linux-stable/include/linux/fscrypt.h
Gabriel Krisman Bertazi e9b10713e8 fscrypt: Drop d_revalidate once the key is added
When a key is added, existing directory dentries in the
DCACHE_NOKEY_NAME form are moved by the VFS to the plaintext version.
But, since they have the DCACHE_OP_REVALIDATE flag set, revalidation
will be done at each lookup only to return immediately, since plaintext
dentries can't go stale until eviction.  This patch optimizes this case,
by dropping the flag once the nokey_name dentry becomes plain-text.
Note that non-directory dentries are not moved this way, so they won't
be affected.

Of course, this can only be done if fscrypt is the only thing requiring
revalidation for a dentry.  For this reason, we only disable
d_revalidate if the .d_revalidate hook is fscrypt_d_revalidate itself.

It is safe to do it here because when moving the dentry to the
plain-text version, we are holding the d_lock.  We might race with a
concurrent RCU lookup but this is harmless because, at worst, we will
get an extra d_revalidate on the keyed dentry, which will still find the
dentry to be valid.

Finally, now that we do more than just clear the DCACHE_NOKEY_NAME in
fscrypt_handle_d_move, skip it entirely for plaintext dentries, to avoid
extra costs.

Reviewed-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20240221171412.10710-5-krisman@suse.de
Signed-off-by: Gabriel Krisman Bertazi <krisman@suse.de>
2024-02-27 16:55:34 -05:00

1123 lines
34 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* fscrypt.h: declarations for per-file encryption
*
* Filesystems that implement per-file encryption must include this header
* file.
*
* Copyright (C) 2015, Google, Inc.
*
* Written by Michael Halcrow, 2015.
* Modified by Jaegeuk Kim, 2015.
*/
#ifndef _LINUX_FSCRYPT_H
#define _LINUX_FSCRYPT_H
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <uapi/linux/fscrypt.h>
/*
* The lengths of all file contents blocks must be divisible by this value.
* This is needed to ensure that all contents encryption modes will work, as
* some of the supported modes don't support arbitrarily byte-aligned messages.
*
* Since the needed alignment is 16 bytes, most filesystems will meet this
* requirement naturally, as typical block sizes are powers of 2. However, if a
* filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
* compression), then it will need to pad to this alignment before encryption.
*/
#define FSCRYPT_CONTENTS_ALIGNMENT 16
union fscrypt_policy;
struct fscrypt_inode_info;
struct fs_parameter;
struct seq_file;
struct fscrypt_str {
unsigned char *name;
u32 len;
};
struct fscrypt_name {
const struct qstr *usr_fname;
struct fscrypt_str disk_name;
u32 hash;
u32 minor_hash;
struct fscrypt_str crypto_buf;
bool is_nokey_name;
};
#define FSTR_INIT(n, l) { .name = n, .len = l }
#define FSTR_TO_QSTR(f) QSTR_INIT((f)->name, (f)->len)
#define fname_name(p) ((p)->disk_name.name)
#define fname_len(p) ((p)->disk_name.len)
/* Maximum value for the third parameter of fscrypt_operations.set_context(). */
#define FSCRYPT_SET_CONTEXT_MAX_SIZE 40
#ifdef CONFIG_FS_ENCRYPTION
/* Crypto operations for filesystems */
struct fscrypt_operations {
/*
* If set, then fs/crypto/ will allocate a global bounce page pool the
* first time an encryption key is set up for a file. The bounce page
* pool is required by the following functions:
*
* - fscrypt_encrypt_pagecache_blocks()
* - fscrypt_zeroout_range() for files not using inline crypto
*
* If the filesystem doesn't use those, it doesn't need to set this.
*/
unsigned int needs_bounce_pages : 1;
/*
* If set, then fs/crypto/ will allow the use of encryption settings
* that assume inode numbers fit in 32 bits (i.e.
* FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64}), provided that the other
* prerequisites for these settings are also met. This is only useful
* if the filesystem wants to support inline encryption hardware that is
* limited to 32-bit or 64-bit data unit numbers and where programming
* keyslots is very slow.
*/
unsigned int has_32bit_inodes : 1;
/*
* If set, then fs/crypto/ will allow users to select a crypto data unit
* size that is less than the filesystem block size. This is done via
* the log2_data_unit_size field of the fscrypt policy. This flag is
* not compatible with filesystems that encrypt variable-length blocks
* (i.e. blocks that aren't all equal to filesystem's block size), for
* example as a result of compression. It's also not compatible with
* the fscrypt_encrypt_block_inplace() and
* fscrypt_decrypt_block_inplace() functions.
*/
unsigned int supports_subblock_data_units : 1;
/*
* This field exists only for backwards compatibility reasons and should
* only be set by the filesystems that are setting it already. It
* contains the filesystem-specific key description prefix that is
* accepted for "logon" keys for v1 fscrypt policies. This
* functionality is deprecated in favor of the generic prefix
* "fscrypt:", which itself is deprecated in favor of the filesystem
* keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY. Filesystems that
* are newly adding fscrypt support should not set this field.
*/
const char *legacy_key_prefix;
/*
* Get the fscrypt context of the given inode.
*
* @inode: the inode whose context to get
* @ctx: the buffer into which to get the context
* @len: length of the @ctx buffer in bytes
*
* Return: On success, returns the length of the context in bytes; this
* may be less than @len. On failure, returns -ENODATA if the
* inode doesn't have a context, -ERANGE if the context is
* longer than @len, or another -errno code.
*/
int (*get_context)(struct inode *inode, void *ctx, size_t len);
/*
* Set an fscrypt context on the given inode.
*
* @inode: the inode whose context to set. The inode won't already have
* an fscrypt context.
* @ctx: the context to set
* @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
* @fs_data: If called from fscrypt_set_context(), this will be the
* value the filesystem passed to fscrypt_set_context().
* Otherwise (i.e. when called from
* FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
*
* i_rwsem will be held for write.
*
* Return: 0 on success, -errno on failure.
*/
int (*set_context)(struct inode *inode, const void *ctx, size_t len,
void *fs_data);
/*
* Get the dummy fscrypt policy in use on the filesystem (if any).
*
* Filesystems only need to implement this function if they support the
* test_dummy_encryption mount option.
*
* Return: A pointer to the dummy fscrypt policy, if the filesystem is
* mounted with test_dummy_encryption; otherwise NULL.
*/
const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);
/*
* Check whether a directory is empty. i_rwsem will be held for write.
*/
bool (*empty_dir)(struct inode *inode);
/*
* Check whether the filesystem's inode numbers and UUID are stable,
* meaning that they will never be changed even by offline operations
* such as filesystem shrinking and therefore can be used in the
* encryption without the possibility of files becoming unreadable.
*
* Filesystems only need to implement this function if they want to
* support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags. These
* flags are designed to work around the limitations of UFS and eMMC
* inline crypto hardware, and they shouldn't be used in scenarios where
* such hardware isn't being used.
*
* Leaving this NULL is equivalent to always returning false.
*/
bool (*has_stable_inodes)(struct super_block *sb);
/*
* Return an array of pointers to the block devices to which the
* filesystem may write encrypted file contents, NULL if the filesystem
* only has a single such block device, or an ERR_PTR() on error.
*
* On successful non-NULL return, *num_devs is set to the number of
* devices in the returned array. The caller must free the returned
* array using kfree().
*
* If the filesystem can use multiple block devices (other than block
* devices that aren't used for encrypted file contents, such as
* external journal devices), and wants to support inline encryption,
* then it must implement this function. Otherwise it's not needed.
*/
struct block_device **(*get_devices)(struct super_block *sb,
unsigned int *num_devs);
};
int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags);
static inline struct fscrypt_inode_info *
fscrypt_get_inode_info(const struct inode *inode)
{
/*
* Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
* I.e., another task may publish ->i_crypt_info concurrently, executing
* a RELEASE barrier. We need to use smp_load_acquire() here to safely
* ACQUIRE the memory the other task published.
*/
return smp_load_acquire(&inode->i_crypt_info);
}
/**
* fscrypt_needs_contents_encryption() - check whether an inode needs
* contents encryption
* @inode: the inode to check
*
* Return: %true iff the inode is an encrypted regular file and the kernel was
* built with fscrypt support.
*
* If you need to know whether the encrypt bit is set even when the kernel was
* built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
*/
static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
{
return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
}
/*
* When d_splice_alias() moves a directory's no-key alias to its
* plaintext alias as a result of the encryption key being added,
* DCACHE_NOKEY_NAME must be cleared and there might be an opportunity
* to disable d_revalidate. Note that we don't have to support the
* inverse operation because fscrypt doesn't allow no-key names to be
* the source or target of a rename().
*/
static inline void fscrypt_handle_d_move(struct dentry *dentry)
{
/*
* VFS calls fscrypt_handle_d_move even for non-fscrypt
* filesystems.
*/
if (dentry->d_flags & DCACHE_NOKEY_NAME) {
dentry->d_flags &= ~DCACHE_NOKEY_NAME;
/*
* Other filesystem features might be handling dentry
* revalidation, in which case it cannot be disabled.
*/
if (dentry->d_op->d_revalidate == fscrypt_d_revalidate)
dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
}
}
/**
* fscrypt_is_nokey_name() - test whether a dentry is a no-key name
* @dentry: the dentry to check
*
* This returns true if the dentry is a no-key dentry. A no-key dentry is a
* dentry that was created in an encrypted directory that hasn't had its
* encryption key added yet. Such dentries may be either positive or negative.
*
* When a filesystem is asked to create a new filename in an encrypted directory
* and the new filename's dentry is a no-key dentry, it must fail the operation
* with ENOKEY. This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
* ->rename(), and ->link(). (However, ->rename() and ->link() are already
* handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
*
* This is necessary because creating a filename requires the directory's
* encryption key, but just checking for the key on the directory inode during
* the final filesystem operation doesn't guarantee that the key was available
* during the preceding dentry lookup. And the key must have already been
* available during the dentry lookup in order for it to have been checked
* whether the filename already exists in the directory and for the new file's
* dentry not to be invalidated due to it incorrectly having the no-key flag.
*
* Return: %true if the dentry is a no-key name
*/
static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
{
return dentry->d_flags & DCACHE_NOKEY_NAME;
}
static inline void fscrypt_prepare_dentry(struct dentry *dentry,
bool is_nokey_name)
{
/*
* This code tries to only take ->d_lock when necessary to write
* to ->d_flags. We shouldn't be peeking on d_flags for
* DCACHE_OP_REVALIDATE unlocked, but in the unlikely case
* there is a race, the worst it can happen is that we fail to
* unset DCACHE_OP_REVALIDATE and pay the cost of an extra
* d_revalidate.
*/
if (is_nokey_name) {
spin_lock(&dentry->d_lock);
dentry->d_flags |= DCACHE_NOKEY_NAME;
spin_unlock(&dentry->d_lock);
} else if (dentry->d_flags & DCACHE_OP_REVALIDATE &&
dentry->d_op->d_revalidate == fscrypt_d_revalidate) {
/*
* Unencrypted dentries and encrypted dentries where the
* key is available are always valid from fscrypt
* perspective. Avoid the cost of calling
* fscrypt_d_revalidate unnecessarily.
*/
spin_lock(&dentry->d_lock);
dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
spin_unlock(&dentry->d_lock);
}
}
/* crypto.c */
void fscrypt_enqueue_decrypt_work(struct work_struct *);
struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
unsigned int len,
unsigned int offs,
gfp_t gfp_flags);
int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
unsigned int len, unsigned int offs,
u64 lblk_num, gfp_t gfp_flags);
int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
size_t offs);
int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
unsigned int len, unsigned int offs,
u64 lblk_num);
static inline bool fscrypt_is_bounce_page(struct page *page)
{
return page->mapping == NULL;
}
static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
{
return (struct page *)page_private(bounce_page);
}
static inline bool fscrypt_is_bounce_folio(struct folio *folio)
{
return folio->mapping == NULL;
}
static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
{
return bounce_folio->private;
}
void fscrypt_free_bounce_page(struct page *bounce_page);
/* policy.c */
int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
int fscrypt_context_for_new_inode(void *ctx, struct inode *inode);
int fscrypt_set_context(struct inode *inode, void *fs_data);
struct fscrypt_dummy_policy {
const union fscrypt_policy *policy;
};
int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
struct fscrypt_dummy_policy *dummy_policy);
bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
const struct fscrypt_dummy_policy *p2);
void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
struct super_block *sb);
static inline bool
fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
{
return dummy_policy->policy != NULL;
}
static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
{
kfree(dummy_policy->policy);
dummy_policy->policy = NULL;
}
/* keyring.c */
void fscrypt_destroy_keyring(struct super_block *sb);
int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);
/* keysetup.c */
int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
bool *encrypt_ret);
void fscrypt_put_encryption_info(struct inode *inode);
void fscrypt_free_inode(struct inode *inode);
int fscrypt_drop_inode(struct inode *inode);
/* fname.c */
int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
u8 *out, unsigned int olen);
bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
u32 max_len, u32 *encrypted_len_ret);
int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
int lookup, struct fscrypt_name *fname);
static inline void fscrypt_free_filename(struct fscrypt_name *fname)
{
kfree(fname->crypto_buf.name);
}
int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
struct fscrypt_str *crypto_str);
void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
int fscrypt_fname_disk_to_usr(const struct inode *inode,
u32 hash, u32 minor_hash,
const struct fscrypt_str *iname,
struct fscrypt_str *oname);
bool fscrypt_match_name(const struct fscrypt_name *fname,
const u8 *de_name, u32 de_name_len);
u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);
/* bio.c */
bool fscrypt_decrypt_bio(struct bio *bio);
int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
sector_t pblk, unsigned int len);
/* hooks.c */
int fscrypt_file_open(struct inode *inode, struct file *filp);
int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
struct dentry *dentry);
int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags);
int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
struct fscrypt_name *fname);
int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry);
int __fscrypt_prepare_readdir(struct inode *dir);
int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
int fscrypt_prepare_setflags(struct inode *inode,
unsigned int oldflags, unsigned int flags);
int fscrypt_prepare_symlink(struct inode *dir, const char *target,
unsigned int len, unsigned int max_len,
struct fscrypt_str *disk_link);
int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
unsigned int len, struct fscrypt_str *disk_link);
const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
unsigned int max_size,
struct delayed_call *done);
int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
static inline void fscrypt_set_ops(struct super_block *sb,
const struct fscrypt_operations *s_cop)
{
sb->s_cop = s_cop;
}
#else /* !CONFIG_FS_ENCRYPTION */
static inline struct fscrypt_inode_info *
fscrypt_get_inode_info(const struct inode *inode)
{
return NULL;
}
static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
{
return false;
}
static inline void fscrypt_handle_d_move(struct dentry *dentry)
{
}
static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
{
return false;
}
static inline void fscrypt_prepare_dentry(struct dentry *dentry,
bool is_nokey_name)
{
}
/* crypto.c */
static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
{
}
static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
unsigned int len,
unsigned int offs,
gfp_t gfp_flags)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
struct page *page,
unsigned int len,
unsigned int offs, u64 lblk_num,
gfp_t gfp_flags)
{
return -EOPNOTSUPP;
}
static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio,
size_t len, size_t offs)
{
return -EOPNOTSUPP;
}
static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
struct page *page,
unsigned int len,
unsigned int offs, u64 lblk_num)
{
return -EOPNOTSUPP;
}
static inline bool fscrypt_is_bounce_page(struct page *page)
{
return false;
}
static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
{
WARN_ON_ONCE(1);
return ERR_PTR(-EINVAL);
}
static inline bool fscrypt_is_bounce_folio(struct folio *folio)
{
return false;
}
static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
{
WARN_ON_ONCE(1);
return ERR_PTR(-EINVAL);
}
static inline void fscrypt_free_bounce_page(struct page *bounce_page)
{
}
/* policy.c */
static inline int fscrypt_ioctl_set_policy(struct file *filp,
const void __user *arg)
{
return -EOPNOTSUPP;
}
static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
{
return -EOPNOTSUPP;
}
static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
void __user *arg)
{
return -EOPNOTSUPP;
}
static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
{
return -EOPNOTSUPP;
}
static inline int fscrypt_has_permitted_context(struct inode *parent,
struct inode *child)
{
return 0;
}
static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
{
return -EOPNOTSUPP;
}
struct fscrypt_dummy_policy {
};
static inline int
fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
struct fscrypt_dummy_policy *dummy_policy)
{
return -EINVAL;
}
static inline bool
fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
const struct fscrypt_dummy_policy *p2)
{
return true;
}
static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
char sep,
struct super_block *sb)
{
}
static inline bool
fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
{
return false;
}
static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
{
}
/* keyring.c */
static inline void fscrypt_destroy_keyring(struct super_block *sb)
{
}
static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
{
return -EOPNOTSUPP;
}
static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
{
return -EOPNOTSUPP;
}
static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
void __user *arg)
{
return -EOPNOTSUPP;
}
static inline int fscrypt_ioctl_get_key_status(struct file *filp,
void __user *arg)
{
return -EOPNOTSUPP;
}
/* keysetup.c */
static inline int fscrypt_prepare_new_inode(struct inode *dir,
struct inode *inode,
bool *encrypt_ret)
{
if (IS_ENCRYPTED(dir))
return -EOPNOTSUPP;
return 0;
}
static inline void fscrypt_put_encryption_info(struct inode *inode)
{
return;
}
static inline void fscrypt_free_inode(struct inode *inode)
{
}
static inline int fscrypt_drop_inode(struct inode *inode)
{
return 0;
}
/* fname.c */
static inline int fscrypt_setup_filename(struct inode *dir,
const struct qstr *iname,
int lookup, struct fscrypt_name *fname)
{
if (IS_ENCRYPTED(dir))
return -EOPNOTSUPP;
memset(fname, 0, sizeof(*fname));
fname->usr_fname = iname;
fname->disk_name.name = (unsigned char *)iname->name;
fname->disk_name.len = iname->len;
return 0;
}
static inline void fscrypt_free_filename(struct fscrypt_name *fname)
{
return;
}
static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
struct fscrypt_str *crypto_str)
{
return -EOPNOTSUPP;
}
static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
{
return;
}
static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
u32 hash, u32 minor_hash,
const struct fscrypt_str *iname,
struct fscrypt_str *oname)
{
return -EOPNOTSUPP;
}
static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
const u8 *de_name, u32 de_name_len)
{
/* Encryption support disabled; use standard comparison */
if (de_name_len != fname->disk_name.len)
return false;
return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
}
static inline u64 fscrypt_fname_siphash(const struct inode *dir,
const struct qstr *name)
{
WARN_ON_ONCE(1);
return 0;
}
static inline int fscrypt_d_revalidate(struct dentry *dentry,
unsigned int flags)
{
return 1;
}
/* bio.c */
static inline bool fscrypt_decrypt_bio(struct bio *bio)
{
return true;
}
static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
sector_t pblk, unsigned int len)
{
return -EOPNOTSUPP;
}
/* hooks.c */
static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
{
if (IS_ENCRYPTED(inode))
return -EOPNOTSUPP;
return 0;
}
static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
struct dentry *dentry)
{
return -EOPNOTSUPP;
}
static inline int __fscrypt_prepare_rename(struct inode *old_dir,
struct dentry *old_dentry,
struct inode *new_dir,
struct dentry *new_dentry,
unsigned int flags)
{
return -EOPNOTSUPP;
}
static inline int __fscrypt_prepare_lookup(struct inode *dir,
struct dentry *dentry,
struct fscrypt_name *fname)
{
return -EOPNOTSUPP;
}
static inline int fscrypt_prepare_lookup_partial(struct inode *dir,
struct dentry *dentry)
{
return -EOPNOTSUPP;
}
static inline int __fscrypt_prepare_readdir(struct inode *dir)
{
return -EOPNOTSUPP;
}
static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
struct iattr *attr)
{
return -EOPNOTSUPP;
}
static inline int fscrypt_prepare_setflags(struct inode *inode,
unsigned int oldflags,
unsigned int flags)
{
return 0;
}
static inline int fscrypt_prepare_symlink(struct inode *dir,
const char *target,
unsigned int len,
unsigned int max_len,
struct fscrypt_str *disk_link)
{
if (IS_ENCRYPTED(dir))
return -EOPNOTSUPP;
disk_link->name = (unsigned char *)target;
disk_link->len = len + 1;
if (disk_link->len > max_len)
return -ENAMETOOLONG;
return 0;
}
static inline int __fscrypt_encrypt_symlink(struct inode *inode,
const char *target,
unsigned int len,
struct fscrypt_str *disk_link)
{
return -EOPNOTSUPP;
}
static inline const char *fscrypt_get_symlink(struct inode *inode,
const void *caddr,
unsigned int max_size,
struct delayed_call *done)
{
return ERR_PTR(-EOPNOTSUPP);
}
static inline int fscrypt_symlink_getattr(const struct path *path,
struct kstat *stat)
{
return -EOPNOTSUPP;
}
static inline void fscrypt_set_ops(struct super_block *sb,
const struct fscrypt_operations *s_cop)
{
}
#endif /* !CONFIG_FS_ENCRYPTION */
/* inline_crypt.c */
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);
void fscrypt_set_bio_crypt_ctx(struct bio *bio,
const struct inode *inode, u64 first_lblk,
gfp_t gfp_mask);
void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
const struct buffer_head *first_bh,
gfp_t gfp_mask);
bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
u64 next_lblk);
bool fscrypt_mergeable_bio_bh(struct bio *bio,
const struct buffer_head *next_bh);
bool fscrypt_dio_supported(struct inode *inode);
u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);
#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
{
return false;
}
static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
const struct inode *inode,
u64 first_lblk, gfp_t gfp_mask) { }
static inline void fscrypt_set_bio_crypt_ctx_bh(
struct bio *bio,
const struct buffer_head *first_bh,
gfp_t gfp_mask) { }
static inline bool fscrypt_mergeable_bio(struct bio *bio,
const struct inode *inode,
u64 next_lblk)
{
return true;
}
static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
const struct buffer_head *next_bh)
{
return true;
}
static inline bool fscrypt_dio_supported(struct inode *inode)
{
return !fscrypt_needs_contents_encryption(inode);
}
static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
u64 nr_blocks)
{
return nr_blocks;
}
#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
/**
* fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
* encryption
* @inode: an inode. If encrypted, its key must be set up.
*
* Return: true if the inode requires file contents encryption and if the
* encryption should be done in the block layer via blk-crypto rather
* than in the filesystem layer.
*/
static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
{
return fscrypt_needs_contents_encryption(inode) &&
__fscrypt_inode_uses_inline_crypto(inode);
}
/**
* fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
* encryption
* @inode: an inode. If encrypted, its key must be set up.
*
* Return: true if the inode requires file contents encryption and if the
* encryption should be done in the filesystem layer rather than in the
* block layer via blk-crypto.
*/
static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
{
return fscrypt_needs_contents_encryption(inode) &&
!__fscrypt_inode_uses_inline_crypto(inode);
}
/**
* fscrypt_has_encryption_key() - check whether an inode has had its key set up
* @inode: the inode to check
*
* Return: %true if the inode has had its encryption key set up, else %false.
*
* Usually this should be preceded by fscrypt_get_encryption_info() to try to
* set up the key first.
*/
static inline bool fscrypt_has_encryption_key(const struct inode *inode)
{
return fscrypt_get_inode_info(inode) != NULL;
}
/**
* fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
* directory
* @old_dentry: an existing dentry for the inode being linked
* @dir: the target directory
* @dentry: negative dentry for the target filename
*
* A new link can only be added to an encrypted directory if the directory's
* encryption key is available --- since otherwise we'd have no way to encrypt
* the filename.
*
* We also verify that the link will not violate the constraint that all files
* in an encrypted directory tree use the same encryption policy.
*
* Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
* -EXDEV if the link would result in an inconsistent encryption policy, or
* another -errno code.
*/
static inline int fscrypt_prepare_link(struct dentry *old_dentry,
struct inode *dir,
struct dentry *dentry)
{
if (IS_ENCRYPTED(dir))
return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
return 0;
}
/**
* fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
* directories
* @old_dir: source directory
* @old_dentry: dentry for source file
* @new_dir: target directory
* @new_dentry: dentry for target location (may be negative unless exchanging)
* @flags: rename flags (we care at least about %RENAME_EXCHANGE)
*
* Prepare for ->rename() where the source and/or target directories may be
* encrypted. A new link can only be added to an encrypted directory if the
* directory's encryption key is available --- since otherwise we'd have no way
* to encrypt the filename. A rename to an existing name, on the other hand,
* *is* cryptographically possible without the key. However, we take the more
* conservative approach and just forbid all no-key renames.
*
* We also verify that the rename will not violate the constraint that all files
* in an encrypted directory tree use the same encryption policy.
*
* Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
* rename would cause inconsistent encryption policies, or another -errno code.
*/
static inline int fscrypt_prepare_rename(struct inode *old_dir,
struct dentry *old_dentry,
struct inode *new_dir,
struct dentry *new_dentry,
unsigned int flags)
{
if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
return __fscrypt_prepare_rename(old_dir, old_dentry,
new_dir, new_dentry, flags);
return 0;
}
/**
* fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
* directory
* @dir: directory being searched
* @dentry: filename being looked up
* @fname: (output) the name to use to search the on-disk directory
*
* Prepare for ->lookup() in a directory which may be encrypted by determining
* the name that will actually be used to search the directory on-disk. If the
* directory's encryption policy is supported by this kernel and its encryption
* key is available, then the lookup is assumed to be by plaintext name;
* otherwise, it is assumed to be by no-key name.
*
* This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
* name. In this case the filesystem must assign the dentry a dentry_operations
* which contains fscrypt_d_revalidate (or contains a d_revalidate method that
* calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
* directory's encryption key is later added.
*
* Return: 0 on success; -ENOENT if the directory's key is unavailable but the
* filename isn't a valid no-key name, so a negative dentry should be created;
* or another -errno code.
*/
static inline int fscrypt_prepare_lookup(struct inode *dir,
struct dentry *dentry,
struct fscrypt_name *fname)
{
if (IS_ENCRYPTED(dir))
return __fscrypt_prepare_lookup(dir, dentry, fname);
memset(fname, 0, sizeof(*fname));
fname->usr_fname = &dentry->d_name;
fname->disk_name.name = (unsigned char *)dentry->d_name.name;
fname->disk_name.len = dentry->d_name.len;
fscrypt_prepare_dentry(dentry, false);
return 0;
}
/**
* fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
* @dir: the directory inode
*
* If the directory is encrypted and it doesn't already have its encryption key
* set up, try to set it up so that the filenames will be listed in plaintext
* form rather than in no-key form.
*
* Return: 0 on success; -errno on error. Note that the encryption key being
* unavailable is not considered an error. It is also not an error if
* the encryption policy is unsupported by this kernel; that is treated
* like the key being unavailable, so that files can still be deleted.
*/
static inline int fscrypt_prepare_readdir(struct inode *dir)
{
if (IS_ENCRYPTED(dir))
return __fscrypt_prepare_readdir(dir);
return 0;
}
/**
* fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
* attributes
* @dentry: dentry through which the inode is being changed
* @attr: attributes to change
*
* Prepare for ->setattr() on a possibly-encrypted inode. On an encrypted file,
* most attribute changes are allowed even without the encryption key. However,
* without the encryption key we do have to forbid truncates. This is needed
* because the size being truncated to may not be a multiple of the filesystem
* block size, and in that case we'd have to decrypt the final block, zero the
* portion past i_size, and re-encrypt it. (We *could* allow truncating to a
* filesystem block boundary, but it's simpler to just forbid all truncates ---
* and we already forbid all other contents modifications without the key.)
*
* Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
* if a problem occurred while setting up the encryption key.
*/
static inline int fscrypt_prepare_setattr(struct dentry *dentry,
struct iattr *attr)
{
if (IS_ENCRYPTED(d_inode(dentry)))
return __fscrypt_prepare_setattr(dentry, attr);
return 0;
}
/**
* fscrypt_encrypt_symlink() - encrypt the symlink target if needed
* @inode: symlink inode
* @target: plaintext symlink target
* @len: length of @target excluding null terminator
* @disk_link: (in/out) the on-disk symlink target being prepared
*
* If the symlink target needs to be encrypted, then this function encrypts it
* into @disk_link->name. fscrypt_prepare_symlink() must have been called
* previously to compute @disk_link->len. If the filesystem did not allocate a
* buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
* will be kmalloc()'ed and the filesystem will be responsible for freeing it.
*
* Return: 0 on success, -errno on failure
*/
static inline int fscrypt_encrypt_symlink(struct inode *inode,
const char *target,
unsigned int len,
struct fscrypt_str *disk_link)
{
if (IS_ENCRYPTED(inode))
return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
return 0;
}
/* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
static inline void fscrypt_finalize_bounce_page(struct page **pagep)
{
struct page *page = *pagep;
if (fscrypt_is_bounce_page(page)) {
*pagep = fscrypt_pagecache_page(page);
fscrypt_free_bounce_page(page);
}
}
#endif /* _LINUX_FSCRYPT_H */