linux-stable/include/linux/gfp.h
Linus Torvalds 5c00ff742b - The series "zram: optimal post-processing target selection" from
Sergey Senozhatsky improves zram's post-processing selection algorithm.
   This leads to improved memory savings.
 
 - Wei Yang has gone to town on the mapletree code, contributing several
   series which clean up the implementation:
 
 	- "refine mas_mab_cp()"
 	- "Reduce the space to be cleared for maple_big_node"
 	- "maple_tree: simplify mas_push_node()"
 	- "Following cleanup after introduce mas_wr_store_type()"
 	- "refine storing null"
 
 - The series "selftests/mm: hugetlb_fault_after_madv improvements" from
   David Hildenbrand fixes this selftest for s390.
 
 - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng
   implements some rationaizations and cleanups in the page mapping code.
 
 - The series "mm: optimize shadow entries removal" from Shakeel Butt
   optimizes the file truncation code by speeding up the handling of shadow
   entries.
 
 - The series "Remove PageKsm()" from Matthew Wilcox completes the
   migration of this flag over to being a folio-based flag.
 
 - The series "Unify hugetlb into arch_get_unmapped_area functions" from
   Oscar Salvador implements a bunch of consolidations and cleanups in the
   hugetlb code.
 
 - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain
   takes away the wp-fault time practice of turning a huge zero page into
   small pages.  Instead we replace the whole thing with a THP.  More
   consistent cleaner and potentiall saves a large number of pagefaults.
 
 - The series "percpu: Add a test case and fix for clang" from Andy
   Shevchenko enhances and fixes the kernel's built in percpu test code.
 
 - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett
   optimizes mremap() by avoiding doing things which we didn't need to do.
 
 - The series "Improve the tmpfs large folio read performance" from
   Baolin Wang teaches tmpfs to copy data into userspace at the folio size
   rather than as individual pages.  A 20% speedup was observed.
 
 - The series "mm/damon/vaddr: Fix issue in
   damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting.
 
 - The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt
   removes the long-deprecated memcgv2 charge moving feature.
 
 - The series "fix error handling in mmap_region() and refactor" from
   Lorenzo Stoakes cleanup up some of the mmap() error handling and
   addresses some potential performance issues.
 
 - The series "x86/module: use large ROX pages for text allocations" from
   Mike Rapoport teaches x86 to use large pages for read-only-execute
   module text.
 
 - The series "page allocation tag compression" from Suren Baghdasaryan
   is followon maintenance work for the new page allocation profiling
   feature.
 
 - The series "page->index removals in mm" from Matthew Wilcox remove
   most references to page->index in mm/.  A slow march towards shrinking
   struct page.
 
 - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs
   interface tests" from Andrew Paniakin performs maintenance work for
   DAMON's self testing code.
 
 - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar
   improves zswap's batching of compression and decompression.  It is a
   step along the way towards using Intel IAA hardware acceleration for
   this zswap operation.
 
 - The series "kasan: migrate the last module test to kunit" from
   Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests
   over to the KUnit framework.
 
 - The series "implement lightweight guard pages" from Lorenzo Stoakes
   permits userapace to place fault-generating guard pages within a single
   VMA, rather than requiring that multiple VMAs be created for this.
   Improved efficiencies for userspace memory allocators are expected.
 
 - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses
   tracepoints to provide increased visibility into memcg stats flushing
   activity.
 
 - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky
   fixes a zram buglet which potentially affected performance.
 
 - The series "mm: add more kernel parameters to control mTHP" from
   Maíra Canal enhances our ability to control/configuremultisize THP from
   the kernel boot command line.
 
 - The series "kasan: few improvements on kunit tests" from Sabyrzhan
   Tasbolatov has a couple of fixups for the KASAN KUnit tests.
 
 - The series "mm/list_lru: Split list_lru lock into per-cgroup scope"
   from Kairui Song optimizes list_lru memory utilization when lockdep is
   enabled.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZzwFqgAKCRDdBJ7gKXxA
 jkeuAQCkl+BmeYHE6uG0hi3pRxkupseR6DEOAYIiTv0/l8/GggD/Z3jmEeqnZaNq
 xyyenpibWgUoShU2wZ/Ha8FE5WDINwg=
 =JfWR
 -----END PGP SIGNATURE-----

Merge tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull MM updates from Andrew Morton:

 - The series "zram: optimal post-processing target selection" from
   Sergey Senozhatsky improves zram's post-processing selection
   algorithm. This leads to improved memory savings.

 - Wei Yang has gone to town on the mapletree code, contributing several
   series which clean up the implementation:
	- "refine mas_mab_cp()"
	- "Reduce the space to be cleared for maple_big_node"
	- "maple_tree: simplify mas_push_node()"
	- "Following cleanup after introduce mas_wr_store_type()"
	- "refine storing null"

 - The series "selftests/mm: hugetlb_fault_after_madv improvements" from
   David Hildenbrand fixes this selftest for s390.

 - The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng
   implements some rationaizations and cleanups in the page mapping
   code.

 - The series "mm: optimize shadow entries removal" from Shakeel Butt
   optimizes the file truncation code by speeding up the handling of
   shadow entries.

 - The series "Remove PageKsm()" from Matthew Wilcox completes the
   migration of this flag over to being a folio-based flag.

 - The series "Unify hugetlb into arch_get_unmapped_area functions" from
   Oscar Salvador implements a bunch of consolidations and cleanups in
   the hugetlb code.

 - The series "Do not shatter hugezeropage on wp-fault" from Dev Jain
   takes away the wp-fault time practice of turning a huge zero page
   into small pages. Instead we replace the whole thing with a THP. More
   consistent cleaner and potentiall saves a large number of pagefaults.

 - The series "percpu: Add a test case and fix for clang" from Andy
   Shevchenko enhances and fixes the kernel's built in percpu test code.

 - The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett
   optimizes mremap() by avoiding doing things which we didn't need to
   do.

 - The series "Improve the tmpfs large folio read performance" from
   Baolin Wang teaches tmpfs to copy data into userspace at the folio
   size rather than as individual pages. A 20% speedup was observed.

 - The series "mm/damon/vaddr: Fix issue in
   damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON
   splitting.

 - The series "memcg-v1: fully deprecate charge moving" from Shakeel
   Butt removes the long-deprecated memcgv2 charge moving feature.

 - The series "fix error handling in mmap_region() and refactor" from
   Lorenzo Stoakes cleanup up some of the mmap() error handling and
   addresses some potential performance issues.

 - The series "x86/module: use large ROX pages for text allocations"
   from Mike Rapoport teaches x86 to use large pages for
   read-only-execute module text.

 - The series "page allocation tag compression" from Suren Baghdasaryan
   is followon maintenance work for the new page allocation profiling
   feature.

 - The series "page->index removals in mm" from Matthew Wilcox remove
   most references to page->index in mm/. A slow march towards shrinking
   struct page.

 - The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs
   interface tests" from Andrew Paniakin performs maintenance work for
   DAMON's self testing code.

 - The series "mm: zswap swap-out of large folios" from Kanchana Sridhar
   improves zswap's batching of compression and decompression. It is a
   step along the way towards using Intel IAA hardware acceleration for
   this zswap operation.

 - The series "kasan: migrate the last module test to kunit" from
   Sabyrzhan Tasbolatov completes the migration of the KASAN built-in
   tests over to the KUnit framework.

 - The series "implement lightweight guard pages" from Lorenzo Stoakes
   permits userapace to place fault-generating guard pages within a
   single VMA, rather than requiring that multiple VMAs be created for
   this. Improved efficiencies for userspace memory allocators are
   expected.

 - The series "memcg: tracepoint for flushing stats" from JP Kobryn uses
   tracepoints to provide increased visibility into memcg stats flushing
   activity.

 - The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky
   fixes a zram buglet which potentially affected performance.

 - The series "mm: add more kernel parameters to control mTHP" from
   Maíra Canal enhances our ability to control/configuremultisize THP
   from the kernel boot command line.

 - The series "kasan: few improvements on kunit tests" from Sabyrzhan
   Tasbolatov has a couple of fixups for the KASAN KUnit tests.

 - The series "mm/list_lru: Split list_lru lock into per-cgroup scope"
   from Kairui Song optimizes list_lru memory utilization when lockdep
   is enabled.

* tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits)
  cma: enforce non-zero pageblock_order during cma_init_reserved_mem()
  mm/kfence: add a new kunit test test_use_after_free_read_nofault()
  zram: fix NULL pointer in comp_algorithm_show()
  memcg/hugetlb: add hugeTLB counters to memcg
  vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event
  mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount
  zram: ZRAM_DEF_COMP should depend on ZRAM
  MAINTAINERS/MEMORY MANAGEMENT: add document files for mm
  Docs/mm/damon: recommend academic papers to read and/or cite
  mm: define general function pXd_init()
  kmemleak: iommu/iova: fix transient kmemleak false positive
  mm/list_lru: simplify the list_lru walk callback function
  mm/list_lru: split the lock to per-cgroup scope
  mm/list_lru: simplify reparenting and initial allocation
  mm/list_lru: code clean up for reparenting
  mm/list_lru: don't export list_lru_add
  mm/list_lru: don't pass unnecessary key parameters
  kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller
  kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW
  kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols
  ...
2024-11-23 09:58:07 -08:00

451 lines
15 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_GFP_H
#define __LINUX_GFP_H
#include <linux/gfp_types.h>
#include <linux/mmzone.h>
#include <linux/topology.h>
#include <linux/alloc_tag.h>
#include <linux/sched.h>
struct vm_area_struct;
struct mempolicy;
/* Convert GFP flags to their corresponding migrate type */
#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
#define GFP_MOVABLE_SHIFT 3
static inline int gfp_migratetype(const gfp_t gfp_flags)
{
VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
BUILD_BUG_ON((___GFP_RECLAIMABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_RECLAIMABLE);
BUILD_BUG_ON(((___GFP_MOVABLE | ___GFP_RECLAIMABLE) >>
GFP_MOVABLE_SHIFT) != MIGRATE_HIGHATOMIC);
if (unlikely(page_group_by_mobility_disabled))
return MIGRATE_UNMOVABLE;
/* Group based on mobility */
return (__force unsigned long)(gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
}
#undef GFP_MOVABLE_MASK
#undef GFP_MOVABLE_SHIFT
static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
{
return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
}
#ifdef CONFIG_HIGHMEM
#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
#else
#define OPT_ZONE_HIGHMEM ZONE_NORMAL
#endif
#ifdef CONFIG_ZONE_DMA
#define OPT_ZONE_DMA ZONE_DMA
#else
#define OPT_ZONE_DMA ZONE_NORMAL
#endif
#ifdef CONFIG_ZONE_DMA32
#define OPT_ZONE_DMA32 ZONE_DMA32
#else
#define OPT_ZONE_DMA32 ZONE_NORMAL
#endif
/*
* GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
* zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
* bits long and there are 16 of them to cover all possible combinations of
* __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
*
* The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
* But GFP_MOVABLE is not only a zone specifier but also an allocation
* policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
* Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
*
* bit result
* =================
* 0x0 => NORMAL
* 0x1 => DMA or NORMAL
* 0x2 => HIGHMEM or NORMAL
* 0x3 => BAD (DMA+HIGHMEM)
* 0x4 => DMA32 or NORMAL
* 0x5 => BAD (DMA+DMA32)
* 0x6 => BAD (HIGHMEM+DMA32)
* 0x7 => BAD (HIGHMEM+DMA32+DMA)
* 0x8 => NORMAL (MOVABLE+0)
* 0x9 => DMA or NORMAL (MOVABLE+DMA)
* 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
* 0xb => BAD (MOVABLE+HIGHMEM+DMA)
* 0xc => DMA32 or NORMAL (MOVABLE+DMA32)
* 0xd => BAD (MOVABLE+DMA32+DMA)
* 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
* 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
*
* GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
*/
#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
/* ZONE_DEVICE is not a valid GFP zone specifier */
#define GFP_ZONES_SHIFT 2
#else
#define GFP_ZONES_SHIFT ZONES_SHIFT
#endif
#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
#endif
#define GFP_ZONE_TABLE ( \
(ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \
| (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \
| (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \
| (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \
| (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \
| (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \
| (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
| (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
)
/*
* GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
* __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
* entry starting with bit 0. Bit is set if the combination is not
* allowed.
*/
#define GFP_ZONE_BAD ( \
1 << (___GFP_DMA | ___GFP_HIGHMEM) \
| 1 << (___GFP_DMA | ___GFP_DMA32) \
| 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
)
static inline enum zone_type gfp_zone(gfp_t flags)
{
enum zone_type z;
int bit = (__force int) (flags & GFP_ZONEMASK);
z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
((1 << GFP_ZONES_SHIFT) - 1);
VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
return z;
}
/*
* There is only one page-allocator function, and two main namespaces to
* it. The alloc_page*() variants return 'struct page *' and as such
* can allocate highmem pages, the *get*page*() variants return
* virtual kernel addresses to the allocated page(s).
*/
static inline int gfp_zonelist(gfp_t flags)
{
#ifdef CONFIG_NUMA
if (unlikely(flags & __GFP_THISNODE))
return ZONELIST_NOFALLBACK;
#endif
return ZONELIST_FALLBACK;
}
/*
* gfp flag masking for nested internal allocations.
*
* For code that needs to do allocations inside the public allocation API (e.g.
* memory allocation tracking code) the allocations need to obey the caller
* allocation context constrains to prevent allocation context mismatches (e.g.
* GFP_KERNEL allocations in GFP_NOFS contexts) from potential deadlock
* situations.
*
* It is also assumed that these nested allocations are for internal kernel
* object storage purposes only and are not going to be used for DMA, etc. Hence
* we strip out all the zone information and leave just the context information
* intact.
*
* Further, internal allocations must fail before the higher level allocation
* can fail, so we must make them fail faster and fail silently. We also don't
* want them to deplete emergency reserves. Hence nested allocations must be
* prepared for these allocations to fail.
*/
static inline gfp_t gfp_nested_mask(gfp_t flags)
{
return ((flags & (GFP_KERNEL | GFP_ATOMIC | __GFP_NOLOCKDEP)) |
(__GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN));
}
/*
* We get the zone list from the current node and the gfp_mask.
* This zone list contains a maximum of MAX_NUMNODES*MAX_NR_ZONES zones.
* There are two zonelists per node, one for all zones with memory and
* one containing just zones from the node the zonelist belongs to.
*
* For the case of non-NUMA systems the NODE_DATA() gets optimized to
* &contig_page_data at compile-time.
*/
static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
{
return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
}
#ifndef HAVE_ARCH_FREE_PAGE
static inline void arch_free_page(struct page *page, int order) { }
#endif
#ifndef HAVE_ARCH_ALLOC_PAGE
static inline void arch_alloc_page(struct page *page, int order) { }
#endif
struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
nodemask_t *nodemask);
#define __alloc_pages(...) alloc_hooks(__alloc_pages_noprof(__VA_ARGS__))
struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
nodemask_t *nodemask);
#define __folio_alloc(...) alloc_hooks(__folio_alloc_noprof(__VA_ARGS__))
unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
nodemask_t *nodemask, int nr_pages,
struct list_head *page_list,
struct page **page_array);
#define __alloc_pages_bulk(...) alloc_hooks(alloc_pages_bulk_noprof(__VA_ARGS__))
unsigned long alloc_pages_bulk_array_mempolicy_noprof(gfp_t gfp,
unsigned long nr_pages,
struct page **page_array);
#define alloc_pages_bulk_array_mempolicy(...) \
alloc_hooks(alloc_pages_bulk_array_mempolicy_noprof(__VA_ARGS__))
/* Bulk allocate order-0 pages */
#define alloc_pages_bulk_list(_gfp, _nr_pages, _list) \
__alloc_pages_bulk(_gfp, numa_mem_id(), NULL, _nr_pages, _list, NULL)
#define alloc_pages_bulk_array(_gfp, _nr_pages, _page_array) \
__alloc_pages_bulk(_gfp, numa_mem_id(), NULL, _nr_pages, NULL, _page_array)
static inline unsigned long
alloc_pages_bulk_array_node_noprof(gfp_t gfp, int nid, unsigned long nr_pages,
struct page **page_array)
{
if (nid == NUMA_NO_NODE)
nid = numa_mem_id();
return alloc_pages_bulk_noprof(gfp, nid, NULL, nr_pages, NULL, page_array);
}
#define alloc_pages_bulk_array_node(...) \
alloc_hooks(alloc_pages_bulk_array_node_noprof(__VA_ARGS__))
static inline void warn_if_node_offline(int this_node, gfp_t gfp_mask)
{
gfp_t warn_gfp = gfp_mask & (__GFP_THISNODE|__GFP_NOWARN);
if (warn_gfp != (__GFP_THISNODE|__GFP_NOWARN))
return;
if (node_online(this_node))
return;
pr_warn("%pGg allocation from offline node %d\n", &gfp_mask, this_node);
dump_stack();
}
/*
* Allocate pages, preferring the node given as nid. The node must be valid and
* online. For more general interface, see alloc_pages_node().
*/
static inline struct page *
__alloc_pages_node_noprof(int nid, gfp_t gfp_mask, unsigned int order)
{
VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
warn_if_node_offline(nid, gfp_mask);
return __alloc_pages_noprof(gfp_mask, order, nid, NULL);
}
#define __alloc_pages_node(...) alloc_hooks(__alloc_pages_node_noprof(__VA_ARGS__))
static inline
struct folio *__folio_alloc_node_noprof(gfp_t gfp, unsigned int order, int nid)
{
VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
warn_if_node_offline(nid, gfp);
return __folio_alloc_noprof(gfp, order, nid, NULL);
}
#define __folio_alloc_node(...) alloc_hooks(__folio_alloc_node_noprof(__VA_ARGS__))
/*
* Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
* prefer the current CPU's closest node. Otherwise node must be valid and
* online.
*/
static inline struct page *alloc_pages_node_noprof(int nid, gfp_t gfp_mask,
unsigned int order)
{
if (nid == NUMA_NO_NODE)
nid = numa_mem_id();
return __alloc_pages_node_noprof(nid, gfp_mask, order);
}
#define alloc_pages_node(...) alloc_hooks(alloc_pages_node_noprof(__VA_ARGS__))
#ifdef CONFIG_NUMA
struct page *alloc_pages_noprof(gfp_t gfp, unsigned int order);
struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
struct mempolicy *mpol, pgoff_t ilx, int nid);
struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order);
struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
struct mempolicy *mpol, pgoff_t ilx, int nid);
struct folio *vma_alloc_folio_noprof(gfp_t gfp, int order, struct vm_area_struct *vma,
unsigned long addr);
#else
static inline struct page *alloc_pages_noprof(gfp_t gfp_mask, unsigned int order)
{
return alloc_pages_node_noprof(numa_node_id(), gfp_mask, order);
}
static inline struct page *alloc_pages_mpol_noprof(gfp_t gfp, unsigned int order,
struct mempolicy *mpol, pgoff_t ilx, int nid)
{
return alloc_pages_noprof(gfp, order);
}
static inline struct folio *folio_alloc_noprof(gfp_t gfp, unsigned int order)
{
return __folio_alloc_node_noprof(gfp, order, numa_node_id());
}
static inline struct folio *folio_alloc_mpol_noprof(gfp_t gfp, unsigned int order,
struct mempolicy *mpol, pgoff_t ilx, int nid)
{
return folio_alloc_noprof(gfp, order);
}
#define vma_alloc_folio_noprof(gfp, order, vma, addr) \
folio_alloc_noprof(gfp, order)
#endif
#define alloc_pages(...) alloc_hooks(alloc_pages_noprof(__VA_ARGS__))
#define alloc_pages_mpol(...) alloc_hooks(alloc_pages_mpol_noprof(__VA_ARGS__))
#define folio_alloc(...) alloc_hooks(folio_alloc_noprof(__VA_ARGS__))
#define folio_alloc_mpol(...) alloc_hooks(folio_alloc_mpol_noprof(__VA_ARGS__))
#define vma_alloc_folio(...) alloc_hooks(vma_alloc_folio_noprof(__VA_ARGS__))
#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
static inline struct page *alloc_page_vma_noprof(gfp_t gfp,
struct vm_area_struct *vma, unsigned long addr)
{
struct folio *folio = vma_alloc_folio_noprof(gfp, 0, vma, addr);
return &folio->page;
}
#define alloc_page_vma(...) alloc_hooks(alloc_page_vma_noprof(__VA_ARGS__))
extern unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order);
#define __get_free_pages(...) alloc_hooks(get_free_pages_noprof(__VA_ARGS__))
extern unsigned long get_zeroed_page_noprof(gfp_t gfp_mask);
#define get_zeroed_page(...) alloc_hooks(get_zeroed_page_noprof(__VA_ARGS__))
void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) __alloc_size(1);
#define alloc_pages_exact(...) alloc_hooks(alloc_pages_exact_noprof(__VA_ARGS__))
void free_pages_exact(void *virt, size_t size);
__meminit void *alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) __alloc_size(2);
#define alloc_pages_exact_nid(...) \
alloc_hooks(alloc_pages_exact_nid_noprof(__VA_ARGS__))
#define __get_free_page(gfp_mask) \
__get_free_pages((gfp_mask), 0)
#define __get_dma_pages(gfp_mask, order) \
__get_free_pages((gfp_mask) | GFP_DMA, (order))
extern void __free_pages(struct page *page, unsigned int order);
extern void free_pages(unsigned long addr, unsigned int order);
#define __free_page(page) __free_pages((page), 0)
#define free_page(addr) free_pages((addr), 0)
void page_alloc_init_cpuhp(void);
int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp);
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
void drain_all_pages(struct zone *zone);
void drain_local_pages(struct zone *zone);
void page_alloc_init_late(void);
void setup_pcp_cacheinfo(unsigned int cpu);
/*
* gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
* GFP flags are used before interrupts are enabled. Once interrupts are
* enabled, it is set to __GFP_BITS_MASK while the system is running. During
* hibernation, it is used by PM to avoid I/O during memory allocation while
* devices are suspended.
*/
extern gfp_t gfp_allowed_mask;
/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
static inline bool gfp_has_io_fs(gfp_t gfp)
{
return (gfp & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS);
}
/*
* Check if the gfp flags allow compaction - GFP_NOIO is a really
* tricky context because the migration might require IO.
*/
static inline bool gfp_compaction_allowed(gfp_t gfp_mask)
{
return IS_ENABLED(CONFIG_COMPACTION) && (gfp_mask & __GFP_IO);
}
extern gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma);
#ifdef CONFIG_CONTIG_ALLOC
/* The below functions must be run on a range from a single zone. */
extern int alloc_contig_range_noprof(unsigned long start, unsigned long end,
unsigned migratetype, gfp_t gfp_mask);
#define alloc_contig_range(...) alloc_hooks(alloc_contig_range_noprof(__VA_ARGS__))
extern struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
int nid, nodemask_t *nodemask);
#define alloc_contig_pages(...) alloc_hooks(alloc_contig_pages_noprof(__VA_ARGS__))
#endif
void free_contig_range(unsigned long pfn, unsigned long nr_pages);
#ifdef CONFIG_CONTIG_ALLOC
static inline struct folio *folio_alloc_gigantic_noprof(int order, gfp_t gfp,
int nid, nodemask_t *node)
{
struct page *page;
if (WARN_ON(!order || !(gfp & __GFP_COMP)))
return NULL;
page = alloc_contig_pages_noprof(1 << order, gfp, nid, node);
return page ? page_folio(page) : NULL;
}
#else
static inline struct folio *folio_alloc_gigantic_noprof(int order, gfp_t gfp,
int nid, nodemask_t *node)
{
return NULL;
}
#endif
/* This should be paired with folio_put() rather than free_contig_range(). */
#define folio_alloc_gigantic(...) alloc_hooks(folio_alloc_gigantic_noprof(__VA_ARGS__))
#endif /* __LINUX_GFP_H */