mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 02:36:02 +00:00
e38a82df2c
Some users may be requiring only rather small numbers as both numerator and denominator: add signed and unsigned 8 bits structs {s8,u8}_fract. Signed-off-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com> Reviewed-by: Andy Shevchenko <andy@kernel.org> Link: https://patch.msgid.link/20240604123008.327424-4-angelogioacchino.delregno@collabora.com Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
211 lines
5.9 KiB
C
211 lines
5.9 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_MATH_H
|
|
#define _LINUX_MATH_H
|
|
|
|
#include <linux/types.h>
|
|
#include <asm/div64.h>
|
|
#include <uapi/linux/kernel.h>
|
|
|
|
/*
|
|
* This looks more complex than it should be. But we need to
|
|
* get the type for the ~ right in round_down (it needs to be
|
|
* as wide as the result!), and we want to evaluate the macro
|
|
* arguments just once each.
|
|
*/
|
|
#define __round_mask(x, y) ((__typeof__(x))((y)-1))
|
|
|
|
/**
|
|
* round_up - round up to next specified power of 2
|
|
* @x: the value to round
|
|
* @y: multiple to round up to (must be a power of 2)
|
|
*
|
|
* Rounds @x up to next multiple of @y (which must be a power of 2).
|
|
* To perform arbitrary rounding up, use roundup() below.
|
|
*/
|
|
#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
|
|
|
|
/**
|
|
* round_down - round down to next specified power of 2
|
|
* @x: the value to round
|
|
* @y: multiple to round down to (must be a power of 2)
|
|
*
|
|
* Rounds @x down to next multiple of @y (which must be a power of 2).
|
|
* To perform arbitrary rounding down, use rounddown() below.
|
|
*/
|
|
#define round_down(x, y) ((x) & ~__round_mask(x, y))
|
|
|
|
#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
|
|
|
|
#define DIV_ROUND_DOWN_ULL(ll, d) \
|
|
({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
|
|
|
|
#define DIV_ROUND_UP_ULL(ll, d) \
|
|
DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
|
|
|
|
#if BITS_PER_LONG == 32
|
|
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
|
|
#else
|
|
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
|
|
#endif
|
|
|
|
/**
|
|
* roundup - round up to the next specified multiple
|
|
* @x: the value to up
|
|
* @y: multiple to round up to
|
|
*
|
|
* Rounds @x up to next multiple of @y. If @y will always be a power
|
|
* of 2, consider using the faster round_up().
|
|
*/
|
|
#define roundup(x, y) ( \
|
|
{ \
|
|
typeof(y) __y = y; \
|
|
(((x) + (__y - 1)) / __y) * __y; \
|
|
} \
|
|
)
|
|
/**
|
|
* rounddown - round down to next specified multiple
|
|
* @x: the value to round
|
|
* @y: multiple to round down to
|
|
*
|
|
* Rounds @x down to next multiple of @y. If @y will always be a power
|
|
* of 2, consider using the faster round_down().
|
|
*/
|
|
#define rounddown(x, y) ( \
|
|
{ \
|
|
typeof(x) __x = (x); \
|
|
__x - (__x % (y)); \
|
|
} \
|
|
)
|
|
|
|
/*
|
|
* Divide positive or negative dividend by positive or negative divisor
|
|
* and round to closest integer. Result is undefined for negative
|
|
* divisors if the dividend variable type is unsigned and for negative
|
|
* dividends if the divisor variable type is unsigned.
|
|
*/
|
|
#define DIV_ROUND_CLOSEST(x, divisor)( \
|
|
{ \
|
|
typeof(x) __x = x; \
|
|
typeof(divisor) __d = divisor; \
|
|
(((typeof(x))-1) > 0 || \
|
|
((typeof(divisor))-1) > 0 || \
|
|
(((__x) > 0) == ((__d) > 0))) ? \
|
|
(((__x) + ((__d) / 2)) / (__d)) : \
|
|
(((__x) - ((__d) / 2)) / (__d)); \
|
|
} \
|
|
)
|
|
/*
|
|
* Same as above but for u64 dividends. divisor must be a 32-bit
|
|
* number.
|
|
*/
|
|
#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
|
|
{ \
|
|
typeof(divisor) __d = divisor; \
|
|
unsigned long long _tmp = (x) + (__d) / 2; \
|
|
do_div(_tmp, __d); \
|
|
_tmp; \
|
|
} \
|
|
)
|
|
|
|
#define __STRUCT_FRACT(type) \
|
|
struct type##_fract { \
|
|
__##type numerator; \
|
|
__##type denominator; \
|
|
};
|
|
__STRUCT_FRACT(s8)
|
|
__STRUCT_FRACT(u8)
|
|
__STRUCT_FRACT(s16)
|
|
__STRUCT_FRACT(u16)
|
|
__STRUCT_FRACT(s32)
|
|
__STRUCT_FRACT(u32)
|
|
#undef __STRUCT_FRACT
|
|
|
|
/* Calculate "x * n / d" without unnecessary overflow or loss of precision. */
|
|
#define mult_frac(x, n, d) \
|
|
({ \
|
|
typeof(x) x_ = (x); \
|
|
typeof(n) n_ = (n); \
|
|
typeof(d) d_ = (d); \
|
|
\
|
|
typeof(x_) q = x_ / d_; \
|
|
typeof(x_) r = x_ % d_; \
|
|
q * n_ + r * n_ / d_; \
|
|
})
|
|
|
|
#define sector_div(a, b) do_div(a, b)
|
|
|
|
/**
|
|
* abs - return absolute value of an argument
|
|
* @x: the value. If it is unsigned type, it is converted to signed type first.
|
|
* char is treated as if it was signed (regardless of whether it really is)
|
|
* but the macro's return type is preserved as char.
|
|
*
|
|
* Return: an absolute value of x.
|
|
*/
|
|
#define abs(x) __abs_choose_expr(x, long long, \
|
|
__abs_choose_expr(x, long, \
|
|
__abs_choose_expr(x, int, \
|
|
__abs_choose_expr(x, short, \
|
|
__abs_choose_expr(x, char, \
|
|
__builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(x), char), \
|
|
(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
|
|
((void)0)))))))
|
|
|
|
#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
|
|
__builtin_types_compatible_p(typeof(x), signed type) || \
|
|
__builtin_types_compatible_p(typeof(x), unsigned type), \
|
|
({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
|
|
|
|
/**
|
|
* abs_diff - return absolute value of the difference between the arguments
|
|
* @a: the first argument
|
|
* @b: the second argument
|
|
*
|
|
* @a and @b have to be of the same type. With this restriction we compare
|
|
* signed to signed and unsigned to unsigned. The result is the subtraction
|
|
* the smaller of the two from the bigger, hence result is always a positive
|
|
* value.
|
|
*
|
|
* Return: an absolute value of the difference between the @a and @b.
|
|
*/
|
|
#define abs_diff(a, b) ({ \
|
|
typeof(a) __a = (a); \
|
|
typeof(b) __b = (b); \
|
|
(void)(&__a == &__b); \
|
|
__a > __b ? (__a - __b) : (__b - __a); \
|
|
})
|
|
|
|
/**
|
|
* reciprocal_scale - "scale" a value into range [0, ep_ro)
|
|
* @val: value
|
|
* @ep_ro: right open interval endpoint
|
|
*
|
|
* Perform a "reciprocal multiplication" in order to "scale" a value into
|
|
* range [0, @ep_ro), where the upper interval endpoint is right-open.
|
|
* This is useful, e.g. for accessing a index of an array containing
|
|
* @ep_ro elements, for example. Think of it as sort of modulus, only that
|
|
* the result isn't that of modulo. ;) Note that if initial input is a
|
|
* small value, then result will return 0.
|
|
*
|
|
* Return: a result based on @val in interval [0, @ep_ro).
|
|
*/
|
|
static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
|
|
{
|
|
return (u32)(((u64) val * ep_ro) >> 32);
|
|
}
|
|
|
|
u64 int_pow(u64 base, unsigned int exp);
|
|
unsigned long int_sqrt(unsigned long);
|
|
|
|
#if BITS_PER_LONG < 64
|
|
u32 int_sqrt64(u64 x);
|
|
#else
|
|
static inline u32 int_sqrt64(u64 x)
|
|
{
|
|
return (u32)int_sqrt(x);
|
|
}
|
|
#endif
|
|
|
|
#endif /* _LINUX_MATH_H */
|