mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 02:36:02 +00:00
1dc707e647
When I merged the rust 'use' imports, I didn't realize that there's an offical preferred idiomatic format - so while it all worked fine, it doesn't match what 'make rustfmt' wants to make it. Fix it up appropriately. Suggested-by: Miguel Ojeda <ojeda@kernel.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
381 lines
15 KiB
Rust
381 lines
15 KiB
Rust
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
//! Tasks (threads and processes).
|
|
//!
|
|
//! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
|
|
|
|
use crate::{
|
|
bindings,
|
|
ffi::{c_int, c_long, c_uint},
|
|
pid_namespace::PidNamespace,
|
|
types::{ARef, NotThreadSafe, Opaque},
|
|
};
|
|
use core::{
|
|
cmp::{Eq, PartialEq},
|
|
ops::Deref,
|
|
ptr,
|
|
};
|
|
|
|
/// A sentinel value used for infinite timeouts.
|
|
pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
|
|
|
|
/// Bitmask for tasks that are sleeping in an interruptible state.
|
|
pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
|
|
/// Bitmask for tasks that are sleeping in an uninterruptible state.
|
|
pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
|
|
/// Convenience constant for waking up tasks regardless of whether they are in interruptible or
|
|
/// uninterruptible sleep.
|
|
pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
|
|
|
|
/// Returns the currently running task.
|
|
#[macro_export]
|
|
macro_rules! current {
|
|
() => {
|
|
// SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the
|
|
// caller.
|
|
unsafe { &*$crate::task::Task::current() }
|
|
};
|
|
}
|
|
|
|
/// Returns the currently running task's pid namespace.
|
|
#[macro_export]
|
|
macro_rules! current_pid_ns {
|
|
() => {
|
|
// SAFETY: Deref + addr-of below create a temporary `PidNamespaceRef` that cannot outlive
|
|
// the caller.
|
|
unsafe { &*$crate::task::Task::current_pid_ns() }
|
|
};
|
|
}
|
|
|
|
/// Wraps the kernel's `struct task_struct`.
|
|
///
|
|
/// # Invariants
|
|
///
|
|
/// All instances are valid tasks created by the C portion of the kernel.
|
|
///
|
|
/// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
|
|
/// that the allocation remains valid at least until the matching call to `put_task_struct`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// The following is an example of getting the PID of the current thread with zero additional cost
|
|
/// when compared to the C version:
|
|
///
|
|
/// ```
|
|
/// let pid = current!().pid();
|
|
/// ```
|
|
///
|
|
/// Getting the PID of the current process, also zero additional cost:
|
|
///
|
|
/// ```
|
|
/// let pid = current!().group_leader().pid();
|
|
/// ```
|
|
///
|
|
/// Getting the current task and storing it in some struct. The reference count is automatically
|
|
/// incremented when creating `State` and decremented when it is dropped:
|
|
///
|
|
/// ```
|
|
/// use kernel::{task::Task, types::ARef};
|
|
///
|
|
/// struct State {
|
|
/// creator: ARef<Task>,
|
|
/// index: u32,
|
|
/// }
|
|
///
|
|
/// impl State {
|
|
/// fn new() -> Self {
|
|
/// Self {
|
|
/// creator: current!().into(),
|
|
/// index: 0,
|
|
/// }
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
#[repr(transparent)]
|
|
pub struct Task(pub(crate) Opaque<bindings::task_struct>);
|
|
|
|
// SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
|
|
// `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
|
|
// which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
|
|
// runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
|
|
unsafe impl Send for Task {}
|
|
|
|
// SAFETY: It's OK to access `Task` through shared references from other threads because we're
|
|
// either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
|
|
// synchronised by C code (e.g., `signal_pending`).
|
|
unsafe impl Sync for Task {}
|
|
|
|
/// The type of process identifiers (PIDs).
|
|
type Pid = bindings::pid_t;
|
|
|
|
/// The type of user identifiers (UIDs).
|
|
#[derive(Copy, Clone)]
|
|
pub struct Kuid {
|
|
kuid: bindings::kuid_t,
|
|
}
|
|
|
|
impl Task {
|
|
/// Returns a raw pointer to the current task.
|
|
///
|
|
/// It is up to the user to use the pointer correctly.
|
|
#[inline]
|
|
pub fn current_raw() -> *mut bindings::task_struct {
|
|
// SAFETY: Getting the current pointer is always safe.
|
|
unsafe { bindings::get_current() }
|
|
}
|
|
|
|
/// Returns a task reference for the currently executing task/thread.
|
|
///
|
|
/// The recommended way to get the current task/thread is to use the
|
|
/// [`current`] macro because it is safe.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Callers must ensure that the returned object doesn't outlive the current task/thread.
|
|
pub unsafe fn current() -> impl Deref<Target = Task> {
|
|
struct TaskRef<'a> {
|
|
task: &'a Task,
|
|
_not_send: NotThreadSafe,
|
|
}
|
|
|
|
impl Deref for TaskRef<'_> {
|
|
type Target = Task;
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
self.task
|
|
}
|
|
}
|
|
|
|
let current = Task::current_raw();
|
|
TaskRef {
|
|
// SAFETY: If the current thread is still running, the current task is valid. Given
|
|
// that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
|
|
// (where it could potentially outlive the caller).
|
|
task: unsafe { &*current.cast() },
|
|
_not_send: NotThreadSafe,
|
|
}
|
|
}
|
|
|
|
/// Returns a PidNamespace reference for the currently executing task's/thread's pid namespace.
|
|
///
|
|
/// This function can be used to create an unbounded lifetime by e.g., storing the returned
|
|
/// PidNamespace in a global variable which would be a bug. So the recommended way to get the
|
|
/// current task's/thread's pid namespace is to use the [`current_pid_ns`] macro because it is
|
|
/// safe.
|
|
///
|
|
/// # Safety
|
|
///
|
|
/// Callers must ensure that the returned object doesn't outlive the current task/thread.
|
|
pub unsafe fn current_pid_ns() -> impl Deref<Target = PidNamespace> {
|
|
struct PidNamespaceRef<'a> {
|
|
task: &'a PidNamespace,
|
|
_not_send: NotThreadSafe,
|
|
}
|
|
|
|
impl Deref for PidNamespaceRef<'_> {
|
|
type Target = PidNamespace;
|
|
|
|
fn deref(&self) -> &Self::Target {
|
|
self.task
|
|
}
|
|
}
|
|
|
|
// The lifetime of `PidNamespace` is bound to `Task` and `struct pid`.
|
|
//
|
|
// The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive. A
|
|
// `unshare(CLONE_NEWPID)` or `setns(fd_pidns/pidfd, CLONE_NEWPID)` will not have an effect
|
|
// on the calling `Task`'s pid namespace. It will only effect the pid namespace of children
|
|
// created by the calling `Task`. This invariant guarantees that after having acquired a
|
|
// reference to a `Task`'s pid namespace it will remain unchanged.
|
|
//
|
|
// When a task has exited and been reaped `release_task()` will be called. This will set
|
|
// the `PidNamespace` of the task to `NULL`. So retrieving the `PidNamespace` of a task
|
|
// that is dead will return `NULL`. Note, that neither holding the RCU lock nor holding a
|
|
// referencing count to
|
|
// the `Task` will prevent `release_task()` being called.
|
|
//
|
|
// In order to retrieve the `PidNamespace` of a `Task` the `task_active_pid_ns()` function
|
|
// can be used. There are two cases to consider:
|
|
//
|
|
// (1) retrieving the `PidNamespace` of the `current` task
|
|
// (2) retrieving the `PidNamespace` of a non-`current` task
|
|
//
|
|
// From system call context retrieving the `PidNamespace` for case (1) is always safe and
|
|
// requires neither RCU locking nor a reference count to be held. Retrieving the
|
|
// `PidNamespace` after `release_task()` for current will return `NULL` but no codepath
|
|
// like that is exposed to Rust.
|
|
//
|
|
// Retrieving the `PidNamespace` from system call context for (2) requires RCU protection.
|
|
// Accessing `PidNamespace` outside of RCU protection requires a reference count that
|
|
// must've been acquired while holding the RCU lock. Note that accessing a non-`current`
|
|
// task means `NULL` can be returned as the non-`current` task could have already passed
|
|
// through `release_task()`.
|
|
//
|
|
// To retrieve (1) the `current_pid_ns!()` macro should be used which ensure that the
|
|
// returned `PidNamespace` cannot outlive the calling scope. The associated
|
|
// `current_pid_ns()` function should not be called directly as it could be abused to
|
|
// created an unbounded lifetime for `PidNamespace`. The `current_pid_ns!()` macro allows
|
|
// Rust to handle the common case of accessing `current`'s `PidNamespace` without RCU
|
|
// protection and without having to acquire a reference count.
|
|
//
|
|
// For (2) the `task_get_pid_ns()` method must be used. This will always acquire a
|
|
// reference on `PidNamespace` and will return an `Option` to force the caller to
|
|
// explicitly handle the case where `PidNamespace` is `None`, something that tends to be
|
|
// forgotten when doing the equivalent operation in `C`. Missing RCU primitives make it
|
|
// difficult to perform operations that are otherwise safe without holding a reference
|
|
// count as long as RCU protection is guaranteed. But it is not important currently. But we
|
|
// do want it in the future.
|
|
//
|
|
// Note for (2) the required RCU protection around calling `task_active_pid_ns()`
|
|
// synchronizes against putting the last reference of the associated `struct pid` of
|
|
// `task->thread_pid`. The `struct pid` stored in that field is used to retrieve the
|
|
// `PidNamespace` of the caller. When `release_task()` is called `task->thread_pid` will be
|
|
// `NULL`ed and `put_pid()` on said `struct pid` will be delayed in `free_pid()` via
|
|
// `call_rcu()` allowing everyone with an RCU protected access to the `struct pid` acquired
|
|
// from `task->thread_pid` to finish.
|
|
//
|
|
// SAFETY: The current task's pid namespace is valid as long as the current task is running.
|
|
let pidns = unsafe { bindings::task_active_pid_ns(Task::current_raw()) };
|
|
PidNamespaceRef {
|
|
// SAFETY: If the current thread is still running, the current task and its associated
|
|
// pid namespace are valid. `PidNamespaceRef` is not `Send`, so we know it cannot be
|
|
// transferred to another thread (where it could potentially outlive the current
|
|
// `Task`). The caller needs to ensure that the PidNamespaceRef doesn't outlive the
|
|
// current task/thread.
|
|
task: unsafe { PidNamespace::from_ptr(pidns) },
|
|
_not_send: NotThreadSafe,
|
|
}
|
|
}
|
|
|
|
/// Returns a raw pointer to the task.
|
|
#[inline]
|
|
pub fn as_ptr(&self) -> *mut bindings::task_struct {
|
|
self.0.get()
|
|
}
|
|
|
|
/// Returns the group leader of the given task.
|
|
pub fn group_leader(&self) -> &Task {
|
|
// SAFETY: The group leader of a task never changes after initialization, so reading this
|
|
// field is not a data race.
|
|
let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) };
|
|
|
|
// SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
|
|
// and given that a task has a reference to its group leader, we know it must be valid for
|
|
// the lifetime of the returned task reference.
|
|
unsafe { &*ptr.cast() }
|
|
}
|
|
|
|
/// Returns the PID of the given task.
|
|
pub fn pid(&self) -> Pid {
|
|
// SAFETY: The pid of a task never changes after initialization, so reading this field is
|
|
// not a data race.
|
|
unsafe { *ptr::addr_of!((*self.as_ptr()).pid) }
|
|
}
|
|
|
|
/// Returns the UID of the given task.
|
|
pub fn uid(&self) -> Kuid {
|
|
// SAFETY: It's always safe to call `task_uid` on a valid task.
|
|
Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) })
|
|
}
|
|
|
|
/// Returns the effective UID of the given task.
|
|
pub fn euid(&self) -> Kuid {
|
|
// SAFETY: It's always safe to call `task_euid` on a valid task.
|
|
Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) })
|
|
}
|
|
|
|
/// Determines whether the given task has pending signals.
|
|
pub fn signal_pending(&self) -> bool {
|
|
// SAFETY: It's always safe to call `signal_pending` on a valid task.
|
|
unsafe { bindings::signal_pending(self.as_ptr()) != 0 }
|
|
}
|
|
|
|
/// Returns task's pid namespace with elevated reference count
|
|
pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> {
|
|
// SAFETY: By the type invariant, we know that `self.0` is valid.
|
|
let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) };
|
|
if ptr.is_null() {
|
|
None
|
|
} else {
|
|
// SAFETY: `ptr` is valid by the safety requirements of this function. And we own a
|
|
// reference count via `task_get_pid_ns()`.
|
|
// CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`.
|
|
Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) })
|
|
}
|
|
}
|
|
|
|
/// Returns the given task's pid in the provided pid namespace.
|
|
#[doc(alias = "task_tgid_nr_ns")]
|
|
pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid {
|
|
let pidns = match pidns {
|
|
Some(pidns) => pidns.as_ptr(),
|
|
None => core::ptr::null_mut(),
|
|
};
|
|
// SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid
|
|
// PidNamespace that we can use as a pointer or we received an empty PidNamespace and
|
|
// thus pass a null pointer. The underlying C function is safe to be used with NULL
|
|
// pointers.
|
|
unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) }
|
|
}
|
|
|
|
/// Wakes up the task.
|
|
pub fn wake_up(&self) {
|
|
// SAFETY: It's always safe to call `signal_pending` on a valid task, even if the task
|
|
// running.
|
|
unsafe { bindings::wake_up_process(self.as_ptr()) };
|
|
}
|
|
}
|
|
|
|
// SAFETY: The type invariants guarantee that `Task` is always refcounted.
|
|
unsafe impl crate::types::AlwaysRefCounted for Task {
|
|
fn inc_ref(&self) {
|
|
// SAFETY: The existence of a shared reference means that the refcount is nonzero.
|
|
unsafe { bindings::get_task_struct(self.as_ptr()) };
|
|
}
|
|
|
|
unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
|
|
// SAFETY: The safety requirements guarantee that the refcount is nonzero.
|
|
unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
|
|
}
|
|
}
|
|
|
|
impl Kuid {
|
|
/// Get the current euid.
|
|
#[inline]
|
|
pub fn current_euid() -> Kuid {
|
|
// SAFETY: Just an FFI call.
|
|
Self::from_raw(unsafe { bindings::current_euid() })
|
|
}
|
|
|
|
/// Create a `Kuid` given the raw C type.
|
|
#[inline]
|
|
pub fn from_raw(kuid: bindings::kuid_t) -> Self {
|
|
Self { kuid }
|
|
}
|
|
|
|
/// Turn this kuid into the raw C type.
|
|
#[inline]
|
|
pub fn into_raw(self) -> bindings::kuid_t {
|
|
self.kuid
|
|
}
|
|
|
|
/// Converts this kernel UID into a userspace UID.
|
|
///
|
|
/// Uses the namespace of the current task.
|
|
#[inline]
|
|
pub fn into_uid_in_current_ns(self) -> bindings::uid_t {
|
|
// SAFETY: Just an FFI call.
|
|
unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) }
|
|
}
|
|
}
|
|
|
|
impl PartialEq for Kuid {
|
|
#[inline]
|
|
fn eq(&self, other: &Kuid) -> bool {
|
|
// SAFETY: Just an FFI call.
|
|
unsafe { bindings::uid_eq(self.kuid, other.kuid) }
|
|
}
|
|
}
|
|
|
|
impl Eq for Kuid {}
|