linux-stable/lib/alloc_tag.c
David Wang 51f43d5d82 mm/codetag: swap tags when migrate pages
Current solution to adjust codetag references during page migration is
done in 3 steps:

1. sets the codetag reference of the old page as empty (not pointing
   to any codetag);

2. subtracts counters of the new page to compensate for its own
   allocation;

3. sets codetag reference of the new page to point to the codetag of
   the old page.

This does not work if CONFIG_MEM_ALLOC_PROFILING_DEBUG=n because
set_codetag_empty() becomes NOOP.  Instead, let's simply swap codetag
references so that the new page is referencing the old codetag and the old
page is referencing the new codetag.  This way accounting stays valid and
the logic makes more sense.

Link: https://lkml.kernel.org/r/20241129025213.34836-1-00107082@163.com
Fixes: e0a955bf7f ("mm/codetag: add pgalloc_tag_copy()")
Signed-off-by: David Wang <00107082@163.com>
Closes: https://lore.kernel.org/lkml/20241124074318.399027-1-00107082@163.com/
Acked-by: Suren Baghdasaryan <surenb@google.com>
Suggested-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Yu Zhao <yuzhao@google.com>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-12-05 19:54:46 -08:00

736 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/alloc_tag.h>
#include <linux/execmem.h>
#include <linux/fs.h>
#include <linux/gfp.h>
#include <linux/kallsyms.h>
#include <linux/module.h>
#include <linux/page_ext.h>
#include <linux/proc_fs.h>
#include <linux/seq_buf.h>
#include <linux/seq_file.h>
#include <linux/vmalloc.h>
#define ALLOCINFO_FILE_NAME "allocinfo"
#define MODULE_ALLOC_TAG_VMAP_SIZE (100000UL * sizeof(struct alloc_tag))
#define SECTION_START(NAME) (CODETAG_SECTION_START_PREFIX NAME)
#define SECTION_STOP(NAME) (CODETAG_SECTION_STOP_PREFIX NAME)
#ifdef CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT
static bool mem_profiling_support = true;
#else
static bool mem_profiling_support;
#endif
static struct codetag_type *alloc_tag_cttype;
DEFINE_PER_CPU(struct alloc_tag_counters, _shared_alloc_tag);
EXPORT_SYMBOL(_shared_alloc_tag);
DEFINE_STATIC_KEY_MAYBE(CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT,
mem_alloc_profiling_key);
DEFINE_STATIC_KEY_FALSE(mem_profiling_compressed);
struct alloc_tag_kernel_section kernel_tags = { NULL, 0 };
unsigned long alloc_tag_ref_mask;
int alloc_tag_ref_offs;
struct allocinfo_private {
struct codetag_iterator iter;
bool print_header;
};
static void *allocinfo_start(struct seq_file *m, loff_t *pos)
{
struct allocinfo_private *priv;
struct codetag *ct;
loff_t node = *pos;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
m->private = priv;
if (!priv)
return NULL;
priv->print_header = (node == 0);
codetag_lock_module_list(alloc_tag_cttype, true);
priv->iter = codetag_get_ct_iter(alloc_tag_cttype);
while ((ct = codetag_next_ct(&priv->iter)) != NULL && node)
node--;
return ct ? priv : NULL;
}
static void *allocinfo_next(struct seq_file *m, void *arg, loff_t *pos)
{
struct allocinfo_private *priv = (struct allocinfo_private *)arg;
struct codetag *ct = codetag_next_ct(&priv->iter);
(*pos)++;
if (!ct)
return NULL;
return priv;
}
static void allocinfo_stop(struct seq_file *m, void *arg)
{
struct allocinfo_private *priv = (struct allocinfo_private *)m->private;
if (priv) {
codetag_lock_module_list(alloc_tag_cttype, false);
kfree(priv);
}
}
static void print_allocinfo_header(struct seq_buf *buf)
{
/* Output format version, so we can change it. */
seq_buf_printf(buf, "allocinfo - version: 1.0\n");
seq_buf_printf(buf, "# <size> <calls> <tag info>\n");
}
static void alloc_tag_to_text(struct seq_buf *out, struct codetag *ct)
{
struct alloc_tag *tag = ct_to_alloc_tag(ct);
struct alloc_tag_counters counter = alloc_tag_read(tag);
s64 bytes = counter.bytes;
seq_buf_printf(out, "%12lli %8llu ", bytes, counter.calls);
codetag_to_text(out, ct);
seq_buf_putc(out, ' ');
seq_buf_putc(out, '\n');
}
static int allocinfo_show(struct seq_file *m, void *arg)
{
struct allocinfo_private *priv = (struct allocinfo_private *)arg;
char *bufp;
size_t n = seq_get_buf(m, &bufp);
struct seq_buf buf;
seq_buf_init(&buf, bufp, n);
if (priv->print_header) {
print_allocinfo_header(&buf);
priv->print_header = false;
}
alloc_tag_to_text(&buf, priv->iter.ct);
seq_commit(m, seq_buf_used(&buf));
return 0;
}
static const struct seq_operations allocinfo_seq_op = {
.start = allocinfo_start,
.next = allocinfo_next,
.stop = allocinfo_stop,
.show = allocinfo_show,
};
size_t alloc_tag_top_users(struct codetag_bytes *tags, size_t count, bool can_sleep)
{
struct codetag_iterator iter;
struct codetag *ct;
struct codetag_bytes n;
unsigned int i, nr = 0;
if (can_sleep)
codetag_lock_module_list(alloc_tag_cttype, true);
else if (!codetag_trylock_module_list(alloc_tag_cttype))
return 0;
iter = codetag_get_ct_iter(alloc_tag_cttype);
while ((ct = codetag_next_ct(&iter))) {
struct alloc_tag_counters counter = alloc_tag_read(ct_to_alloc_tag(ct));
n.ct = ct;
n.bytes = counter.bytes;
for (i = 0; i < nr; i++)
if (n.bytes > tags[i].bytes)
break;
if (i < count) {
nr -= nr == count;
memmove(&tags[i + 1],
&tags[i],
sizeof(tags[0]) * (nr - i));
nr++;
tags[i] = n;
}
}
codetag_lock_module_list(alloc_tag_cttype, false);
return nr;
}
void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
{
int i;
struct alloc_tag *tag;
unsigned int nr_pages = 1 << new_order;
if (!mem_alloc_profiling_enabled())
return;
tag = pgalloc_tag_get(&folio->page);
if (!tag)
return;
for (i = nr_pages; i < (1 << old_order); i += nr_pages) {
union pgtag_ref_handle handle;
union codetag_ref ref;
if (get_page_tag_ref(folio_page(folio, i), &ref, &handle)) {
/* Set new reference to point to the original tag */
alloc_tag_ref_set(&ref, tag);
update_page_tag_ref(handle, &ref);
put_page_tag_ref(handle);
}
}
}
void pgalloc_tag_swap(struct folio *new, struct folio *old)
{
union pgtag_ref_handle handle_old, handle_new;
union codetag_ref ref_old, ref_new;
struct alloc_tag *tag_old, *tag_new;
tag_old = pgalloc_tag_get(&old->page);
if (!tag_old)
return;
tag_new = pgalloc_tag_get(&new->page);
if (!tag_new)
return;
if (!get_page_tag_ref(&old->page, &ref_old, &handle_old))
return;
if (!get_page_tag_ref(&new->page, &ref_new, &handle_new)) {
put_page_tag_ref(handle_old);
return;
}
/* swap tags */
__alloc_tag_ref_set(&ref_old, tag_new);
update_page_tag_ref(handle_old, &ref_old);
__alloc_tag_ref_set(&ref_new, tag_old);
update_page_tag_ref(handle_new, &ref_new);
put_page_tag_ref(handle_old);
put_page_tag_ref(handle_new);
}
static void shutdown_mem_profiling(bool remove_file)
{
if (mem_alloc_profiling_enabled())
static_branch_disable(&mem_alloc_profiling_key);
if (!mem_profiling_support)
return;
if (remove_file)
remove_proc_entry(ALLOCINFO_FILE_NAME, NULL);
mem_profiling_support = false;
}
static void __init procfs_init(void)
{
if (!mem_profiling_support)
return;
if (!proc_create_seq(ALLOCINFO_FILE_NAME, 0400, NULL, &allocinfo_seq_op)) {
pr_err("Failed to create %s file\n", ALLOCINFO_FILE_NAME);
shutdown_mem_profiling(false);
}
}
void __init alloc_tag_sec_init(void)
{
struct alloc_tag *last_codetag;
if (!mem_profiling_support)
return;
if (!static_key_enabled(&mem_profiling_compressed))
return;
kernel_tags.first_tag = (struct alloc_tag *)kallsyms_lookup_name(
SECTION_START(ALLOC_TAG_SECTION_NAME));
last_codetag = (struct alloc_tag *)kallsyms_lookup_name(
SECTION_STOP(ALLOC_TAG_SECTION_NAME));
kernel_tags.count = last_codetag - kernel_tags.first_tag;
/* Check if kernel tags fit into page flags */
if (kernel_tags.count > (1UL << NR_UNUSED_PAGEFLAG_BITS)) {
shutdown_mem_profiling(false); /* allocinfo file does not exist yet */
pr_err("%lu allocation tags cannot be references using %d available page flag bits. Memory allocation profiling is disabled!\n",
kernel_tags.count, NR_UNUSED_PAGEFLAG_BITS);
return;
}
alloc_tag_ref_offs = (LRU_REFS_PGOFF - NR_UNUSED_PAGEFLAG_BITS);
alloc_tag_ref_mask = ((1UL << NR_UNUSED_PAGEFLAG_BITS) - 1);
pr_debug("Memory allocation profiling compression is using %d page flag bits!\n",
NR_UNUSED_PAGEFLAG_BITS);
}
#ifdef CONFIG_MODULES
static struct maple_tree mod_area_mt = MTREE_INIT(mod_area_mt, MT_FLAGS_ALLOC_RANGE);
static struct vm_struct *vm_module_tags;
/* A dummy object used to indicate an unloaded module */
static struct module unloaded_mod;
/* A dummy object used to indicate a module prepended area */
static struct module prepend_mod;
struct alloc_tag_module_section module_tags;
static inline unsigned long alloc_tag_align(unsigned long val)
{
if (!static_key_enabled(&mem_profiling_compressed)) {
/* No alignment requirements when we are not indexing the tags */
return val;
}
if (val % sizeof(struct alloc_tag) == 0)
return val;
return ((val / sizeof(struct alloc_tag)) + 1) * sizeof(struct alloc_tag);
}
static bool ensure_alignment(unsigned long align, unsigned int *prepend)
{
if (!static_key_enabled(&mem_profiling_compressed)) {
/* No alignment requirements when we are not indexing the tags */
return true;
}
/*
* If alloc_tag size is not a multiple of required alignment, tag
* indexing does not work.
*/
if (!IS_ALIGNED(sizeof(struct alloc_tag), align))
return false;
/* Ensure prepend consumes multiple of alloc_tag-sized blocks */
if (*prepend)
*prepend = alloc_tag_align(*prepend);
return true;
}
static inline bool tags_addressable(void)
{
unsigned long tag_idx_count;
if (!static_key_enabled(&mem_profiling_compressed))
return true; /* with page_ext tags are always addressable */
tag_idx_count = CODETAG_ID_FIRST + kernel_tags.count +
module_tags.size / sizeof(struct alloc_tag);
return tag_idx_count < (1UL << NR_UNUSED_PAGEFLAG_BITS);
}
static bool needs_section_mem(struct module *mod, unsigned long size)
{
if (!mem_profiling_support)
return false;
return size >= sizeof(struct alloc_tag);
}
static struct alloc_tag *find_used_tag(struct alloc_tag *from, struct alloc_tag *to)
{
while (from <= to) {
struct alloc_tag_counters counter;
counter = alloc_tag_read(from);
if (counter.bytes)
return from;
from++;
}
return NULL;
}
/* Called with mod_area_mt locked */
static void clean_unused_module_areas_locked(void)
{
MA_STATE(mas, &mod_area_mt, 0, module_tags.size);
struct module *val;
mas_for_each(&mas, val, module_tags.size) {
if (val != &unloaded_mod)
continue;
/* Release area if all tags are unused */
if (!find_used_tag((struct alloc_tag *)(module_tags.start_addr + mas.index),
(struct alloc_tag *)(module_tags.start_addr + mas.last)))
mas_erase(&mas);
}
}
/* Called with mod_area_mt locked */
static bool find_aligned_area(struct ma_state *mas, unsigned long section_size,
unsigned long size, unsigned int prepend, unsigned long align)
{
bool cleanup_done = false;
repeat:
/* Try finding exact size and hope the start is aligned */
if (!mas_empty_area(mas, 0, section_size - 1, prepend + size)) {
if (IS_ALIGNED(mas->index + prepend, align))
return true;
/* Try finding larger area to align later */
mas_reset(mas);
if (!mas_empty_area(mas, 0, section_size - 1,
size + prepend + align - 1))
return true;
}
/* No free area, try cleanup stale data and repeat the search once */
if (!cleanup_done) {
clean_unused_module_areas_locked();
cleanup_done = true;
mas_reset(mas);
goto repeat;
}
return false;
}
static int vm_module_tags_populate(void)
{
unsigned long phys_size = vm_module_tags->nr_pages << PAGE_SHIFT;
if (phys_size < module_tags.size) {
struct page **next_page = vm_module_tags->pages + vm_module_tags->nr_pages;
unsigned long addr = module_tags.start_addr + phys_size;
unsigned long more_pages;
unsigned long nr;
more_pages = ALIGN(module_tags.size - phys_size, PAGE_SIZE) >> PAGE_SHIFT;
nr = alloc_pages_bulk_array_node(GFP_KERNEL | __GFP_NOWARN,
NUMA_NO_NODE, more_pages, next_page);
if (nr < more_pages ||
vmap_pages_range(addr, addr + (nr << PAGE_SHIFT), PAGE_KERNEL,
next_page, PAGE_SHIFT) < 0) {
/* Clean up and error out */
for (int i = 0; i < nr; i++)
__free_page(next_page[i]);
return -ENOMEM;
}
vm_module_tags->nr_pages += nr;
}
return 0;
}
static void *reserve_module_tags(struct module *mod, unsigned long size,
unsigned int prepend, unsigned long align)
{
unsigned long section_size = module_tags.end_addr - module_tags.start_addr;
MA_STATE(mas, &mod_area_mt, 0, section_size - 1);
unsigned long offset;
void *ret = NULL;
/* If no tags return error */
if (size < sizeof(struct alloc_tag))
return ERR_PTR(-EINVAL);
/*
* align is always power of 2, so we can use IS_ALIGNED and ALIGN.
* align 0 or 1 means no alignment, to simplify set to 1.
*/
if (!align)
align = 1;
if (!ensure_alignment(align, &prepend)) {
shutdown_mem_profiling(true);
pr_err("%s: alignment %lu is incompatible with allocation tag indexing. Memory allocation profiling is disabled!\n",
mod->name, align);
return ERR_PTR(-EINVAL);
}
mas_lock(&mas);
if (!find_aligned_area(&mas, section_size, size, prepend, align)) {
ret = ERR_PTR(-ENOMEM);
goto unlock;
}
/* Mark found area as reserved */
offset = mas.index;
offset += prepend;
offset = ALIGN(offset, align);
if (offset != mas.index) {
unsigned long pad_start = mas.index;
mas.last = offset - 1;
mas_store(&mas, &prepend_mod);
if (mas_is_err(&mas)) {
ret = ERR_PTR(xa_err(mas.node));
goto unlock;
}
mas.index = offset;
mas.last = offset + size - 1;
mas_store(&mas, mod);
if (mas_is_err(&mas)) {
mas.index = pad_start;
mas_erase(&mas);
ret = ERR_PTR(xa_err(mas.node));
}
} else {
mas.last = offset + size - 1;
mas_store(&mas, mod);
if (mas_is_err(&mas))
ret = ERR_PTR(xa_err(mas.node));
}
unlock:
mas_unlock(&mas);
if (IS_ERR(ret))
return ret;
if (module_tags.size < offset + size) {
int grow_res;
module_tags.size = offset + size;
if (mem_alloc_profiling_enabled() && !tags_addressable()) {
shutdown_mem_profiling(true);
pr_warn("With module %s there are too many tags to fit in %d page flag bits. Memory allocation profiling is disabled!\n",
mod->name, NR_UNUSED_PAGEFLAG_BITS);
}
grow_res = vm_module_tags_populate();
if (grow_res) {
shutdown_mem_profiling(true);
pr_err("Failed to allocate memory for allocation tags in the module %s. Memory allocation profiling is disabled!\n",
mod->name);
return ERR_PTR(grow_res);
}
}
return (struct alloc_tag *)(module_tags.start_addr + offset);
}
static void release_module_tags(struct module *mod, bool used)
{
MA_STATE(mas, &mod_area_mt, module_tags.size, module_tags.size);
struct alloc_tag *tag;
struct module *val;
mas_lock(&mas);
mas_for_each_rev(&mas, val, 0)
if (val == mod)
break;
if (!val) /* module not found */
goto out;
if (!used)
goto release_area;
/* Find out if the area is used */
tag = find_used_tag((struct alloc_tag *)(module_tags.start_addr + mas.index),
(struct alloc_tag *)(module_tags.start_addr + mas.last));
if (tag) {
struct alloc_tag_counters counter = alloc_tag_read(tag);
pr_info("%s:%u module %s func:%s has %llu allocated at module unload\n",
tag->ct.filename, tag->ct.lineno, tag->ct.modname,
tag->ct.function, counter.bytes);
} else {
used = false;
}
release_area:
mas_store(&mas, used ? &unloaded_mod : NULL);
val = mas_prev_range(&mas, 0);
if (val == &prepend_mod)
mas_store(&mas, NULL);
out:
mas_unlock(&mas);
}
static void replace_module(struct module *mod, struct module *new_mod)
{
MA_STATE(mas, &mod_area_mt, 0, module_tags.size);
struct module *val;
mas_lock(&mas);
mas_for_each(&mas, val, module_tags.size) {
if (val != mod)
continue;
mas_store_gfp(&mas, new_mod, GFP_KERNEL);
break;
}
mas_unlock(&mas);
}
static int __init alloc_mod_tags_mem(void)
{
/* Map space to copy allocation tags */
vm_module_tags = execmem_vmap(MODULE_ALLOC_TAG_VMAP_SIZE);
if (!vm_module_tags) {
pr_err("Failed to map %lu bytes for module allocation tags\n",
MODULE_ALLOC_TAG_VMAP_SIZE);
module_tags.start_addr = 0;
return -ENOMEM;
}
vm_module_tags->pages = kmalloc_array(get_vm_area_size(vm_module_tags) >> PAGE_SHIFT,
sizeof(struct page *), GFP_KERNEL | __GFP_ZERO);
if (!vm_module_tags->pages) {
free_vm_area(vm_module_tags);
return -ENOMEM;
}
module_tags.start_addr = (unsigned long)vm_module_tags->addr;
module_tags.end_addr = module_tags.start_addr + MODULE_ALLOC_TAG_VMAP_SIZE;
/* Ensure the base is alloc_tag aligned when required for indexing */
module_tags.start_addr = alloc_tag_align(module_tags.start_addr);
return 0;
}
static void __init free_mod_tags_mem(void)
{
int i;
module_tags.start_addr = 0;
for (i = 0; i < vm_module_tags->nr_pages; i++)
__free_page(vm_module_tags->pages[i]);
kfree(vm_module_tags->pages);
free_vm_area(vm_module_tags);
}
#else /* CONFIG_MODULES */
static inline int alloc_mod_tags_mem(void) { return 0; }
static inline void free_mod_tags_mem(void) {}
#endif /* CONFIG_MODULES */
/* See: Documentation/mm/allocation-profiling.rst */
static int __init setup_early_mem_profiling(char *str)
{
bool compressed = false;
bool enable;
if (!str || !str[0])
return -EINVAL;
if (!strncmp(str, "never", 5)) {
enable = false;
mem_profiling_support = false;
pr_info("Memory allocation profiling is disabled!\n");
} else {
char *token = strsep(&str, ",");
if (kstrtobool(token, &enable))
return -EINVAL;
if (str) {
if (strcmp(str, "compressed"))
return -EINVAL;
compressed = true;
}
mem_profiling_support = true;
pr_info("Memory allocation profiling is enabled %s compression and is turned %s!\n",
compressed ? "with" : "without", enable ? "on" : "off");
}
if (enable != mem_alloc_profiling_enabled()) {
if (enable)
static_branch_enable(&mem_alloc_profiling_key);
else
static_branch_disable(&mem_alloc_profiling_key);
}
if (compressed != static_key_enabled(&mem_profiling_compressed)) {
if (compressed)
static_branch_enable(&mem_profiling_compressed);
else
static_branch_disable(&mem_profiling_compressed);
}
return 0;
}
early_param("sysctl.vm.mem_profiling", setup_early_mem_profiling);
static __init bool need_page_alloc_tagging(void)
{
if (static_key_enabled(&mem_profiling_compressed))
return false;
return mem_profiling_support;
}
static __init void init_page_alloc_tagging(void)
{
}
struct page_ext_operations page_alloc_tagging_ops = {
.size = sizeof(union codetag_ref),
.need = need_page_alloc_tagging,
.init = init_page_alloc_tagging,
};
EXPORT_SYMBOL(page_alloc_tagging_ops);
#ifdef CONFIG_SYSCTL
static struct ctl_table memory_allocation_profiling_sysctls[] = {
{
.procname = "mem_profiling",
.data = &mem_alloc_profiling_key,
#ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
.mode = 0444,
#else
.mode = 0644,
#endif
.proc_handler = proc_do_static_key,
},
};
static void __init sysctl_init(void)
{
if (!mem_profiling_support)
memory_allocation_profiling_sysctls[0].mode = 0444;
register_sysctl_init("vm", memory_allocation_profiling_sysctls);
}
#else /* CONFIG_SYSCTL */
static inline void sysctl_init(void) {}
#endif /* CONFIG_SYSCTL */
static int __init alloc_tag_init(void)
{
const struct codetag_type_desc desc = {
.section = ALLOC_TAG_SECTION_NAME,
.tag_size = sizeof(struct alloc_tag),
#ifdef CONFIG_MODULES
.needs_section_mem = needs_section_mem,
.alloc_section_mem = reserve_module_tags,
.free_section_mem = release_module_tags,
.module_replaced = replace_module,
#endif
};
int res;
res = alloc_mod_tags_mem();
if (res)
return res;
alloc_tag_cttype = codetag_register_type(&desc);
if (IS_ERR(alloc_tag_cttype)) {
free_mod_tags_mem();
return PTR_ERR(alloc_tag_cttype);
}
sysctl_init();
procfs_init();
return 0;
}
module_init(alloc_tag_init);