mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-03 19:55:31 +00:00
2fb48d88e7
When a device-mapper device is passing through the inline encryption
support of an underlying device, calls to blk_crypto_evict_key() take
the blk_crypto_profile::lock of the device-mapper device, then take the
blk_crypto_profile::lock of the underlying device (nested). This isn't
a real deadlock, but it causes a lockdep report because there is only
one lock class for all instances of this lock.
Lockdep subclasses don't really work here because the hierarchy of block
devices is dynamic and could have more than 2 levels.
Instead, register a dynamic lock class for each blk_crypto_profile, and
associate that with the lock.
This avoids false-positive lockdep reports like the following:
============================================
WARNING: possible recursive locking detected
6.4.0-rc5 #2 Not tainted
--------------------------------------------
fscryptctl/1421 is trying to acquire lock:
ffffff80829ca418 (&profile->lock){++++}-{3:3}, at: __blk_crypto_evict_key+0x44/0x1c0
but task is already holding lock:
ffffff8086b68ca8 (&profile->lock){++++}-{3:3}, at: __blk_crypto_evict_key+0xc8/0x1c0
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&profile->lock);
lock(&profile->lock);
*** DEADLOCK ***
May be due to missing lock nesting notation
Fixes: 1b26283970
("block: Keyslot Manager for Inline Encryption")
Reported-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20230610061139.212085-1-ebiggers@kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
560 lines
16 KiB
C
560 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright 2019 Google LLC
|
|
*/
|
|
|
|
/**
|
|
* DOC: blk-crypto profiles
|
|
*
|
|
* 'struct blk_crypto_profile' contains all generic inline encryption-related
|
|
* state for a particular inline encryption device. blk_crypto_profile serves
|
|
* as the way that drivers for inline encryption hardware expose their crypto
|
|
* capabilities and certain functions (e.g., functions to program and evict
|
|
* keys) to upper layers. Device drivers that want to support inline encryption
|
|
* construct a crypto profile, then associate it with the disk's request_queue.
|
|
*
|
|
* If the device has keyslots, then its blk_crypto_profile also handles managing
|
|
* these keyslots in a device-independent way, using the driver-provided
|
|
* functions to program and evict keys as needed. This includes keeping track
|
|
* of which key and how many I/O requests are using each keyslot, getting
|
|
* keyslots for I/O requests, and handling key eviction requests.
|
|
*
|
|
* For more information, see Documentation/block/inline-encryption.rst.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "blk-crypto: " fmt
|
|
|
|
#include <linux/blk-crypto-profile.h>
|
|
#include <linux/device.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blk-integrity.h>
|
|
#include "blk-crypto-internal.h"
|
|
|
|
struct blk_crypto_keyslot {
|
|
atomic_t slot_refs;
|
|
struct list_head idle_slot_node;
|
|
struct hlist_node hash_node;
|
|
const struct blk_crypto_key *key;
|
|
struct blk_crypto_profile *profile;
|
|
};
|
|
|
|
static inline void blk_crypto_hw_enter(struct blk_crypto_profile *profile)
|
|
{
|
|
/*
|
|
* Calling into the driver requires profile->lock held and the device
|
|
* resumed. But we must resume the device first, since that can acquire
|
|
* and release profile->lock via blk_crypto_reprogram_all_keys().
|
|
*/
|
|
if (profile->dev)
|
|
pm_runtime_get_sync(profile->dev);
|
|
down_write(&profile->lock);
|
|
}
|
|
|
|
static inline void blk_crypto_hw_exit(struct blk_crypto_profile *profile)
|
|
{
|
|
up_write(&profile->lock);
|
|
if (profile->dev)
|
|
pm_runtime_put_sync(profile->dev);
|
|
}
|
|
|
|
/**
|
|
* blk_crypto_profile_init() - Initialize a blk_crypto_profile
|
|
* @profile: the blk_crypto_profile to initialize
|
|
* @num_slots: the number of keyslots
|
|
*
|
|
* Storage drivers must call this when starting to set up a blk_crypto_profile,
|
|
* before filling in additional fields.
|
|
*
|
|
* Return: 0 on success, or else a negative error code.
|
|
*/
|
|
int blk_crypto_profile_init(struct blk_crypto_profile *profile,
|
|
unsigned int num_slots)
|
|
{
|
|
unsigned int slot;
|
|
unsigned int i;
|
|
unsigned int slot_hashtable_size;
|
|
|
|
memset(profile, 0, sizeof(*profile));
|
|
|
|
/*
|
|
* profile->lock of an underlying device can nest inside profile->lock
|
|
* of a device-mapper device, so use a dynamic lock class to avoid
|
|
* false-positive lockdep reports.
|
|
*/
|
|
lockdep_register_key(&profile->lockdep_key);
|
|
__init_rwsem(&profile->lock, "&profile->lock", &profile->lockdep_key);
|
|
|
|
if (num_slots == 0)
|
|
return 0;
|
|
|
|
/* Initialize keyslot management data. */
|
|
|
|
profile->slots = kvcalloc(num_slots, sizeof(profile->slots[0]),
|
|
GFP_KERNEL);
|
|
if (!profile->slots)
|
|
goto err_destroy;
|
|
|
|
profile->num_slots = num_slots;
|
|
|
|
init_waitqueue_head(&profile->idle_slots_wait_queue);
|
|
INIT_LIST_HEAD(&profile->idle_slots);
|
|
|
|
for (slot = 0; slot < num_slots; slot++) {
|
|
profile->slots[slot].profile = profile;
|
|
list_add_tail(&profile->slots[slot].idle_slot_node,
|
|
&profile->idle_slots);
|
|
}
|
|
|
|
spin_lock_init(&profile->idle_slots_lock);
|
|
|
|
slot_hashtable_size = roundup_pow_of_two(num_slots);
|
|
/*
|
|
* hash_ptr() assumes bits != 0, so ensure the hash table has at least 2
|
|
* buckets. This only makes a difference when there is only 1 keyslot.
|
|
*/
|
|
if (slot_hashtable_size < 2)
|
|
slot_hashtable_size = 2;
|
|
|
|
profile->log_slot_ht_size = ilog2(slot_hashtable_size);
|
|
profile->slot_hashtable =
|
|
kvmalloc_array(slot_hashtable_size,
|
|
sizeof(profile->slot_hashtable[0]), GFP_KERNEL);
|
|
if (!profile->slot_hashtable)
|
|
goto err_destroy;
|
|
for (i = 0; i < slot_hashtable_size; i++)
|
|
INIT_HLIST_HEAD(&profile->slot_hashtable[i]);
|
|
|
|
return 0;
|
|
|
|
err_destroy:
|
|
blk_crypto_profile_destroy(profile);
|
|
return -ENOMEM;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_profile_init);
|
|
|
|
static void blk_crypto_profile_destroy_callback(void *profile)
|
|
{
|
|
blk_crypto_profile_destroy(profile);
|
|
}
|
|
|
|
/**
|
|
* devm_blk_crypto_profile_init() - Resource-managed blk_crypto_profile_init()
|
|
* @dev: the device which owns the blk_crypto_profile
|
|
* @profile: the blk_crypto_profile to initialize
|
|
* @num_slots: the number of keyslots
|
|
*
|
|
* Like blk_crypto_profile_init(), but causes blk_crypto_profile_destroy() to be
|
|
* called automatically on driver detach.
|
|
*
|
|
* Return: 0 on success, or else a negative error code.
|
|
*/
|
|
int devm_blk_crypto_profile_init(struct device *dev,
|
|
struct blk_crypto_profile *profile,
|
|
unsigned int num_slots)
|
|
{
|
|
int err = blk_crypto_profile_init(profile, num_slots);
|
|
|
|
if (err)
|
|
return err;
|
|
|
|
return devm_add_action_or_reset(dev,
|
|
blk_crypto_profile_destroy_callback,
|
|
profile);
|
|
}
|
|
EXPORT_SYMBOL_GPL(devm_blk_crypto_profile_init);
|
|
|
|
static inline struct hlist_head *
|
|
blk_crypto_hash_bucket_for_key(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
return &profile->slot_hashtable[
|
|
hash_ptr(key, profile->log_slot_ht_size)];
|
|
}
|
|
|
|
static void
|
|
blk_crypto_remove_slot_from_lru_list(struct blk_crypto_keyslot *slot)
|
|
{
|
|
struct blk_crypto_profile *profile = slot->profile;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&profile->idle_slots_lock, flags);
|
|
list_del(&slot->idle_slot_node);
|
|
spin_unlock_irqrestore(&profile->idle_slots_lock, flags);
|
|
}
|
|
|
|
static struct blk_crypto_keyslot *
|
|
blk_crypto_find_keyslot(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
const struct hlist_head *head =
|
|
blk_crypto_hash_bucket_for_key(profile, key);
|
|
struct blk_crypto_keyslot *slotp;
|
|
|
|
hlist_for_each_entry(slotp, head, hash_node) {
|
|
if (slotp->key == key)
|
|
return slotp;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct blk_crypto_keyslot *
|
|
blk_crypto_find_and_grab_keyslot(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
struct blk_crypto_keyslot *slot;
|
|
|
|
slot = blk_crypto_find_keyslot(profile, key);
|
|
if (!slot)
|
|
return NULL;
|
|
if (atomic_inc_return(&slot->slot_refs) == 1) {
|
|
/* Took first reference to this slot; remove it from LRU list */
|
|
blk_crypto_remove_slot_from_lru_list(slot);
|
|
}
|
|
return slot;
|
|
}
|
|
|
|
/**
|
|
* blk_crypto_keyslot_index() - Get the index of a keyslot
|
|
* @slot: a keyslot that blk_crypto_get_keyslot() returned
|
|
*
|
|
* Return: the 0-based index of the keyslot within the device's keyslots.
|
|
*/
|
|
unsigned int blk_crypto_keyslot_index(struct blk_crypto_keyslot *slot)
|
|
{
|
|
return slot - slot->profile->slots;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_keyslot_index);
|
|
|
|
/**
|
|
* blk_crypto_get_keyslot() - Get a keyslot for a key, if needed.
|
|
* @profile: the crypto profile of the device the key will be used on
|
|
* @key: the key that will be used
|
|
* @slot_ptr: If a keyslot is allocated, an opaque pointer to the keyslot struct
|
|
* will be stored here. blk_crypto_put_keyslot() must be called
|
|
* later to release it. Otherwise, NULL will be stored here.
|
|
*
|
|
* If the device has keyslots, this gets a keyslot that's been programmed with
|
|
* the specified key. If the key is already in a slot, this reuses it;
|
|
* otherwise this waits for a slot to become idle and programs the key into it.
|
|
*
|
|
* Context: Process context. Takes and releases profile->lock.
|
|
* Return: BLK_STS_OK on success, meaning that either a keyslot was allocated or
|
|
* one wasn't needed; or a blk_status_t error on failure.
|
|
*/
|
|
blk_status_t blk_crypto_get_keyslot(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key,
|
|
struct blk_crypto_keyslot **slot_ptr)
|
|
{
|
|
struct blk_crypto_keyslot *slot;
|
|
int slot_idx;
|
|
int err;
|
|
|
|
*slot_ptr = NULL;
|
|
|
|
/*
|
|
* If the device has no concept of "keyslots", then there is no need to
|
|
* get one.
|
|
*/
|
|
if (profile->num_slots == 0)
|
|
return BLK_STS_OK;
|
|
|
|
down_read(&profile->lock);
|
|
slot = blk_crypto_find_and_grab_keyslot(profile, key);
|
|
up_read(&profile->lock);
|
|
if (slot)
|
|
goto success;
|
|
|
|
for (;;) {
|
|
blk_crypto_hw_enter(profile);
|
|
slot = blk_crypto_find_and_grab_keyslot(profile, key);
|
|
if (slot) {
|
|
blk_crypto_hw_exit(profile);
|
|
goto success;
|
|
}
|
|
|
|
/*
|
|
* If we're here, that means there wasn't a slot that was
|
|
* already programmed with the key. So try to program it.
|
|
*/
|
|
if (!list_empty(&profile->idle_slots))
|
|
break;
|
|
|
|
blk_crypto_hw_exit(profile);
|
|
wait_event(profile->idle_slots_wait_queue,
|
|
!list_empty(&profile->idle_slots));
|
|
}
|
|
|
|
slot = list_first_entry(&profile->idle_slots, struct blk_crypto_keyslot,
|
|
idle_slot_node);
|
|
slot_idx = blk_crypto_keyslot_index(slot);
|
|
|
|
err = profile->ll_ops.keyslot_program(profile, key, slot_idx);
|
|
if (err) {
|
|
wake_up(&profile->idle_slots_wait_queue);
|
|
blk_crypto_hw_exit(profile);
|
|
return errno_to_blk_status(err);
|
|
}
|
|
|
|
/* Move this slot to the hash list for the new key. */
|
|
if (slot->key)
|
|
hlist_del(&slot->hash_node);
|
|
slot->key = key;
|
|
hlist_add_head(&slot->hash_node,
|
|
blk_crypto_hash_bucket_for_key(profile, key));
|
|
|
|
atomic_set(&slot->slot_refs, 1);
|
|
|
|
blk_crypto_remove_slot_from_lru_list(slot);
|
|
|
|
blk_crypto_hw_exit(profile);
|
|
success:
|
|
*slot_ptr = slot;
|
|
return BLK_STS_OK;
|
|
}
|
|
|
|
/**
|
|
* blk_crypto_put_keyslot() - Release a reference to a keyslot
|
|
* @slot: The keyslot to release the reference of
|
|
*
|
|
* Context: Any context.
|
|
*/
|
|
void blk_crypto_put_keyslot(struct blk_crypto_keyslot *slot)
|
|
{
|
|
struct blk_crypto_profile *profile = slot->profile;
|
|
unsigned long flags;
|
|
|
|
if (atomic_dec_and_lock_irqsave(&slot->slot_refs,
|
|
&profile->idle_slots_lock, flags)) {
|
|
list_add_tail(&slot->idle_slot_node, &profile->idle_slots);
|
|
spin_unlock_irqrestore(&profile->idle_slots_lock, flags);
|
|
wake_up(&profile->idle_slots_wait_queue);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __blk_crypto_cfg_supported() - Check whether the given crypto profile
|
|
* supports the given crypto configuration.
|
|
* @profile: the crypto profile to check
|
|
* @cfg: the crypto configuration to check for
|
|
*
|
|
* Return: %true if @profile supports the given @cfg.
|
|
*/
|
|
bool __blk_crypto_cfg_supported(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_config *cfg)
|
|
{
|
|
if (!profile)
|
|
return false;
|
|
if (!(profile->modes_supported[cfg->crypto_mode] & cfg->data_unit_size))
|
|
return false;
|
|
if (profile->max_dun_bytes_supported < cfg->dun_bytes)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This is an internal function that evicts a key from an inline encryption
|
|
* device that can be either a real device or the blk-crypto-fallback "device".
|
|
* It is used only by blk_crypto_evict_key(); see that function for details.
|
|
*/
|
|
int __blk_crypto_evict_key(struct blk_crypto_profile *profile,
|
|
const struct blk_crypto_key *key)
|
|
{
|
|
struct blk_crypto_keyslot *slot;
|
|
int err;
|
|
|
|
if (profile->num_slots == 0) {
|
|
if (profile->ll_ops.keyslot_evict) {
|
|
blk_crypto_hw_enter(profile);
|
|
err = profile->ll_ops.keyslot_evict(profile, key, -1);
|
|
blk_crypto_hw_exit(profile);
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
blk_crypto_hw_enter(profile);
|
|
slot = blk_crypto_find_keyslot(profile, key);
|
|
if (!slot) {
|
|
/*
|
|
* Not an error, since a key not in use by I/O is not guaranteed
|
|
* to be in a keyslot. There can be more keys than keyslots.
|
|
*/
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
|
|
if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) {
|
|
/* BUG: key is still in use by I/O */
|
|
err = -EBUSY;
|
|
goto out_remove;
|
|
}
|
|
err = profile->ll_ops.keyslot_evict(profile, key,
|
|
blk_crypto_keyslot_index(slot));
|
|
out_remove:
|
|
/*
|
|
* Callers free the key even on error, so unlink the key from the hash
|
|
* table and clear slot->key even on error.
|
|
*/
|
|
hlist_del(&slot->hash_node);
|
|
slot->key = NULL;
|
|
out:
|
|
blk_crypto_hw_exit(profile);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* blk_crypto_reprogram_all_keys() - Re-program all keyslots.
|
|
* @profile: The crypto profile
|
|
*
|
|
* Re-program all keyslots that are supposed to have a key programmed. This is
|
|
* intended only for use by drivers for hardware that loses its keys on reset.
|
|
*
|
|
* Context: Process context. Takes and releases profile->lock.
|
|
*/
|
|
void blk_crypto_reprogram_all_keys(struct blk_crypto_profile *profile)
|
|
{
|
|
unsigned int slot;
|
|
|
|
if (profile->num_slots == 0)
|
|
return;
|
|
|
|
/* This is for device initialization, so don't resume the device */
|
|
down_write(&profile->lock);
|
|
for (slot = 0; slot < profile->num_slots; slot++) {
|
|
const struct blk_crypto_key *key = profile->slots[slot].key;
|
|
int err;
|
|
|
|
if (!key)
|
|
continue;
|
|
|
|
err = profile->ll_ops.keyslot_program(profile, key, slot);
|
|
WARN_ON(err);
|
|
}
|
|
up_write(&profile->lock);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_reprogram_all_keys);
|
|
|
|
void blk_crypto_profile_destroy(struct blk_crypto_profile *profile)
|
|
{
|
|
if (!profile)
|
|
return;
|
|
lockdep_unregister_key(&profile->lockdep_key);
|
|
kvfree(profile->slot_hashtable);
|
|
kvfree_sensitive(profile->slots,
|
|
sizeof(profile->slots[0]) * profile->num_slots);
|
|
memzero_explicit(profile, sizeof(*profile));
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_profile_destroy);
|
|
|
|
bool blk_crypto_register(struct blk_crypto_profile *profile,
|
|
struct request_queue *q)
|
|
{
|
|
if (blk_integrity_queue_supports_integrity(q)) {
|
|
pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n");
|
|
return false;
|
|
}
|
|
q->crypto_profile = profile;
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_register);
|
|
|
|
/**
|
|
* blk_crypto_intersect_capabilities() - restrict supported crypto capabilities
|
|
* by child device
|
|
* @parent: the crypto profile for the parent device
|
|
* @child: the crypto profile for the child device, or NULL
|
|
*
|
|
* This clears all crypto capabilities in @parent that aren't set in @child. If
|
|
* @child is NULL, then this clears all parent capabilities.
|
|
*
|
|
* Only use this when setting up the crypto profile for a layered device, before
|
|
* it's been exposed yet.
|
|
*/
|
|
void blk_crypto_intersect_capabilities(struct blk_crypto_profile *parent,
|
|
const struct blk_crypto_profile *child)
|
|
{
|
|
if (child) {
|
|
unsigned int i;
|
|
|
|
parent->max_dun_bytes_supported =
|
|
min(parent->max_dun_bytes_supported,
|
|
child->max_dun_bytes_supported);
|
|
for (i = 0; i < ARRAY_SIZE(child->modes_supported); i++)
|
|
parent->modes_supported[i] &= child->modes_supported[i];
|
|
} else {
|
|
parent->max_dun_bytes_supported = 0;
|
|
memset(parent->modes_supported, 0,
|
|
sizeof(parent->modes_supported));
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_intersect_capabilities);
|
|
|
|
/**
|
|
* blk_crypto_has_capabilities() - Check whether @target supports at least all
|
|
* the crypto capabilities that @reference does.
|
|
* @target: the target profile
|
|
* @reference: the reference profile
|
|
*
|
|
* Return: %true if @target supports all the crypto capabilities of @reference.
|
|
*/
|
|
bool blk_crypto_has_capabilities(const struct blk_crypto_profile *target,
|
|
const struct blk_crypto_profile *reference)
|
|
{
|
|
int i;
|
|
|
|
if (!reference)
|
|
return true;
|
|
|
|
if (!target)
|
|
return false;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(target->modes_supported); i++) {
|
|
if (reference->modes_supported[i] & ~target->modes_supported[i])
|
|
return false;
|
|
}
|
|
|
|
if (reference->max_dun_bytes_supported >
|
|
target->max_dun_bytes_supported)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_has_capabilities);
|
|
|
|
/**
|
|
* blk_crypto_update_capabilities() - Update the capabilities of a crypto
|
|
* profile to match those of another crypto
|
|
* profile.
|
|
* @dst: The crypto profile whose capabilities to update.
|
|
* @src: The crypto profile whose capabilities this function will update @dst's
|
|
* capabilities to.
|
|
*
|
|
* Blk-crypto requires that crypto capabilities that were
|
|
* advertised when a bio was created continue to be supported by the
|
|
* device until that bio is ended. This is turn means that a device cannot
|
|
* shrink its advertised crypto capabilities without any explicit
|
|
* synchronization with upper layers. So if there's no such explicit
|
|
* synchronization, @src must support all the crypto capabilities that
|
|
* @dst does (i.e. we need blk_crypto_has_capabilities(@src, @dst)).
|
|
*
|
|
* Note also that as long as the crypto capabilities are being expanded, the
|
|
* order of updates becoming visible is not important because it's alright
|
|
* for blk-crypto to see stale values - they only cause blk-crypto to
|
|
* believe that a crypto capability isn't supported when it actually is (which
|
|
* might result in blk-crypto-fallback being used if available, or the bio being
|
|
* failed).
|
|
*/
|
|
void blk_crypto_update_capabilities(struct blk_crypto_profile *dst,
|
|
const struct blk_crypto_profile *src)
|
|
{
|
|
memcpy(dst->modes_supported, src->modes_supported,
|
|
sizeof(dst->modes_supported));
|
|
|
|
dst->max_dun_bytes_supported = src->max_dun_bytes_supported;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_crypto_update_capabilities);
|