linux-stable/drivers/cpufreq/cpufreq_conservative.c
Rafael J. Wysocki da5e79bc70 cpufreq: conservative: Take limits changes into account properly
If the policy limits change between invocations of cs_dbs_update(),
the requested frequency value stored in dbs_info may not be updated
and the function may use a stale value of it next time.  Moreover, if
idle periods are takem into account by cs_dbs_update(), the requested
frequency value stored in dbs_info may be below the min policy limit,
which is incorrect.

To fix these problems, always update the requested frequency value
in dbs_info along with the local copy of it when the previous
requested frequency is beyond the policy limits and avoid decreasing
the requested frequency below the min policy limit when taking
idle periods into account.

Fixes: abb6627910 (cpufreq: conservative: Fix next frequency selection)
Fixes: 00bfe05889 (cpufreq: conservative: Decrease frequency faster for deferred updates)
Reported-by: Waldemar Rymarkiewicz <waldemarx.rymarkiewicz@intel.com>
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Waldemar Rymarkiewicz <waldemarx.rymarkiewicz@intel.com>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2018-10-16 12:34:45 +02:00

357 lines
9.1 KiB
C

/*
* drivers/cpufreq/cpufreq_conservative.c
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* Jun Nakajima <jun.nakajima@intel.com>
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/slab.h>
#include "cpufreq_governor.h"
struct cs_policy_dbs_info {
struct policy_dbs_info policy_dbs;
unsigned int down_skip;
unsigned int requested_freq;
};
static inline struct cs_policy_dbs_info *to_dbs_info(struct policy_dbs_info *policy_dbs)
{
return container_of(policy_dbs, struct cs_policy_dbs_info, policy_dbs);
}
struct cs_dbs_tuners {
unsigned int down_threshold;
unsigned int freq_step;
};
/* Conservative governor macros */
#define DEF_FREQUENCY_UP_THRESHOLD (80)
#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
#define DEF_FREQUENCY_STEP (5)
#define DEF_SAMPLING_DOWN_FACTOR (1)
#define MAX_SAMPLING_DOWN_FACTOR (10)
static inline unsigned int get_freq_step(struct cs_dbs_tuners *cs_tuners,
struct cpufreq_policy *policy)
{
unsigned int freq_step = (cs_tuners->freq_step * policy->max) / 100;
/* max freq cannot be less than 100. But who knows... */
if (unlikely(freq_step == 0))
freq_step = DEF_FREQUENCY_STEP;
return freq_step;
}
/*
* Every sampling_rate, we check, if current idle time is less than 20%
* (default), then we try to increase frequency. Every sampling_rate *
* sampling_down_factor, we check, if current idle time is more than 80%
* (default), then we try to decrease frequency
*
* Frequency updates happen at minimum steps of 5% (default) of maximum
* frequency
*/
static unsigned int cs_dbs_update(struct cpufreq_policy *policy)
{
struct policy_dbs_info *policy_dbs = policy->governor_data;
struct cs_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
unsigned int requested_freq = dbs_info->requested_freq;
struct dbs_data *dbs_data = policy_dbs->dbs_data;
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int load = dbs_update(policy);
unsigned int freq_step;
/*
* break out if we 'cannot' reduce the speed as the user might
* want freq_step to be zero
*/
if (cs_tuners->freq_step == 0)
goto out;
/*
* If requested_freq is out of range, it is likely that the limits
* changed in the meantime, so fall back to current frequency in that
* case.
*/
if (requested_freq > policy->max || requested_freq < policy->min) {
requested_freq = policy->cur;
dbs_info->requested_freq = requested_freq;
}
freq_step = get_freq_step(cs_tuners, policy);
/*
* Decrease requested_freq one freq_step for each idle period that
* we didn't update the frequency.
*/
if (policy_dbs->idle_periods < UINT_MAX) {
unsigned int freq_steps = policy_dbs->idle_periods * freq_step;
if (requested_freq > policy->min + freq_steps)
requested_freq -= freq_steps;
else
requested_freq = policy->min;
policy_dbs->idle_periods = UINT_MAX;
}
/* Check for frequency increase */
if (load > dbs_data->up_threshold) {
dbs_info->down_skip = 0;
/* if we are already at full speed then break out early */
if (requested_freq == policy->max)
goto out;
requested_freq += freq_step;
if (requested_freq > policy->max)
requested_freq = policy->max;
__cpufreq_driver_target(policy, requested_freq, CPUFREQ_RELATION_H);
dbs_info->requested_freq = requested_freq;
goto out;
}
/* if sampling_down_factor is active break out early */
if (++dbs_info->down_skip < dbs_data->sampling_down_factor)
goto out;
dbs_info->down_skip = 0;
/* Check for frequency decrease */
if (load < cs_tuners->down_threshold) {
/*
* if we cannot reduce the frequency anymore, break out early
*/
if (requested_freq == policy->min)
goto out;
if (requested_freq > freq_step)
requested_freq -= freq_step;
else
requested_freq = policy->min;
__cpufreq_driver_target(policy, requested_freq, CPUFREQ_RELATION_L);
dbs_info->requested_freq = requested_freq;
}
out:
return dbs_data->sampling_rate;
}
/************************** sysfs interface ************************/
static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
return -EINVAL;
dbs_data->sampling_down_factor = input;
return count;
}
static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
return -EINVAL;
dbs_data->up_threshold = input;
return count;
}
static ssize_t store_down_threshold(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
/* cannot be lower than 1 otherwise freq will not fall */
if (ret != 1 || input < 1 || input > 100 ||
input >= dbs_data->up_threshold)
return -EINVAL;
cs_tuners->down_threshold = input;
return count;
}
static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
const char *buf, size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 1)
input = 1;
if (input == dbs_data->ignore_nice_load) /* nothing to do */
return count;
dbs_data->ignore_nice_load = input;
/* we need to re-evaluate prev_cpu_idle */
gov_update_cpu_data(dbs_data);
return count;
}
static ssize_t store_freq_step(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
unsigned int input;
int ret;
ret = sscanf(buf, "%u", &input);
if (ret != 1)
return -EINVAL;
if (input > 100)
input = 100;
/*
* no need to test here if freq_step is zero as the user might actually
* want this, they would be crazy though :)
*/
cs_tuners->freq_step = input;
return count;
}
gov_show_one_common(sampling_rate);
gov_show_one_common(sampling_down_factor);
gov_show_one_common(up_threshold);
gov_show_one_common(ignore_nice_load);
gov_show_one(cs, down_threshold);
gov_show_one(cs, freq_step);
gov_attr_rw(sampling_rate);
gov_attr_rw(sampling_down_factor);
gov_attr_rw(up_threshold);
gov_attr_rw(ignore_nice_load);
gov_attr_rw(down_threshold);
gov_attr_rw(freq_step);
static struct attribute *cs_attributes[] = {
&sampling_rate.attr,
&sampling_down_factor.attr,
&up_threshold.attr,
&down_threshold.attr,
&ignore_nice_load.attr,
&freq_step.attr,
NULL
};
/************************** sysfs end ************************/
static struct policy_dbs_info *cs_alloc(void)
{
struct cs_policy_dbs_info *dbs_info;
dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
return dbs_info ? &dbs_info->policy_dbs : NULL;
}
static void cs_free(struct policy_dbs_info *policy_dbs)
{
kfree(to_dbs_info(policy_dbs));
}
static int cs_init(struct dbs_data *dbs_data)
{
struct cs_dbs_tuners *tuners;
tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
if (!tuners)
return -ENOMEM;
tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
tuners->freq_step = DEF_FREQUENCY_STEP;
dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
dbs_data->ignore_nice_load = 0;
dbs_data->tuners = tuners;
return 0;
}
static void cs_exit(struct dbs_data *dbs_data)
{
kfree(dbs_data->tuners);
}
static void cs_start(struct cpufreq_policy *policy)
{
struct cs_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
dbs_info->down_skip = 0;
dbs_info->requested_freq = policy->cur;
}
static struct dbs_governor cs_governor = {
.gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("conservative"),
.kobj_type = { .default_attrs = cs_attributes },
.gov_dbs_update = cs_dbs_update,
.alloc = cs_alloc,
.free = cs_free,
.init = cs_init,
.exit = cs_exit,
.start = cs_start,
};
#define CPU_FREQ_GOV_CONSERVATIVE (&cs_governor.gov)
static int __init cpufreq_gov_dbs_init(void)
{
return cpufreq_register_governor(CPU_FREQ_GOV_CONSERVATIVE);
}
static void __exit cpufreq_gov_dbs_exit(void)
{
cpufreq_unregister_governor(CPU_FREQ_GOV_CONSERVATIVE);
}
MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
"Low Latency Frequency Transition capable processors "
"optimised for use in a battery environment");
MODULE_LICENSE("GPL");
#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
struct cpufreq_governor *cpufreq_default_governor(void)
{
return CPU_FREQ_GOV_CONSERVATIVE;
}
fs_initcall(cpufreq_gov_dbs_init);
#else
module_init(cpufreq_gov_dbs_init);
#endif
module_exit(cpufreq_gov_dbs_exit);