigned char *h;
/* Calculate the SI, LI, VI, and TI values. */
si = utf8decode(str) - SB;
li = si / NC;
vi = (si % NC) / TC;
ti = si % TC;
/* Fill in base of leaf. */
h = hangul;
LEAF_GEN(h) = 2;
LEAF_CCC(h) = DECOMPOSE;
h += 2;
/* Add LPart, a 3-byte UTF-8 sequence. */
h += utf8encode((char *)h, li + LB);
/* Add VPart, a 3-byte UTF-8 sequence. */
h += utf8encode((char *)h, vi + VB);
/* Add TPart if required, also a 3-byte UTF-8 sequence. */
if (ti)
h += utf8encode((char *)h, ti + TB);
/* Terminate string. */
h[0] = '\0';
return hangul;
}
/*
* Use trie to scan s, touching at most len bytes.
* Returns the leaf if one exists, NULL otherwise.
*
* A non-NULL return guarantees that the UTF-8 sequence starting at s
* is well-formed and corresponds to a known unicode code point. The
* shorthand for this will be "is valid UTF-8 unicode".
*/
static utf8leaf_t *utf8nlookup(struct tree *tree, unsigned char *hangul,
const char *s, size_t len)
{
utf8trie_t *trie;
int offlen;
int offset;
int mask;
int node;
if (!tree)
return NULL;
if (len == 0)
return NULL;
node = 1;
trie = utf8data + tree->index;
while (node) {
offlen = (*trie & OFFLEN) >> OFFLEN_SHIFT;
if (*trie & NEXTBYTE) {
if (--len == 0)
return NULL;
s++;
}
mask = 1 << (*trie & BITNUM);
if (*s & mask) {
/* Right leg */
if (offlen) {
/* Right node at offset of trie */
node = (*trie & RIGHTNODE);
offset = trie[offlen];
while (--offlen) {
offset <<= 8;
offset |= trie[offlen];
}
trie += offset;
} else if (*trie & RIGHTPATH) {
/* Right node after this node */
node = (*trie & TRIENODE);
trie++;
} else {
/* No right node. */
return NULL;
}
} else {
/* Left leg */
if (offlen) {
/* Left node after this node. */
node = (*trie & LEFTNODE);
trie += offlen + 1;
} else if (*trie & RIGHTPATH) {
/* No left node. */
return NULL;
} else {
/* Left node after this node */
node = (*trie & TRIENODE);
trie++;
}
}
}
/*
* Hangul decomposition is done algorithmically. These are the
* codepoints >= 0xAC00 and <= 0xD7A3. Their UTF-8 encoding is
* always 3 bytes long, so s has been advanced twice, and the
* start of the sequence is at s-2.
*/
if (LEAF_CCC(trie) == DECOMPOSE && LEAF_STR(trie)[0] == HANGUL)
trie = utf8hangul(s - 2, hangul);
return trie;
}
/*
* Use trie to scan s.
* Returns the leaf if one exists, NULL otherwise.
*
* Forwards to trie_nlookup().
*/
static utf8leaf_t *utf8lookup(struct tree *tree, unsigned char *hangul,
const char *s)
{
return utf8nlookup(tree, hangul, s, (size_t)-1);
}
/*
* Return the number of bytes used by the current UTF-8 sequence.
* Assumes the input points to the first byte of a valid UTF-8
* sequence.
*/
static inline int utf8clen(const char *s)
{
unsigned char c = *s;
return 1 + (c >= 0xC0) + (c >= 0xE0) + (c >= 0xF0);
}
/*
* Maximum age of any character in s.
* Return -1 if s is not valid UTF-8 unicode.
* Return 0 if only non-assigned code points are used.
*/
int utf8agemax(struct tree *tree, const char *s)
{
utf8leaf_t *leaf;
int age = 0;
int leaf_age;
unsigned char hangul[UTF8HANGULLEAF];
if (!tree)
return -1;
while (*s) {
leaf = utf8lookup(tree, hangul, s);
if (!leaf)
return -1;
leaf_age = ages[LEAF_GEN(leaf)];
if (leaf_age <= tree->maxage && leaf_age > age)
age = leaf_age;
s += utf8clen(s);
}
return age;
}
/*
* Minimum age of any character in s.
* Return -1 if s is not valid UTF-8 unicode.
* Return 0 if non-assigned code points are used.
*/
int utf8agemin(struct tree *tree, const char *s)
{
utf8leaf_t *leaf;
int age;
int leaf_age;
unsigned char hangul[UTF8HANGULLEAF];
if (!tree)
return -1;
age = tree->maxage;
while (*s) {
leaf = utf8lookup(tree, hangul, s);
if (!leaf)
return -1;
leaf_age = ages[LEAF_GEN(leaf)];
if (leaf_age <= tree->maxage && leaf_age < age)
age = leaf_age;
s += utf8clen(s);
}
return age;
}
/*
* Maximum age of any character in s, touch at most len bytes.
* Return -1 if s is not valid UTF-8 unicode.
*/
int utf8nagemax(struct tree *tree, const char *s, size_t len)
{
utf8leaf_t *leaf;
int age = 0;
int leaf_age;
unsigned char hangul[UTF8HANGULLEAF];
if (!tree)
return -1;
while (len && *s) {
leaf = utf8nlookup(tree, hangul, s, len);
if (!leaf)
return -1;
leaf_age = ages[LEAF_GEN(leaf)];
if (leaf_age <= tree->maxage && leaf_age > age)
age = leaf_age;
len -= utf8clen(s);
s += utf8clen(s);
}
return age;
}
/*
* Maximum age of any character in s, touch at most len bytes.
* Return -1 if s is not valid UTF-8 unicode.
*/
int utf8nagemin(struct tree *tree, const char *s, size_t len)
{
utf8leaf_t *leaf;
int leaf_age;
int age;
unsigned char hangul[UTF8HANGULLEAF];
if (!tree)
return -1;
age = tree->maxage;
while (len && *s) {
leaf = utf8nlookup(tree, hangul, s, len);
if (!leaf)
return -1;
leaf_age = ages[LEAF_GEN(leaf)];
if (leaf_age <= tree->maxage && leaf_age < age)
age = leaf_age;
len -= utf8clen(s);
s += utf8clen(s);
}
return age;
}
/*
* Length of the normalization of s.
* Return -1 if s is not valid UTF-8 unicode.
*
* A string of Default_Ignorable_Code_Point has length 0.
*/
ssize_t utf8len(struct tree *tree, const char *s)
{
utf8leaf_t *leaf;
size_t ret = 0;
unsigned char hangul[UTF8HANGULLEAF];
if (!tree)
return -1;
while (*s) {
leaf = utf8lookup(tree, hangul, s);
if (!leaf)
return -1;
if (ages[LEAF_GEN(leaf)] > tree->maxage)
ret += utf8clen(s);
else if (LEAF_CCC(leaf) == DECOMPOSE)
ret += strlen(LEAF_STR(leaf));
else
ret += utf8clen(s);
s += utf8clen(s);
}
return ret;
}
/*
* Length of the normalization of s, touch at most len bytes.
* Return -1 if s is not valid UTF-8 unicode.
*/
ssize_t utf8nlen(struct tree *tree, const char *s, size_t len)
{
utf8leaf_t *leaf;
size_t ret = 0;
unsigned char hangul[UTF8HANGULLEAF];
if (!tree)
return -1;
while (len && *s) {
leaf = utf8nlookup(tree, hangul, s, len);
if (!leaf)
return -1;
if (ages[LEAF_GEN(leaf)] > tree->maxage)
ret += utf8clen(s);
else if (LEAF_CCC(leaf) == DECOMPOSE)
ret += strlen(LEAF_STR(leaf));
else
ret += utf8clen(s);
len -= utf8clen(s);
s += utf8clen(s);
}
return ret;
}
/*
* Cursor structure used by the normalizer.
*/
struct utf8cursor {
struct tree *tree;
const char *s;
const char *p;
const char *ss;
const char *sp;
unsigned int len;
unsigned int slen;
short int ccc;
short int nccc;
unsigned int unichar;
unsigned char hangul[UTF8HANGULLEAF];
};
/*
* Set up an utf8cursor for use by utf8byte().
*
* s : string.
* len : length of s.
* u8c : pointer to cursor.
* trie : utf8trie_t to use for normalization.
*
* Returns -1 on error, 0 on success.
*/
int utf8ncursor(struct utf8cursor *u8c, struct tree *tree, const char *s,
size_t len)
{
if (!tree)
return -1;
if (!s)
return -1;
u8c->tree = tree;
u8c->s = s;
u8c->p = NULL;
u8c->ss = NULL;
u8c->sp = NULL;
u8c->len = len;
u8c->slen = 0;
u8c->ccc = STOPPER;
u8c->nccc = STOPPER;
u8c->unichar = 0;
/* Check we didn't clobber the maximum length. */
if (u8c->len != len)
return -1;
/* The first byte of s may not be an utf8 continuation. */
if (len > 0 && (*s & 0xC0) == 0x80)
return -1;
return 0;
}
/*
* Set up an utf8cursor for use by utf8byte().
*
* s : NUL-terminated string.
* u8c : pointer to cursor.
* trie : utf8trie_t to use for normalization.
*
* Returns -1 on error, 0 on success.
*/
int utf8cursor(struct utf8cursor *u8c, struct tree *tree, const char *s)
{
return utf8ncursor(u8c, tree, s, (unsigned int)-1);
}
/*
* Get one byte from the normalized form of the string described by u8c.
*
* Returns the byte cast to an unsigned char on succes, and -1 on failure.
*
* The cursor keeps track of the location in the string in u8c->s.
* When a character is decomposed, the current location is stored in
* u8c->p, and u8c->s is set to the start of the decomposition. Note
* that bytes from a decomposition do not count against u8c->len.
*
* Characters are emitted if they match the current CCC in u8c->ccc.
* Hitting end-of-string while u8c->ccc == STOPPER means we're done,
* and the function returns 0 in that case.
*
* Sorting by CCC is done by repeatedly scanning the string. The
* values of u8c->s and u8c->p are stored in u8c->ss and u8c->sp at
* the start of the scan. The first pass finds the lowest CCC to be
* emitted and stores it in u8c->nccc, the second pass emits the
* characters with this CCC and finds the next lowest CCC. This limits
* the number of passes to 1 + the number of different CCCs in the
* sequence being scanned.
*
* Therefore:
* u8c->p != NULL -> a decomposition is being scanned.
* u8c->ss != NULL -> this is a repeating scan.
* u8c->ccc == -1 -> this is the first scan of a repeating scan.
*/
int utf8byte(struct utf8cursor *u8c)
{
utf8leaf_t *leaf;
int ccc;
for (;;) {
/* Check for the end of a decomposed character. */
if (u8c->p && *u8c->s == '\0') {
u8c->s = u8c->p;
u8c->p = NULL;
}
/* Check for end-of-string. */
if (!u8c->p && (u8c->len == 0 || *u8c->s == '\0')) {
/* There is no next byte. */
if (u8c->ccc == STOPPER)
return 0;
/* End-of-string during a scan counts as a stopper. */
ccc = STOPPER;
goto ccc_mismatch;
} else if ((*u8c->s & 0xC0) == 0x80) {
/* This is a continuation of the current character. */
if (!u8c->p)
u8c->len--;
return (unsigned char)*u8c->s++;
}
/* Look up the data for the current character. */
if (u8c->p) {
leaf = utf8lookup(u8c->tree, u8c->hangul, u8c->s);
} else {
leaf = utf8nlookup(u8c->tree, u8c->hangul,
u8c->s, u8c->len);
}
/* No leaf found implies that the input is a binary blob. */
if (!leaf)
return -1;
/* Characters that are too new have CCC 0. */
if (ages[LEAF_GEN(leaf)] > u8c->tree->maxage) {
ccc = STOPPER;
} else if ((ccc = LEAF_CCC(leaf)) == DECOMPOSE) {
u8c->len -= utf8clen(u8c->s);
u8c->p = u8c->s + utf8clen(u8c->s);
u8c->s = LEAF_STR(leaf);
/* Empty decomposition implies CCC 0. */
if (*u8c->s == '\0') {
if (u8c->ccc == STOPPER)
continue;
ccc = STOPPER;
goto ccc_mismatch;
}
leaf = utf8lookup(u8c->tree, u8c->hangul, u8c->s);
ccc = LEAF_CCC(leaf);
}
u8c->unichar = utf8decode(u8c->s);
/*
* If this is not a stopper, then see if it updates
* the next canonical class to be emitted.
*/
if (ccc != STOPPER && u8c->ccc < ccc && ccc < u8c->nccc)
u8c->nccc = ccc;
/*
* Return the current byte if this is the current
* combining class.
*/
if (ccc == u8c->ccc) {
if (!u8c->p)
u8c->len--;
return (unsigned char)*u8c->s++;
}
/* Current combining class mismatch. */
ccc_mismatch:
if (u8c->nccc == STOPPER) {
/*
* Scan forward for the first canonical class
* to be emitted. Save the position from
* which to restart.
*/
assert(u8c->ccc == STOPPER);
u8c->ccc = MINCCC - 1;
u8c->nccc = ccc;
u8c->sp = u8c->p;
u8c->ss = u8c->s;
u8c->slen = u8c->len;
if (!u8c->p)
u8c->len -= utf8clen(u8c->s);
u8c->s += utf8clen(u8c->s);
} else if (ccc != STOPPER) {
/* Not a stopper, and not the ccc we're emitting. */
if (!u8c->p)
u8c->len -= utf8clen(u8c->s);
u8c->s += utf8clen(u8c->s);
} else if (u8c->nccc != MAXCCC + 1) {
/* At a stopper, restart for next ccc. */
u8c->ccc = u8c->nccc;
u8c->nccc = MAXCCC + 1;
u8c->s = u8c->ss;
u8c->p = u8c->sp;
u8c->len = u8c->slen;
} else {
/* All done, proceed from here. */
u8c->ccc = STOPPER;
u8c->nccc = STOPPER;
u8c->sp = NULL;
u8c->ss = NULL;
u8c->slen = 0;
}
}
}
/* ------------------------------------------------------------------ */
static int normalize_line(struct tree *tree)
{
char *s;
char *t;
int c;
struct utf8cursor u8c;
/* First test: null-terminated string. */
s = buf2;
t = buf3;
if (utf8cursor(&u8c, tree, s))
return -1;
while ((c = utf8byte(&u8c)) > 0)
if (c != (unsigned char)*t++)
return -1;
if (c < 0)
return -1;
if (*t != 0)
return -1;
/* Second test: length-limited string. */
s = buf2;
/* Replace NUL with a value that will cause an error if seen. */
s[strlen(s) + 1] = -1;
t = buf3;
if (utf8cursor(&u8c, tree, s))
return -1;
while ((c = utf8byte(&u8c)) > 0)
if (c != (unsigned char)*t++)
return -1;
if (c < 0)
return -1;
if (*t != 0)
return -1;
return 0;
}
static void normalization_test(void)
{
FILE *file;
unsigned int unichar;
struct unicode_data *data;
char *s;
char *t;
int ret;
int ignorables;
int tests = 0;
int failures = 0;
if (verbose > 0)
printf("Parsing %s\n", test_name);
/* Step one, read data from file. */
file = fopen(test_name, "r");
if (!file)
open_fail(test_name, errno);
while (fgets(line, LINESIZE, file)) {
ret = sscanf(line, "%[^;];%*[^;];%[^;];%*[^;];%*[^;];",
buf0, buf1);
if (ret != 2 || *line == '#')
continue;
s = buf0;
t = buf2;
while (*s) {
unichar = strtoul(s, &s, 16);
t += utf8encode(t, unichar);
}
*t = '\0';
ignorables = 0;
s = buf1;
t = buf3;
while (*s) {
unichar = strtoul(s, &s, 16);
data = &unicode_data[unichar];
if (data->utf8nfdi && !*data->utf8nfdi)
ignorables = 1;
else
t += utf8encode(t, unichar);
}
*t = '\0';
tests++;
if (normalize_line(nfdi_tree) < 0) {
printf("Line %s -> %s", buf0, buf1);
if (ignorables)
printf(" (ignorables removed)");
printf(" failure\n");
failures++;
}
}
fclose(file);
if (verbose > 0)
printf("Ran %d tests with %d failures\n", tests, failures);
if (failures)
file_fail(test_name);
}
/* ------------------------------------------------------------------ */
static void write_file(void)
{
FILE *file;
int i;
int j;
int t;
int gen;
if (verbose > 0)
printf("Writing %s\n", utf8_name);
file = fopen(utf8_name, "w");
if (!file)
open_fail(utf8_name, errno);
fprintf(file, "/* This file is generated code, do not edit. */\n");
fprintf(file, "\n");
fprintf(file, "#include <linux/module.h>\n");
fprintf(file, "#include <linux/kernel.h>\n");
fprintf(file, "#include \"utf8n.h\"\n");
fprintf(file, "\n");
fprintf(file, "static const unsigned int utf8agetab[] = {\n");
for (i = 0; i != ages_count; i++)
fprintf(file, "\t%#x%s\n", ages[i],
ages[i] == unicode_maxage ? "" : ",");
fprintf(file, "};\n");
fprintf(file, "\n");
fprintf(file, "static const struct utf8data utf8nfdicfdata[] = {\n");
t = 0;
for (gen = 0; gen < ages_count; gen++) {
fprintf(file, "\t{ %#x, %d }%s\n",
ages[gen], trees[t].index,
ages[gen] == unicode_maxage ? "" : ",");
if (trees[t].maxage == ages[gen])
t += 2;
}
fprintf(file, "};\n");
fprintf(file, "\n");
fprintf(file, "static const struct utf8data utf8nfdidata[] = {\n");
t = 1;
for (gen = 0; gen < ages_count; gen++) {
fprintf(file, "\t{ %#x, %d }%s\n",
ages[gen], trees[t].index,
ages[gen] == unicode_maxage ? "" : ",");
if (trees[t].maxage == ages[gen])
t += 2;
}
fprintf(file, "};\n");
fprintf(file, "\n");
fprintf(file, "static const unsigned char utf8data[%zd] = {\n",
utf8data_size);
t = 0;
for (i = 0; i != utf8data_size; i += 16) {
if (i == trees[t].index) {
fprintf(file, "\t/* %s_%x */\n",
trees[t].type, trees[t].maxage);
if (t < trees_count-1)
t++;
}
fprintf(file, "\t");
for (j = i; j != i + 16; j++)
fprintf(file, "0x%.2x%s", utf8data[j],
(j < utf8data_size -1 ? "," : ""));
fprintf(file, "\n");
}
fprintf(file, "};\n");
fprintf(file, "\n");
fprintf(file, "const struct utf8data_table utf8_data_table = {\n");
fprintf(file, "\t.utf8agetab = utf8agetab,\n");
fprintf(file, "\t.utf8agetab_size = ARRAY_SIZE(utf8agetab),\n");
fprintf(file, "\n");
fprintf(file, "\t.utf8nfdicfdata = utf8nfdicfdata,\n");
fprintf(file, "\t.utf8nfdicfdata_size = ARRAY_SIZE(utf8nfdicfdata),\n");
fprintf(file, "\n");
fprintf(file, "\t.utf8nfdidata = utf8nfdidata,\n");
fprintf(file, "\t.utf8nfdidata_size = ARRAY_SIZE(utf8nfdidata),\n");
fprintf(file, "\n");
fprintf(file, "\t.utf8data = utf8data,\n");
fprintf(file, "};\n");
fprintf(file, "EXPORT_SYMBOL_GPL(utf8_data_table);");
fprintf(file, "\n");
fprintf(file, "MODULE_DESCRIPTION(\"UTF8 data table\");\n");
fprintf(file, "MODULE_LICENSE(\"GPL v2\");\n");
fclose(file);
}
/* ------------------------------------------------------------------ */
int main(int argc, char *argv[])
{
unsigned int unichar;
int opt;
argv0 = argv[0];
while ((opt = getopt(argc, argv, "a:c:d:f:hn:o:p:t:v")) != -1) {
switch (opt) {
case 'a':
age_name = optarg;
break;
case 'c':
ccc_name = optarg;
break;
case 'd':
data_name = optarg;
break;
case 'f':
fold_name = optarg;
break;
case 'n':
norm_name = optarg;
break;
case 'o':
utf8_name = optarg;
break;
case 'p':
prop_name = optarg;
break;
case 't':
test_name = optarg;
break;
case 'v':
verbose++;
break;
case 'h':
help();
exit(0);
default:
usage();
}
}
if (verbose > 1)
help();
for (unichar = 0; unichar != 0x110000; unichar++)
unicode_data[unichar].code = unichar;
age_init();
ccc_init();
nfdi_init();
nfdicf_init();
corrections_init();
hangul_decompose();
nfdi_decompose();
nfdicf_decompose();
utf8_init();
trees_init();
trees_populate();
trees_reduce();
trees_verify();
/* Prevent "unused function" warning. */
(void)lookup(nfdi_tree, " ");
if (verbose > 2)
tree_walk(nfdi_tree);
if (verbose > 2)
tree_walk(nfdicf_tree);
normalization_test();
write_file();
return 0;
}