mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 02:36:02 +00:00
5c00ff742b
Sergey Senozhatsky improves zram's post-processing selection algorithm. This leads to improved memory savings. - Wei Yang has gone to town on the mapletree code, contributing several series which clean up the implementation: - "refine mas_mab_cp()" - "Reduce the space to be cleared for maple_big_node" - "maple_tree: simplify mas_push_node()" - "Following cleanup after introduce mas_wr_store_type()" - "refine storing null" - The series "selftests/mm: hugetlb_fault_after_madv improvements" from David Hildenbrand fixes this selftest for s390. - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng implements some rationaizations and cleanups in the page mapping code. - The series "mm: optimize shadow entries removal" from Shakeel Butt optimizes the file truncation code by speeding up the handling of shadow entries. - The series "Remove PageKsm()" from Matthew Wilcox completes the migration of this flag over to being a folio-based flag. - The series "Unify hugetlb into arch_get_unmapped_area functions" from Oscar Salvador implements a bunch of consolidations and cleanups in the hugetlb code. - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain takes away the wp-fault time practice of turning a huge zero page into small pages. Instead we replace the whole thing with a THP. More consistent cleaner and potentiall saves a large number of pagefaults. - The series "percpu: Add a test case and fix for clang" from Andy Shevchenko enhances and fixes the kernel's built in percpu test code. - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett optimizes mremap() by avoiding doing things which we didn't need to do. - The series "Improve the tmpfs large folio read performance" from Baolin Wang teaches tmpfs to copy data into userspace at the folio size rather than as individual pages. A 20% speedup was observed. - The series "mm/damon/vaddr: Fix issue in damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting. - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt removes the long-deprecated memcgv2 charge moving feature. - The series "fix error handling in mmap_region() and refactor" from Lorenzo Stoakes cleanup up some of the mmap() error handling and addresses some potential performance issues. - The series "x86/module: use large ROX pages for text allocations" from Mike Rapoport teaches x86 to use large pages for read-only-execute module text. - The series "page allocation tag compression" from Suren Baghdasaryan is followon maintenance work for the new page allocation profiling feature. - The series "page->index removals in mm" from Matthew Wilcox remove most references to page->index in mm/. A slow march towards shrinking struct page. - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs interface tests" from Andrew Paniakin performs maintenance work for DAMON's self testing code. - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar improves zswap's batching of compression and decompression. It is a step along the way towards using Intel IAA hardware acceleration for this zswap operation. - The series "kasan: migrate the last module test to kunit" from Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests over to the KUnit framework. - The series "implement lightweight guard pages" from Lorenzo Stoakes permits userapace to place fault-generating guard pages within a single VMA, rather than requiring that multiple VMAs be created for this. Improved efficiencies for userspace memory allocators are expected. - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses tracepoints to provide increased visibility into memcg stats flushing activity. - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky fixes a zram buglet which potentially affected performance. - The series "mm: add more kernel parameters to control mTHP" from Maíra Canal enhances our ability to control/configuremultisize THP from the kernel boot command line. - The series "kasan: few improvements on kunit tests" from Sabyrzhan Tasbolatov has a couple of fixups for the KASAN KUnit tests. - The series "mm/list_lru: Split list_lru lock into per-cgroup scope" from Kairui Song optimizes list_lru memory utilization when lockdep is enabled. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZzwFqgAKCRDdBJ7gKXxA jkeuAQCkl+BmeYHE6uG0hi3pRxkupseR6DEOAYIiTv0/l8/GggD/Z3jmEeqnZaNq xyyenpibWgUoShU2wZ/Ha8FE5WDINwg= =JfWR -----END PGP SIGNATURE----- Merge tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - The series "zram: optimal post-processing target selection" from Sergey Senozhatsky improves zram's post-processing selection algorithm. This leads to improved memory savings. - Wei Yang has gone to town on the mapletree code, contributing several series which clean up the implementation: - "refine mas_mab_cp()" - "Reduce the space to be cleared for maple_big_node" - "maple_tree: simplify mas_push_node()" - "Following cleanup after introduce mas_wr_store_type()" - "refine storing null" - The series "selftests/mm: hugetlb_fault_after_madv improvements" from David Hildenbrand fixes this selftest for s390. - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng implements some rationaizations and cleanups in the page mapping code. - The series "mm: optimize shadow entries removal" from Shakeel Butt optimizes the file truncation code by speeding up the handling of shadow entries. - The series "Remove PageKsm()" from Matthew Wilcox completes the migration of this flag over to being a folio-based flag. - The series "Unify hugetlb into arch_get_unmapped_area functions" from Oscar Salvador implements a bunch of consolidations and cleanups in the hugetlb code. - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain takes away the wp-fault time practice of turning a huge zero page into small pages. Instead we replace the whole thing with a THP. More consistent cleaner and potentiall saves a large number of pagefaults. - The series "percpu: Add a test case and fix for clang" from Andy Shevchenko enhances and fixes the kernel's built in percpu test code. - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett optimizes mremap() by avoiding doing things which we didn't need to do. - The series "Improve the tmpfs large folio read performance" from Baolin Wang teaches tmpfs to copy data into userspace at the folio size rather than as individual pages. A 20% speedup was observed. - The series "mm/damon/vaddr: Fix issue in damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting. - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt removes the long-deprecated memcgv2 charge moving feature. - The series "fix error handling in mmap_region() and refactor" from Lorenzo Stoakes cleanup up some of the mmap() error handling and addresses some potential performance issues. - The series "x86/module: use large ROX pages for text allocations" from Mike Rapoport teaches x86 to use large pages for read-only-execute module text. - The series "page allocation tag compression" from Suren Baghdasaryan is followon maintenance work for the new page allocation profiling feature. - The series "page->index removals in mm" from Matthew Wilcox remove most references to page->index in mm/. A slow march towards shrinking struct page. - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs interface tests" from Andrew Paniakin performs maintenance work for DAMON's self testing code. - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar improves zswap's batching of compression and decompression. It is a step along the way towards using Intel IAA hardware acceleration for this zswap operation. - The series "kasan: migrate the last module test to kunit" from Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests over to the KUnit framework. - The series "implement lightweight guard pages" from Lorenzo Stoakes permits userapace to place fault-generating guard pages within a single VMA, rather than requiring that multiple VMAs be created for this. Improved efficiencies for userspace memory allocators are expected. - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses tracepoints to provide increased visibility into memcg stats flushing activity. - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky fixes a zram buglet which potentially affected performance. - The series "mm: add more kernel parameters to control mTHP" from Maíra Canal enhances our ability to control/configuremultisize THP from the kernel boot command line. - The series "kasan: few improvements on kunit tests" from Sabyrzhan Tasbolatov has a couple of fixups for the KASAN KUnit tests. - The series "mm/list_lru: Split list_lru lock into per-cgroup scope" from Kairui Song optimizes list_lru memory utilization when lockdep is enabled. * tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits) cma: enforce non-zero pageblock_order during cma_init_reserved_mem() mm/kfence: add a new kunit test test_use_after_free_read_nofault() zram: fix NULL pointer in comp_algorithm_show() memcg/hugetlb: add hugeTLB counters to memcg vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount zram: ZRAM_DEF_COMP should depend on ZRAM MAINTAINERS/MEMORY MANAGEMENT: add document files for mm Docs/mm/damon: recommend academic papers to read and/or cite mm: define general function pXd_init() kmemleak: iommu/iova: fix transient kmemleak false positive mm/list_lru: simplify the list_lru walk callback function mm/list_lru: split the lock to per-cgroup scope mm/list_lru: simplify reparenting and initial allocation mm/list_lru: code clean up for reparenting mm/list_lru: don't export list_lru_add mm/list_lru: don't pass unnecessary key parameters kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols ...
451 lines
15 KiB
C
451 lines
15 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef __LINUX_GFP_H
|
|
#define __LINUX_GFP_H
|
|
|
|
#include <linux/gfp_types.h>
|
|
|
|
#include <linux/mmzone.h>
|
|
#include <linux/topology.h>
|
|
#include <linux/alloc_tag.h>
|
|
#include <linux/sched.h>
|
|
|
|
struct vm_area_struct;
|
|
struct mempolicy;
|
|
|
|
/* Convert GFP flags to their corresponding migrate type */
|
|
#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
|
|
#define GFP_MOVABLE_SHIFT 3
|
|
|
|
static inline int gfp_migratetype(const gfp_t gfp_flags)
|
|
{
|
|
VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
|
|
BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
|
|
BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
|
|
BUILD_BUG_ON((___GFP_RECLAIMABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_RECLAIMABLE);
|
|
BUILD_BUG_ON(((___GFP_MOVABLE | ___GFP_RECLAIMABLE) >>
|
|
GFP_MOVABLE_SHIFT) != MIGRATE_HIGHATOMIC);
|
|
|
|
if (unlikely(page_group_by_mobility_disabled))
|
|
return MIGRATE_UNMOVABLE;
|
|
|
|
/* Group based on mobility */
|
|
return (__force unsigned long)(gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
|
|
}
|
|
#undef GFP_MOVABLE_MASK
|
|
#undef GFP_MOVABLE_SHIFT
|
|
|
|
static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
|
|
{
|
|
return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
|
|
}
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
|
|
#else
|
|
#define OPT_ZONE_HIGHMEM ZONE_NORMAL
|
|
#endif
|
|
|
|
#ifdef CONFIG_ZONE_DMA
|
|
#define OPT_ZONE_DMA ZONE_DMA
|
|
#else
|
|
#define OPT_ZONE_DMA ZONE_NORMAL
|
|
#endif
|
|
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
#define OPT_ZONE_DMA32 ZONE_DMA32
|
|
#else
|
|
#define OPT_ZONE_DMA32 ZONE_NORMAL
|
|
#endif
|
|
|
|
/*
|
|
* GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
|
|
* zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
|
|
* bits long and there are 16 of them to cover all possible combinations of
|
|
* __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
|
|
*
|
|
* The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
|
|
* But GFP_MOVABLE is not only a zone specifier but also an allocation
|
|
* policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
|
|
* Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
|
|
*
|
|
* bit result
|
|
* =================
|
|
* 0x0 => NORMAL
|
|
* 0x1 => DMA or NORMAL
|
|
* 0x2 => HIGHMEM or NORMAL
|
|
* 0x3 => BAD (DMA+HIGHMEM)
|
|
* 0x4 => DMA32 or NORMAL
|
|
* 0x5 => BAD (DMA+DMA32)
|
|
* 0x6 => BAD (HIGHMEM+DMA32)
|
|
* 0x7 => BAD (HIGHMEM+DMA32+DMA)
|
|
* 0x8 => NORMAL (MOVABLE+0)
|
|
* 0x9 => DMA or NORMAL (MOVABLE+DMA)
|
|
* 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
|
|
* 0xb => BAD (MOVABLE+HIGHMEM+DMA)
|
|
* 0xc => DMA32 or NORMAL (MOVABLE+DMA32)
|
|
* 0xd => BAD (MOVABLE+DMA32+DMA)
|
|
* 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
|
|
* 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
|
|
*
|
|
* GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
|
|
*/
|
|
|
|
#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
|
|
/* ZONE_DEVICE is not a valid GFP zone specifier */
|
|
#define GFP_ZONES_SHIFT 2
|
|
#else
|
|
#define GFP_ZONES_SHIFT ZONES_SHIFT
|
|
#endif
|
|
|
|
#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
|
|
#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
|
|
#endif
|
|
|
|
#define GFP_ZONE_TABLE ( \
|
|
(ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \
|
|
| (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \
|
|
| (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \
|
|
| (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \
|
|
| (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \
|
|
| (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \
|
|
| (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
|
|
| (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
|
|
)
|
|
|
|
/*
|
|
* GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
|
|
* __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
|
|
* entry starting with bit 0. Bit is set if the combination is not
|
|
* allowed.
|
|
*/
|
|
#define GFP_ZONE_BAD ( \
|
|
1 << (___GFP_DMA | ___GFP_HIGHMEM) \
|
|
| 1 << (___GFP_DMA | ___GFP_DMA32) \
|
|
| 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
|
|
| 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
|
|
| 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
|
|
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
|
|
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
|
|
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
|
|
)
|
|
|
|
static inline enum zone_type gfp_zone(gfp_t flags)
|
|
{
|
|
enum zone_type z;
|
|
int bit = (__force int) (flags & GFP_ZONEMASK);
|
|
|
|
z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
|
|
((1 << GFP_ZONES_SHIFT) - 1);
|
|
VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
|
|
return z;
|
|
}
|
|
|
|
/*
|
|
* There is only one page-allocator function, and two main namespaces to
|
|
* it. The alloc_page*() variants return 'struct page *' and as such
|
|
* can allocate highmem pages, the *get*page*() variants return
|
|
* virtual kernel addresses to the allocated page(s).
|
|
*/
|
|
|
|
static inline int gfp_zonelist(gfp_t flags)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
if (unlikely(flags & __GFP_THISNODE))
|
|
return ZONELIST_NOFALLBACK;
|
|
#endif
|
|
return ZONELIST_FALLBACK;
|
|
}
|
|
|
|
/*
|
|
* gfp flag masking for nested internal allocations.
|
|
*
|
|
* For code that needs to do allocations inside the public allocation API (e.g.
|
|
* memory allocation tracking code) the allocations need to obey the caller
|
|
* allocation context constrains to prevent allocation context mismatches (e.g.
|
|
* GFP_KERNEL allocations in GFP_NOFS contexts) from potential deadlock
|
|
* situations.
|
|
*
|
|
* It is also assumed that these nested allocations are for internal kernel
|
|
* object storage purposes only and are not going to be used for DMA, etc. Hence
|
|
* we strip out all the zone information and leave just the context information
|
|
* intact.
|
|
*
|
|
* Further, internal allocations must fail before the higher level allocation
|
|
* can fail, so we must make them fail faster and fail silently. We also don't
|
|
* want them to deplete emergency reserves. Hence nested allocations must be
|
|
* prepared for these allocations to fail.
|
|
*/
|
|
static inline gfp_t gfp_nested_mask(gfp_t flags)
|
|
{
|
|
return ((flags & (GFP_KERNEL | GFP_ATOMIC | __GFP_NOLOCKDEP)) |
|
|
(__GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN));
|
|
}
|
|
|
|
/*
|
|
* We get the zone list from the current node and the gfp_mask.
|
|
* This zone list contains a maximum of MAX_NUMNODES*MAX_NR_ZONES zones.
|
|
* There are two zonelists per node, one for all zones with memory and
|
|
* one containing just zones from the node the zonelist belongs to.
|
|
*
|
|
* For the case of non-NUMA systems the NODE_DATA() gets optimized to
|
|
* &contig_page_data at compile-time.
|
|
*/
|
|
static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
|
|
{
|
|
return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
|
|
}
|
|
|
|
#ifndef HAVE_ARCH_FREE_PAGE
|
|
static inline void arch_free_page(struct page *page, int order) { }
|
|
#endif
|
|
#ifndef HAVE_ARCH_ALLOC_PAGE
|
|
static inline void arch_alloc_page(struct page *page, int order) { }
|
|
#endif
|
|
|
|
struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
|
|
nodemask_t *nodemask);
|
|
#define __alloc_pages(...) alloc_hooks(__alloc_pages_noprof(__VA_ARGS__))
|
|
|
|
struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
|
|
nodemask_t *nodemask);
|
|
#define __folio_alloc(...) alloc_hooks(__folio_alloc_noprof(__VA_ARGS__))
|
|
|
|
unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
|
|
nodemask_t *nodemask, int nr_pages,
|
|
struct list_head *page_list,
|
|
struct page **page_array);
|
|
#define __alloc_pages_bulk(...) alloc_hooks(alloc_pages_bulk_noprof(__VA_ARGS__))
|
|
|
|
unsigned long alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,
|
|
unsigned long nr_pages,
|
|
struct page **page_array);
|
|
#define alloc_pages_bulk_array_mempolicy(...) \
|
|
alloc_hooks(alloc_pages_bulk_array_mempolicy_noprof(__VA_ARGS__))
|
|
|
|
/* Bulk allocate order-0 pages */
|
|
#define alloc_pages_bulk_list(_gfp, _nr_pages, _list) \
|
|
__alloc_pages_bulk(_gfp, numa_mem_id(), NULL, _nr_pages, _list, NULL)
|
|
|
|
#define alloc_pages_bulk_array(_gfp, _nr_pages, _page_array) \
|
|
__alloc_pages_bulk(_gfp, numa_mem_id(), NULL, _nr_pages, NULL, _page_array)
|
|
|
|
static inline unsigned long
|
|
alloc_pages_bulk_array_node_noprof(gfp_t gfp, int nid, unsigned long nr_pages,
|
|
struct page **page_array)
|
|
{
|
|
if (nid == NUMA_NO_NODE)
|
|
nid = numa_mem_id();
|
|
|
|
return alloc_pages_bulk_noprof(gfp, nid, NULL, nr_pages, NULL, page_array);
|
|
}
|
|
|
|
#define alloc_pages_bulk_array_node(...) \
|
|
alloc_hooks(alloc_pages_bulk_array_node_noprof(__VA_ARGS__))
|
|
|
|
static inline void warn_if_node_offline(int this_node, gfp_t gfp_mask)
|
|
{
|
|
gfp_t warn_gfp = gfp_mask & (__GFP_THISNODE|__GFP_NOWARN);
|
|
|
|
if (warn_gfp != (__GFP_THISNODE|__GFP_NOWARN))
|
|
return;
|
|
|
|
if (node_online(this_node))
|
|
return;
|
|
|
|
pr_warn("%pGg allocation from offline node %d\n", &gfp_mask, this_node);
|
|
dump_stack();
|
|
}
|
|
|
|
/*
|
|
* Allocate pages, preferring the node given as nid. The node must be valid and
|
|
* online. For more general interface, see alloc_pages_node().
|
|
*/
|
|
static inline struct page *
|
|
__alloc_pages_node_noprof(int nid, gfp_t gfp_mask, unsigned int order)
|
|
{
|
|
VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
|
|
warn_if_node_offline(nid, gfp_mask);
|
|
|
|
return __alloc_pages_noprof(gfp_mask, order, nid, NULL);
|
|
}
|
|
|
|
#define __alloc_pages_node(...) alloc_hooks(__alloc_pages_node_noprof(__VA_ARGS__))
|
|
|
|
static inline
|
|
struct folio *__folio_alloc_node_noprof(gfp_t gfp, unsigned int order, int nid)
|
|
{
|
|
VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
|
|
warn_if_node_offline(nid, gfp);
|
|
|
|
return __folio_alloc_noprof(gfp, order, nid, NULL);
|
|
}
|
|
|
|
#define __folio_alloc_node(...) alloc_hooks(__folio_alloc_node_noprof(__VA_ARGS__))
|
|
|
|
/*
|
|
* Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
|
|
* prefer the current CPU's closest node. Otherwise node must be valid and
|
|
* online.
|
|
*/
|
|
static inline struct page *alloc_pages_node_noprof(int nid, gfp_t gfp_mask,
|
|
unsigned int order)
|
|
{
|
|
if (nid == NUMA_NO_NODE)
|
|
nid = numa_mem_id();
|
|
|
|
return __alloc_pages_node_noprof(nid, gfp_mask, order);
|
|
}
|
|
|
|
#define alloc_pages_node(...) alloc_hooks(alloc_pages_node_noprof(__VA_ARGS__))
|
|
|
|
#ifdef CONFIG_NUMA
|
|
struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order);
|
|
struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
|
|
struct mempolicy *mpol, pgoff_t ilx, int nid);
|
|
struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order);
|
|
struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
|
|
struct mempolicy *mpol, pgoff_t ilx, int nid);
|
|
struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
|
|
unsigned long addr);
|
|
#else
|
|
static inline struct page *alloc_pages_noprof(gfp_t gfp_mask, unsigned int order)
|
|
{
|
|
return alloc_pages_node_noprof(numa_node_id(), gfp_mask, order);
|
|
}
|
|
static inline struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
|
|
struct mempolicy *mpol, pgoff_t ilx, int nid)
|
|
{
|
|
return alloc_pages_noprof(gfp, order);
|
|
}
|
|
static inline struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
|
|
{
|
|
return __folio_alloc_node_noprof(gfp, order, numa_node_id());
|
|
}
|
|
static inline struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
|
|
struct mempolicy *mpol, pgoff_t ilx, int nid)
|
|
{
|
|
return folio_alloc_noprof(gfp, order);
|
|
}
|
|
#define vma_alloc_folio_noprof(gfp, order, vma, addr) \
|
|
folio_alloc_noprof(gfp, order)
|
|
#endif
|
|
|
|
#define alloc_pages(...) alloc_hooks(alloc_pages_noprof(__VA_ARGS__))
|
|
#define alloc_pages_mpol(...) alloc_hooks(alloc_pages_mpol_noprof(__VA_ARGS__))
|
|
#define folio_alloc(...) alloc_hooks(folio_alloc_noprof(__VA_ARGS__))
|
|
#define folio_alloc_mpol(...) alloc_hooks(folio_alloc_mpol_noprof(__VA_ARGS__))
|
|
#define vma_alloc_folio(...) alloc_hooks(vma_alloc_folio_noprof(__VA_ARGS__))
|
|
|
|
#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
|
|
|
|
static inline struct page *alloc_page_vma_noprof(gfp_t gfp,
|
|
struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
struct folio *folio = vma_alloc_folio_noprof(gfp, 0, vma, addr);
|
|
|
|
return &folio->page;
|
|
}
|
|
#define alloc_page_vma(...) alloc_hooks(alloc_page_vma_noprof(__VA_ARGS__))
|
|
|
|
extern unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order);
|
|
#define __get_free_pages(...) alloc_hooks(get_free_pages_noprof(__VA_ARGS__))
|
|
|
|
extern unsigned long get_zeroed_page_noprof(gfp_t gfp_mask);
|
|
#define get_zeroed_page(...) alloc_hooks(get_zeroed_page_noprof(__VA_ARGS__))
|
|
|
|
void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) __alloc_size(1);
|
|
#define alloc_pages_exact(...) alloc_hooks(alloc_pages_exact_noprof(__VA_ARGS__))
|
|
|
|
void free_pages_exact(void *virt, size_t size);
|
|
|
|
__meminit void *alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) __alloc_size(2);
|
|
#define alloc_pages_exact_nid(...) \
|
|
alloc_hooks(alloc_pages_exact_nid_noprof(__VA_ARGS__))
|
|
|
|
#define __get_free_page(gfp_mask) \
|
|
__get_free_pages((gfp_mask), 0)
|
|
|
|
#define __get_dma_pages(gfp_mask, order) \
|
|
__get_free_pages((gfp_mask) | GFP_DMA, (order))
|
|
|
|
extern void __free_pages(struct page *page, unsigned int order);
|
|
extern void free_pages(unsigned long addr, unsigned int order);
|
|
|
|
#define __free_page(page) __free_pages((page), 0)
|
|
#define free_page(addr) free_pages((addr), 0)
|
|
|
|
void page_alloc_init_cpuhp(void);
|
|
int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp);
|
|
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
|
|
void drain_all_pages(struct zone *zone);
|
|
void drain_local_pages(struct zone *zone);
|
|
|
|
void page_alloc_init_late(void);
|
|
void setup_pcp_cacheinfo(unsigned int cpu);
|
|
|
|
/*
|
|
* gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
|
|
* GFP flags are used before interrupts are enabled. Once interrupts are
|
|
* enabled, it is set to __GFP_BITS_MASK while the system is running. During
|
|
* hibernation, it is used by PM to avoid I/O during memory allocation while
|
|
* devices are suspended.
|
|
*/
|
|
extern gfp_t gfp_allowed_mask;
|
|
|
|
/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
|
|
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
|
|
|
|
static inline bool gfp_has_io_fs(gfp_t gfp)
|
|
{
|
|
return (gfp & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS);
|
|
}
|
|
|
|
/*
|
|
* Check if the gfp flags allow compaction - GFP_NOIO is a really
|
|
* tricky context because the migration might require IO.
|
|
*/
|
|
static inline bool gfp_compaction_allowed(gfp_t gfp_mask)
|
|
{
|
|
return IS_ENABLED(CONFIG_COMPACTION) && (gfp_mask & __GFP_IO);
|
|
}
|
|
|
|
extern gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma);
|
|
|
|
#ifdef CONFIG_CONTIG_ALLOC
|
|
/* The below functions must be run on a range from a single zone. */
|
|
extern int alloc_contig_range_noprof(unsigned long start, unsigned long end,
|
|
unsigned migratetype, gfp_t gfp_mask);
|
|
#define alloc_contig_range(...) alloc_hooks(alloc_contig_range_noprof(__VA_ARGS__))
|
|
|
|
extern struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
|
|
int nid, nodemask_t *nodemask);
|
|
#define alloc_contig_pages(...) alloc_hooks(alloc_contig_pages_noprof(__VA_ARGS__))
|
|
|
|
#endif
|
|
void free_contig_range(unsigned long pfn, unsigned long nr_pages);
|
|
|
|
#ifdef CONFIG_CONTIG_ALLOC
|
|
static inline struct folio *folio_alloc_gigantic_noprof(int order, gfp_t gfp,
|
|
int nid, nodemask_t *node)
|
|
{
|
|
struct page *page;
|
|
|
|
if (WARN_ON(!order || !(gfp & __GFP_COMP)))
|
|
return NULL;
|
|
|
|
page = alloc_contig_pages_noprof(1 << order, gfp, nid, node);
|
|
|
|
return page ? page_folio(page) : NULL;
|
|
}
|
|
#else
|
|
static inline struct folio *folio_alloc_gigantic_noprof(int order, gfp_t gfp,
|
|
int nid, nodemask_t *node)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
/* This should be paired with folio_put() rather than free_contig_range(). */
|
|
#define folio_alloc_gigantic(...) alloc_hooks(folio_alloc_gigantic_noprof(__VA_ARGS__))
|
|
|
|
#endif /* __LINUX_GFP_H */
|