mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 10:45:49 +00:00
dc1c8034e3
Now that we no longer have any C constant expression contexts (ie array size declarations or static initializers) that use min() or max(), we can simpify the implementation by not having to worry about the result staying as a C constant expression. So now we can unconditionally just use temporary variables of the right type, and get rid of the excessive expansion that used to come from the use of __builtin_choose_expr(__is_constexpr(...), .. to pick the specialized code for constant expressions. Another expansion simplification is to pass the temporary variables (in addition to the original expression) to our __types_ok() macro. That may superficially look like it complicates the macro, but when we only want the type of the expression, expanding the temporary variable names is much simpler and smaller than expanding the potentially complicated original expression. As a result, on my machine, doing a $ time make drivers/staging/media/atomisp/pci/isp/kernels/ynr/ynr_1.0/ia_css_ynr.host.i goes from real 0m16.621s user 0m15.360s sys 0m1.221s to real 0m2.532s user 0m2.091s sys 0m0.452s because the token expansion goes down dramatically. In particular, the longest line expansion (which was line 71 of that 'ia_css_ynr.host.c' file) shrinks from 23,338kB (yes, 23MB for one single line) to "just" 1,444kB (now "only" 1.4MB). And yes, that line is still the line from hell, because it's doing multiple levels of "min()/max()" expansion thanks to some of them being hidden inside the uDIGIT_FITTING() macro. Lorenzo has a nice cleanup patch that makes that driver use inline functions instead of macros for sDIGIT_FITTING() and uDIGIT_FITTING(), which will fix that line once and for all, but the 16-fold reduction in this case does show why we need to simplify these helpers. Cc: David Laight <David.Laight@aculab.com> Cc: Lorenzo Stoakes <lorenzo.stoakes@oracle.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
283 lines
8.6 KiB
C
283 lines
8.6 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_MINMAX_H
|
|
#define _LINUX_MINMAX_H
|
|
|
|
#include <linux/build_bug.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/const.h>
|
|
#include <linux/types.h>
|
|
|
|
/*
|
|
* min()/max()/clamp() macros must accomplish three things:
|
|
*
|
|
* - Avoid multiple evaluations of the arguments (so side-effects like
|
|
* "x++" happen only once) when non-constant.
|
|
* - Retain result as a constant expressions when called with only
|
|
* constant expressions (to avoid tripping VLA warnings in stack
|
|
* allocation usage).
|
|
* - Perform signed v unsigned type-checking (to generate compile
|
|
* errors instead of nasty runtime surprises).
|
|
* - Unsigned char/short are always promoted to signed int and can be
|
|
* compared against signed or unsigned arguments.
|
|
* - Unsigned arguments can be compared against non-negative signed constants.
|
|
* - Comparison of a signed argument against an unsigned constant fails
|
|
* even if the constant is below __INT_MAX__ and could be cast to int.
|
|
*/
|
|
#define __typecheck(x, y) \
|
|
(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
|
|
|
|
/* is_signed_type() isn't a constexpr for pointer types */
|
|
#define __is_signed(x) \
|
|
__builtin_choose_expr(__is_constexpr(is_signed_type(typeof(x))), \
|
|
is_signed_type(typeof(x)), 0)
|
|
|
|
/* True for a non-negative signed int constant */
|
|
#define __is_noneg_int(x) \
|
|
(__builtin_choose_expr(__is_constexpr(x) && __is_signed(x), x, -1) >= 0)
|
|
|
|
#define __types_ok(x, y, ux, uy) \
|
|
(__is_signed(ux) == __is_signed(uy) || \
|
|
__is_signed((ux) + 0) == __is_signed((uy) + 0) || \
|
|
__is_noneg_int(x) || __is_noneg_int(y))
|
|
|
|
#define __cmp_op_min <
|
|
#define __cmp_op_max >
|
|
|
|
#define __cmp(op, x, y) ((x) __cmp_op_##op (y) ? (x) : (y))
|
|
|
|
#define __cmp_once_unique(op, type, x, y, ux, uy) \
|
|
({ type ux = (x); type uy = (y); __cmp(op, ux, uy); })
|
|
|
|
#define __cmp_once(op, type, x, y) \
|
|
__cmp_once_unique(op, type, x, y, __UNIQUE_ID(x_), __UNIQUE_ID(y_))
|
|
|
|
#define __careful_cmp_once(op, x, y, ux, uy) ({ \
|
|
__auto_type ux = (x); __auto_type uy = (y); \
|
|
static_assert(__types_ok(x, y, ux, uy), \
|
|
#op "(" #x ", " #y ") signedness error, fix types or consider u" #op "() before " #op "_t()"); \
|
|
__cmp(op, ux, uy); })
|
|
|
|
#define __careful_cmp(op, x, y) \
|
|
__careful_cmp_once(op, x, y, __UNIQUE_ID(x_), __UNIQUE_ID(y_))
|
|
|
|
#define __clamp(val, lo, hi) \
|
|
((val) >= (hi) ? (hi) : ((val) <= (lo) ? (lo) : (val)))
|
|
|
|
#define __clamp_once(val, lo, hi, uval, ulo, uhi) ({ \
|
|
__auto_type uval = (val); \
|
|
__auto_type ulo = (lo); \
|
|
__auto_type uhi = (hi); \
|
|
static_assert(__builtin_choose_expr(__is_constexpr((lo) > (hi)), \
|
|
(lo) <= (hi), true), \
|
|
"clamp() low limit " #lo " greater than high limit " #hi); \
|
|
static_assert(__types_ok(uval, lo, uval, ulo), "clamp() 'lo' signedness error"); \
|
|
static_assert(__types_ok(uval, hi, uval, uhi), "clamp() 'hi' signedness error"); \
|
|
__clamp(uval, ulo, uhi); })
|
|
|
|
#define __careful_clamp(val, lo, hi) \
|
|
__clamp_once(val, lo, hi, __UNIQUE_ID(v_), __UNIQUE_ID(l_), __UNIQUE_ID(h_))
|
|
|
|
/**
|
|
* min - return minimum of two values of the same or compatible types
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define min(x, y) __careful_cmp(min, x, y)
|
|
|
|
/**
|
|
* max - return maximum of two values of the same or compatible types
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define max(x, y) __careful_cmp(max, x, y)
|
|
|
|
/**
|
|
* umin - return minimum of two non-negative values
|
|
* Signed types are zero extended to match a larger unsigned type.
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define umin(x, y) \
|
|
__careful_cmp(min, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
|
|
|
|
/**
|
|
* umax - return maximum of two non-negative values
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define umax(x, y) \
|
|
__careful_cmp(max, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
|
|
|
|
/**
|
|
* min3 - return minimum of three values
|
|
* @x: first value
|
|
* @y: second value
|
|
* @z: third value
|
|
*/
|
|
#define min3(x, y, z) min((typeof(x))min(x, y), z)
|
|
|
|
/**
|
|
* max3 - return maximum of three values
|
|
* @x: first value
|
|
* @y: second value
|
|
* @z: third value
|
|
*/
|
|
#define max3(x, y, z) max((typeof(x))max(x, y), z)
|
|
|
|
/**
|
|
* min_not_zero - return the minimum that is _not_ zero, unless both are zero
|
|
* @x: value1
|
|
* @y: value2
|
|
*/
|
|
#define min_not_zero(x, y) ({ \
|
|
typeof(x) __x = (x); \
|
|
typeof(y) __y = (y); \
|
|
__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
|
|
|
|
/**
|
|
* clamp - return a value clamped to a given range with strict typechecking
|
|
* @val: current value
|
|
* @lo: lowest allowable value
|
|
* @hi: highest allowable value
|
|
*
|
|
* This macro does strict typechecking of @lo/@hi to make sure they are of the
|
|
* same type as @val. See the unnecessary pointer comparisons.
|
|
*/
|
|
#define clamp(val, lo, hi) __careful_clamp(val, lo, hi)
|
|
|
|
/*
|
|
* ..and if you can't take the strict
|
|
* types, you can specify one yourself.
|
|
*
|
|
* Or not use min/max/clamp at all, of course.
|
|
*/
|
|
|
|
/**
|
|
* min_t - return minimum of two values, using the specified type
|
|
* @type: data type to use
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define min_t(type, x, y) __cmp_once(min, type, x, y)
|
|
|
|
/**
|
|
* max_t - return maximum of two values, using the specified type
|
|
* @type: data type to use
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define max_t(type, x, y) __cmp_once(max, type, x, y)
|
|
|
|
/*
|
|
* Do not check the array parameter using __must_be_array().
|
|
* In the following legit use-case where the "array" passed is a simple pointer,
|
|
* __must_be_array() will return a failure.
|
|
* --- 8< ---
|
|
* int *buff
|
|
* ...
|
|
* min = min_array(buff, nb_items);
|
|
* --- 8< ---
|
|
*
|
|
* The first typeof(&(array)[0]) is needed in order to support arrays of both
|
|
* 'int *buff' and 'int buff[N]' types.
|
|
*
|
|
* The array can be an array of const items.
|
|
* typeof() keeps the const qualifier. Use __unqual_scalar_typeof() in order
|
|
* to discard the const qualifier for the __element variable.
|
|
*/
|
|
#define __minmax_array(op, array, len) ({ \
|
|
typeof(&(array)[0]) __array = (array); \
|
|
typeof(len) __len = (len); \
|
|
__unqual_scalar_typeof(__array[0]) __element = __array[--__len];\
|
|
while (__len--) \
|
|
__element = op(__element, __array[__len]); \
|
|
__element; })
|
|
|
|
/**
|
|
* min_array - return minimum of values present in an array
|
|
* @array: array
|
|
* @len: array length
|
|
*
|
|
* Note that @len must not be zero (empty array).
|
|
*/
|
|
#define min_array(array, len) __minmax_array(min, array, len)
|
|
|
|
/**
|
|
* max_array - return maximum of values present in an array
|
|
* @array: array
|
|
* @len: array length
|
|
*
|
|
* Note that @len must not be zero (empty array).
|
|
*/
|
|
#define max_array(array, len) __minmax_array(max, array, len)
|
|
|
|
/**
|
|
* clamp_t - return a value clamped to a given range using a given type
|
|
* @type: the type of variable to use
|
|
* @val: current value
|
|
* @lo: minimum allowable value
|
|
* @hi: maximum allowable value
|
|
*
|
|
* This macro does no typechecking and uses temporary variables of type
|
|
* @type to make all the comparisons.
|
|
*/
|
|
#define clamp_t(type, val, lo, hi) __careful_clamp((type)(val), (type)(lo), (type)(hi))
|
|
|
|
/**
|
|
* clamp_val - return a value clamped to a given range using val's type
|
|
* @val: current value
|
|
* @lo: minimum allowable value
|
|
* @hi: maximum allowable value
|
|
*
|
|
* This macro does no typechecking and uses temporary variables of whatever
|
|
* type the input argument @val is. This is useful when @val is an unsigned
|
|
* type and @lo and @hi are literals that will otherwise be assigned a signed
|
|
* integer type.
|
|
*/
|
|
#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
|
|
|
|
static inline bool in_range64(u64 val, u64 start, u64 len)
|
|
{
|
|
return (val - start) < len;
|
|
}
|
|
|
|
static inline bool in_range32(u32 val, u32 start, u32 len)
|
|
{
|
|
return (val - start) < len;
|
|
}
|
|
|
|
/**
|
|
* in_range - Determine if a value lies within a range.
|
|
* @val: Value to test.
|
|
* @start: First value in range.
|
|
* @len: Number of values in range.
|
|
*
|
|
* This is more efficient than "if (start <= val && val < (start + len))".
|
|
* It also gives a different answer if @start + @len overflows the size of
|
|
* the type by a sufficient amount to encompass @val. Decide for yourself
|
|
* which behaviour you want, or prove that start + len never overflow.
|
|
* Do not blindly replace one form with the other.
|
|
*/
|
|
#define in_range(val, start, len) \
|
|
((sizeof(start) | sizeof(len) | sizeof(val)) <= sizeof(u32) ? \
|
|
in_range32(val, start, len) : in_range64(val, start, len))
|
|
|
|
/**
|
|
* swap - swap values of @a and @b
|
|
* @a: first value
|
|
* @b: second value
|
|
*/
|
|
#define swap(a, b) \
|
|
do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
|
|
|
|
/*
|
|
* Use these carefully: no type checking, and uses the arguments
|
|
* multiple times. Use for obvious constants only.
|
|
*/
|
|
#define MIN(a,b) __cmp(min,a,b)
|
|
#define MAX(a,b) __cmp(max,a,b)
|
|
#define MIN_T(type,a,b) __cmp(min,(type)(a),(type)(b))
|
|
#define MAX_T(type,a,b) __cmp(max,(type)(a),(type)(b))
|
|
|
|
#endif /* _LINUX_MINMAX_H */
|