2009-03-24 00:35:50 +01:00

1097 lines
30 KiB
C

/*
* Driver for AMD7930 sound chips found on Sparcs.
* Copyright (C) 2002, 2008 David S. Miller <davem@davemloft.net>
*
* Based entirely upon drivers/sbus/audio/amd7930.c which is:
* Copyright (C) 1996,1997 Thomas K. Dyas (tdyas@eden.rutgers.edu)
*
* --- Notes from Thomas's original driver ---
* This is the lowlevel driver for the AMD7930 audio chip found on all
* sun4c machines and some sun4m machines.
*
* The amd7930 is actually an ISDN chip which has a very simple
* integrated audio encoder/decoder. When Sun decided on what chip to
* use for audio, they had the brilliant idea of using the amd7930 and
* only connecting the audio encoder/decoder pins.
*
* Thanks to the AMD engineer who was able to get us the AMD79C30
* databook which has all the programming information and gain tables.
*
* Advanced Micro Devices' Am79C30A is an ISDN/audio chip used in the
* SparcStation 1+. The chip provides microphone and speaker interfaces
* which provide mono-channel audio at 8K samples per second via either
* 8-bit A-law or 8-bit mu-law encoding. Also, the chip features an
* ISDN BRI Line Interface Unit (LIU), I.430 S/T physical interface,
* which performs basic D channel LAPD processing and provides raw
* B channel data. The digital audio channel, the two ISDN B channels,
* and two 64 Kbps channels to the microprocessor are all interconnected
* via a multiplexer.
* --- End of notes from Thoamas's original driver ---
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/initval.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/prom.h>
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for Sun AMD7930 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for Sun AMD7930 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable Sun AMD7930 soundcard.");
MODULE_AUTHOR("Thomas K. Dyas and David S. Miller");
MODULE_DESCRIPTION("Sun AMD7930");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Sun,AMD7930}}");
/* Device register layout. */
/* Register interface presented to the CPU by the amd7930. */
#define AMD7930_CR 0x00UL /* Command Register (W) */
#define AMD7930_IR AMD7930_CR /* Interrupt Register (R) */
#define AMD7930_DR 0x01UL /* Data Register (R/W) */
#define AMD7930_DSR1 0x02UL /* D-channel Status Register 1 (R) */
#define AMD7930_DER 0x03UL /* D-channel Error Register (R) */
#define AMD7930_DCTB 0x04UL /* D-channel Transmit Buffer (W) */
#define AMD7930_DCRB AMD7930_DCTB /* D-channel Receive Buffer (R) */
#define AMD7930_BBTB 0x05UL /* Bb-channel Transmit Buffer (W) */
#define AMD7930_BBRB AMD7930_BBTB /* Bb-channel Receive Buffer (R) */
#define AMD7930_BCTB 0x06UL /* Bc-channel Transmit Buffer (W) */
#define AMD7930_BCRB AMD7930_BCTB /* Bc-channel Receive Buffer (R) */
#define AMD7930_DSR2 0x07UL /* D-channel Status Register 2 (R) */
/* Indirect registers in the Main Audio Processor. */
struct amd7930_map {
__u16 x[8];
__u16 r[8];
__u16 gx;
__u16 gr;
__u16 ger;
__u16 stgr;
__u16 ftgr;
__u16 atgr;
__u8 mmr1;
__u8 mmr2;
};
/* After an amd7930 interrupt, reading the Interrupt Register (ir)
* clears the interrupt and returns a bitmask indicating which
* interrupt source(s) require service.
*/
#define AMR_IR_DTTHRSH 0x01 /* D-channel xmit threshold */
#define AMR_IR_DRTHRSH 0x02 /* D-channel recv threshold */
#define AMR_IR_DSRI 0x04 /* D-channel packet status */
#define AMR_IR_DERI 0x08 /* D-channel error */
#define AMR_IR_BBUF 0x10 /* B-channel data xfer */
#define AMR_IR_LSRI 0x20 /* LIU status */
#define AMR_IR_DSR2I 0x40 /* D-channel buffer status */
#define AMR_IR_MLTFRMI 0x80 /* multiframe or PP */
/* The amd7930 has "indirect registers" which are accessed by writing
* the register number into the Command Register and then reading or
* writing values from the Data Register as appropriate. We define the
* AMR_* macros to be the indirect register numbers and AM_* macros to
* be bits in whatever register is referred to.
*/
/* Initialization */
#define AMR_INIT 0x21
#define AM_INIT_ACTIVE 0x01
#define AM_INIT_DATAONLY 0x02
#define AM_INIT_POWERDOWN 0x03
#define AM_INIT_DISABLE_INTS 0x04
#define AMR_INIT2 0x20
#define AM_INIT2_ENABLE_POWERDOWN 0x20
#define AM_INIT2_ENABLE_MULTIFRAME 0x10
/* Line Interface Unit */
#define AMR_LIU_LSR 0xA1
#define AM_LIU_LSR_STATE 0x07
#define AM_LIU_LSR_F3 0x08
#define AM_LIU_LSR_F7 0x10
#define AM_LIU_LSR_F8 0x20
#define AM_LIU_LSR_HSW 0x40
#define AM_LIU_LSR_HSW_CHG 0x80
#define AMR_LIU_LPR 0xA2
#define AMR_LIU_LMR1 0xA3
#define AM_LIU_LMR1_B1_ENABL 0x01
#define AM_LIU_LMR1_B2_ENABL 0x02
#define AM_LIU_LMR1_F_DISABL 0x04
#define AM_LIU_LMR1_FA_DISABL 0x08
#define AM_LIU_LMR1_REQ_ACTIV 0x10
#define AM_LIU_LMR1_F8_F3 0x20
#define AM_LIU_LMR1_LIU_ENABL 0x40
#define AMR_LIU_LMR2 0xA4
#define AM_LIU_LMR2_DECHO 0x01
#define AM_LIU_LMR2_DLOOP 0x02
#define AM_LIU_LMR2_DBACKOFF 0x04
#define AM_LIU_LMR2_EN_F3_INT 0x08
#define AM_LIU_LMR2_EN_F8_INT 0x10
#define AM_LIU_LMR2_EN_HSW_INT 0x20
#define AM_LIU_LMR2_EN_F7_INT 0x40
#define AMR_LIU_2_4 0xA5
#define AMR_LIU_MF 0xA6
#define AMR_LIU_MFSB 0xA7
#define AMR_LIU_MFQB 0xA8
/* Multiplexor */
#define AMR_MUX_MCR1 0x41
#define AMR_MUX_MCR2 0x42
#define AMR_MUX_MCR3 0x43
#define AM_MUX_CHANNEL_B1 0x01
#define AM_MUX_CHANNEL_B2 0x02
#define AM_MUX_CHANNEL_Ba 0x03
#define AM_MUX_CHANNEL_Bb 0x04
#define AM_MUX_CHANNEL_Bc 0x05
#define AM_MUX_CHANNEL_Bd 0x06
#define AM_MUX_CHANNEL_Be 0x07
#define AM_MUX_CHANNEL_Bf 0x08
#define AMR_MUX_MCR4 0x44
#define AM_MUX_MCR4_ENABLE_INTS 0x08
#define AM_MUX_MCR4_REVERSE_Bb 0x10
#define AM_MUX_MCR4_REVERSE_Bc 0x20
#define AMR_MUX_1_4 0x45
/* Main Audio Processor */
#define AMR_MAP_X 0x61
#define AMR_MAP_R 0x62
#define AMR_MAP_GX 0x63
#define AMR_MAP_GR 0x64
#define AMR_MAP_GER 0x65
#define AMR_MAP_STGR 0x66
#define AMR_MAP_FTGR_1_2 0x67
#define AMR_MAP_ATGR_1_2 0x68
#define AMR_MAP_MMR1 0x69
#define AM_MAP_MMR1_ALAW 0x01
#define AM_MAP_MMR1_GX 0x02
#define AM_MAP_MMR1_GR 0x04
#define AM_MAP_MMR1_GER 0x08
#define AM_MAP_MMR1_X 0x10
#define AM_MAP_MMR1_R 0x20
#define AM_MAP_MMR1_STG 0x40
#define AM_MAP_MMR1_LOOPBACK 0x80
#define AMR_MAP_MMR2 0x6A
#define AM_MAP_MMR2_AINB 0x01
#define AM_MAP_MMR2_LS 0x02
#define AM_MAP_MMR2_ENABLE_DTMF 0x04
#define AM_MAP_MMR2_ENABLE_TONEGEN 0x08
#define AM_MAP_MMR2_ENABLE_TONERING 0x10
#define AM_MAP_MMR2_DISABLE_HIGHPASS 0x20
#define AM_MAP_MMR2_DISABLE_AUTOZERO 0x40
#define AMR_MAP_1_10 0x6B
#define AMR_MAP_MMR3 0x6C
#define AMR_MAP_STRA 0x6D
#define AMR_MAP_STRF 0x6E
#define AMR_MAP_PEAKX 0x70
#define AMR_MAP_PEAKR 0x71
#define AMR_MAP_15_16 0x72
/* Data Link Controller */
#define AMR_DLC_FRAR_1_2_3 0x81
#define AMR_DLC_SRAR_1_2_3 0x82
#define AMR_DLC_TAR 0x83
#define AMR_DLC_DRLR 0x84
#define AMR_DLC_DTCR 0x85
#define AMR_DLC_DMR1 0x86
#define AMR_DLC_DMR1_DTTHRSH_INT 0x01
#define AMR_DLC_DMR1_DRTHRSH_INT 0x02
#define AMR_DLC_DMR1_TAR_ENABL 0x04
#define AMR_DLC_DMR1_EORP_INT 0x08
#define AMR_DLC_DMR1_EN_ADDR1 0x10
#define AMR_DLC_DMR1_EN_ADDR2 0x20
#define AMR_DLC_DMR1_EN_ADDR3 0x40
#define AMR_DLC_DMR1_EN_ADDR4 0x80
#define AMR_DLC_DMR1_EN_ADDRS 0xf0
#define AMR_DLC_DMR2 0x87
#define AMR_DLC_DMR2_RABRT_INT 0x01
#define AMR_DLC_DMR2_RESID_INT 0x02
#define AMR_DLC_DMR2_COLL_INT 0x04
#define AMR_DLC_DMR2_FCS_INT 0x08
#define AMR_DLC_DMR2_OVFL_INT 0x10
#define AMR_DLC_DMR2_UNFL_INT 0x20
#define AMR_DLC_DMR2_OVRN_INT 0x40
#define AMR_DLC_DMR2_UNRN_INT 0x80
#define AMR_DLC_1_7 0x88
#define AMR_DLC_DRCR 0x89
#define AMR_DLC_RNGR1 0x8A
#define AMR_DLC_RNGR2 0x8B
#define AMR_DLC_FRAR4 0x8C
#define AMR_DLC_SRAR4 0x8D
#define AMR_DLC_DMR3 0x8E
#define AMR_DLC_DMR3_VA_INT 0x01
#define AMR_DLC_DMR3_EOTP_INT 0x02
#define AMR_DLC_DMR3_LBRP_INT 0x04
#define AMR_DLC_DMR3_RBA_INT 0x08
#define AMR_DLC_DMR3_LBT_INT 0x10
#define AMR_DLC_DMR3_TBE_INT 0x20
#define AMR_DLC_DMR3_RPLOST_INT 0x40
#define AMR_DLC_DMR3_KEEP_FCS 0x80
#define AMR_DLC_DMR4 0x8F
#define AMR_DLC_DMR4_RCV_1 0x00
#define AMR_DLC_DMR4_RCV_2 0x01
#define AMR_DLC_DMR4_RCV_4 0x02
#define AMR_DLC_DMR4_RCV_8 0x03
#define AMR_DLC_DMR4_RCV_16 0x01
#define AMR_DLC_DMR4_RCV_24 0x02
#define AMR_DLC_DMR4_RCV_30 0x03
#define AMR_DLC_DMR4_XMT_1 0x00
#define AMR_DLC_DMR4_XMT_2 0x04
#define AMR_DLC_DMR4_XMT_4 0x08
#define AMR_DLC_DMR4_XMT_8 0x0c
#define AMR_DLC_DMR4_XMT_10 0x08
#define AMR_DLC_DMR4_XMT_14 0x0c
#define AMR_DLC_DMR4_IDLE_MARK 0x00
#define AMR_DLC_DMR4_IDLE_FLAG 0x10
#define AMR_DLC_DMR4_ADDR_BOTH 0x00
#define AMR_DLC_DMR4_ADDR_1ST 0x20
#define AMR_DLC_DMR4_ADDR_2ND 0xa0
#define AMR_DLC_DMR4_CR_ENABLE 0x40
#define AMR_DLC_12_15 0x90
#define AMR_DLC_ASR 0x91
#define AMR_DLC_EFCR 0x92
#define AMR_DLC_EFCR_EXTEND_FIFO 0x01
#define AMR_DLC_EFCR_SEC_PKT_INT 0x02
#define AMR_DSR1_VADDR 0x01
#define AMR_DSR1_EORP 0x02
#define AMR_DSR1_PKT_IP 0x04
#define AMR_DSR1_DECHO_ON 0x08
#define AMR_DSR1_DLOOP_ON 0x10
#define AMR_DSR1_DBACK_OFF 0x20
#define AMR_DSR1_EOTP 0x40
#define AMR_DSR1_CXMT_ABRT 0x80
#define AMR_DSR2_LBRP 0x01
#define AMR_DSR2_RBA 0x02
#define AMR_DSR2_RPLOST 0x04
#define AMR_DSR2_LAST_BYTE 0x08
#define AMR_DSR2_TBE 0x10
#define AMR_DSR2_MARK_IDLE 0x20
#define AMR_DSR2_FLAG_IDLE 0x40
#define AMR_DSR2_SECOND_PKT 0x80
#define AMR_DER_RABRT 0x01
#define AMR_DER_RFRAME 0x02
#define AMR_DER_COLLISION 0x04
#define AMR_DER_FCS 0x08
#define AMR_DER_OVFL 0x10
#define AMR_DER_UNFL 0x20
#define AMR_DER_OVRN 0x40
#define AMR_DER_UNRN 0x80
/* Peripheral Port */
#define AMR_PP_PPCR1 0xC0
#define AMR_PP_PPSR 0xC1
#define AMR_PP_PPIER 0xC2
#define AMR_PP_MTDR 0xC3
#define AMR_PP_MRDR 0xC3
#define AMR_PP_CITDR0 0xC4
#define AMR_PP_CIRDR0 0xC4
#define AMR_PP_CITDR1 0xC5
#define AMR_PP_CIRDR1 0xC5
#define AMR_PP_PPCR2 0xC8
#define AMR_PP_PPCR3 0xC9
struct snd_amd7930 {
spinlock_t lock;
void __iomem *regs;
u32 flags;
#define AMD7930_FLAG_PLAYBACK 0x00000001
#define AMD7930_FLAG_CAPTURE 0x00000002
struct amd7930_map map;
struct snd_card *card;
struct snd_pcm *pcm;
struct snd_pcm_substream *playback_substream;
struct snd_pcm_substream *capture_substream;
/* Playback/Capture buffer state. */
unsigned char *p_orig, *p_cur;
int p_left;
unsigned char *c_orig, *c_cur;
int c_left;
int rgain;
int pgain;
int mgain;
struct of_device *op;
unsigned int irq;
struct snd_amd7930 *next;
};
static struct snd_amd7930 *amd7930_list;
/* Idle the AMD7930 chip. The amd->lock is not held. */
static __inline__ void amd7930_idle(struct snd_amd7930 *amd)
{
unsigned long flags;
spin_lock_irqsave(&amd->lock, flags);
sbus_writeb(AMR_INIT, amd->regs + AMD7930_CR);
sbus_writeb(0, amd->regs + AMD7930_DR);
spin_unlock_irqrestore(&amd->lock, flags);
}
/* Enable chip interrupts. The amd->lock is not held. */
static __inline__ void amd7930_enable_ints(struct snd_amd7930 *amd)
{
unsigned long flags;
spin_lock_irqsave(&amd->lock, flags);
sbus_writeb(AMR_INIT, amd->regs + AMD7930_CR);
sbus_writeb(AM_INIT_ACTIVE, amd->regs + AMD7930_DR);
spin_unlock_irqrestore(&amd->lock, flags);
}
/* Disable chip interrupts. The amd->lock is not held. */
static __inline__ void amd7930_disable_ints(struct snd_amd7930 *amd)
{
unsigned long flags;
spin_lock_irqsave(&amd->lock, flags);
sbus_writeb(AMR_INIT, amd->regs + AMD7930_CR);
sbus_writeb(AM_INIT_ACTIVE | AM_INIT_DISABLE_INTS, amd->regs + AMD7930_DR);
spin_unlock_irqrestore(&amd->lock, flags);
}
/* Commit amd7930_map settings to the hardware.
* The amd->lock is held and local interrupts are disabled.
*/
static void __amd7930_write_map(struct snd_amd7930 *amd)
{
struct amd7930_map *map = &amd->map;
sbus_writeb(AMR_MAP_GX, amd->regs + AMD7930_CR);
sbus_writeb(((map->gx >> 0) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(((map->gx >> 8) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(AMR_MAP_GR, amd->regs + AMD7930_CR);
sbus_writeb(((map->gr >> 0) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(((map->gr >> 8) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(AMR_MAP_STGR, amd->regs + AMD7930_CR);
sbus_writeb(((map->stgr >> 0) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(((map->stgr >> 8) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(AMR_MAP_GER, amd->regs + AMD7930_CR);
sbus_writeb(((map->ger >> 0) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(((map->ger >> 8) & 0xff), amd->regs + AMD7930_DR);
sbus_writeb(AMR_MAP_MMR1, amd->regs + AMD7930_CR);
sbus_writeb(map->mmr1, amd->regs + AMD7930_DR);
sbus_writeb(AMR_MAP_MMR2, amd->regs + AMD7930_CR);
sbus_writeb(map->mmr2, amd->regs + AMD7930_DR);
}
/* gx, gr & stg gains. this table must contain 256 elements with
* the 0th being "infinity" (the magic value 9008). The remaining
* elements match sun's gain curve (but with higher resolution):
* -18 to 0dB in .16dB steps then 0 to 12dB in .08dB steps.
*/
static __const__ __u16 gx_coeff[256] = {
0x9008, 0x8b7c, 0x8b51, 0x8b45, 0x8b42, 0x8b3b, 0x8b36, 0x8b33,
0x8b32, 0x8b2a, 0x8b2b, 0x8b2c, 0x8b25, 0x8b23, 0x8b22, 0x8b22,
0x9122, 0x8b1a, 0x8aa3, 0x8aa3, 0x8b1c, 0x8aa6, 0x912d, 0x912b,
0x8aab, 0x8b12, 0x8aaa, 0x8ab2, 0x9132, 0x8ab4, 0x913c, 0x8abb,
0x9142, 0x9144, 0x9151, 0x8ad5, 0x8aeb, 0x8a79, 0x8a5a, 0x8a4a,
0x8b03, 0x91c2, 0x91bb, 0x8a3f, 0x8a33, 0x91b2, 0x9212, 0x9213,
0x8a2c, 0x921d, 0x8a23, 0x921a, 0x9222, 0x9223, 0x922d, 0x9231,
0x9234, 0x9242, 0x925b, 0x92dd, 0x92c1, 0x92b3, 0x92ab, 0x92a4,
0x92a2, 0x932b, 0x9341, 0x93d3, 0x93b2, 0x93a2, 0x943c, 0x94b2,
0x953a, 0x9653, 0x9782, 0x9e21, 0x9d23, 0x9cd2, 0x9c23, 0x9baa,
0x9bde, 0x9b33, 0x9b22, 0x9b1d, 0x9ab2, 0xa142, 0xa1e5, 0x9a3b,
0xa213, 0xa1a2, 0xa231, 0xa2eb, 0xa313, 0xa334, 0xa421, 0xa54b,
0xada4, 0xac23, 0xab3b, 0xaaab, 0xaa5c, 0xb1a3, 0xb2ca, 0xb3bd,
0xbe24, 0xbb2b, 0xba33, 0xc32b, 0xcb5a, 0xd2a2, 0xe31d, 0x0808,
0x72ba, 0x62c2, 0x5c32, 0x52db, 0x513e, 0x4cce, 0x43b2, 0x4243,
0x41b4, 0x3b12, 0x3bc3, 0x3df2, 0x34bd, 0x3334, 0x32c2, 0x3224,
0x31aa, 0x2a7b, 0x2aaa, 0x2b23, 0x2bba, 0x2c42, 0x2e23, 0x25bb,
0x242b, 0x240f, 0x231a, 0x22bb, 0x2241, 0x2223, 0x221f, 0x1a33,
0x1a4a, 0x1acd, 0x2132, 0x1b1b, 0x1b2c, 0x1b62, 0x1c12, 0x1c32,
0x1d1b, 0x1e71, 0x16b1, 0x1522, 0x1434, 0x1412, 0x1352, 0x1323,
0x1315, 0x12bc, 0x127a, 0x1235, 0x1226, 0x11a2, 0x1216, 0x0a2a,
0x11bc, 0x11d1, 0x1163, 0x0ac2, 0x0ab2, 0x0aab, 0x0b1b, 0x0b23,
0x0b33, 0x0c0f, 0x0bb3, 0x0c1b, 0x0c3e, 0x0cb1, 0x0d4c, 0x0ec1,
0x079a, 0x0614, 0x0521, 0x047c, 0x0422, 0x03b1, 0x03e3, 0x0333,
0x0322, 0x031c, 0x02aa, 0x02ba, 0x02f2, 0x0242, 0x0232, 0x0227,
0x0222, 0x021b, 0x01ad, 0x0212, 0x01b2, 0x01bb, 0x01cb, 0x01f6,
0x0152, 0x013a, 0x0133, 0x0131, 0x012c, 0x0123, 0x0122, 0x00a2,
0x011b, 0x011e, 0x0114, 0x00b1, 0x00aa, 0x00b3, 0x00bd, 0x00ba,
0x00c5, 0x00d3, 0x00f3, 0x0062, 0x0051, 0x0042, 0x003b, 0x0033,
0x0032, 0x002a, 0x002c, 0x0025, 0x0023, 0x0022, 0x001a, 0x0021,
0x001b, 0x001b, 0x001d, 0x0015, 0x0013, 0x0013, 0x0012, 0x0012,
0x000a, 0x000a, 0x0011, 0x0011, 0x000b, 0x000b, 0x000c, 0x000e,
};
static __const__ __u16 ger_coeff[] = {
0x431f, /* 5. dB */
0x331f, /* 5.5 dB */
0x40dd, /* 6. dB */
0x11dd, /* 6.5 dB */
0x440f, /* 7. dB */
0x411f, /* 7.5 dB */
0x311f, /* 8. dB */
0x5520, /* 8.5 dB */
0x10dd, /* 9. dB */
0x4211, /* 9.5 dB */
0x410f, /* 10. dB */
0x111f, /* 10.5 dB */
0x600b, /* 11. dB */
0x00dd, /* 11.5 dB */
0x4210, /* 12. dB */
0x110f, /* 13. dB */
0x7200, /* 14. dB */
0x2110, /* 15. dB */
0x2200, /* 15.9 dB */
0x000b, /* 16.9 dB */
0x000f /* 18. dB */
};
/* Update amd7930_map settings and program them into the hardware.
* The amd->lock is held and local interrupts are disabled.
*/
static void __amd7930_update_map(struct snd_amd7930 *amd)
{
struct amd7930_map *map = &amd->map;
int level;
map->gx = gx_coeff[amd->rgain];
map->stgr = gx_coeff[amd->mgain];
level = (amd->pgain * (256 + ARRAY_SIZE(ger_coeff))) >> 8;
if (level >= 256) {
map->ger = ger_coeff[level - 256];
map->gr = gx_coeff[255];
} else {
map->ger = ger_coeff[0];
map->gr = gx_coeff[level];
}
__amd7930_write_map(amd);
}
static irqreturn_t snd_amd7930_interrupt(int irq, void *dev_id)
{
struct snd_amd7930 *amd = dev_id;
unsigned int elapsed;
u8 ir;
spin_lock(&amd->lock);
elapsed = 0;
ir = sbus_readb(amd->regs + AMD7930_IR);
if (ir & AMR_IR_BBUF) {
u8 byte;
if (amd->flags & AMD7930_FLAG_PLAYBACK) {
if (amd->p_left > 0) {
byte = *(amd->p_cur++);
amd->p_left--;
sbus_writeb(byte, amd->regs + AMD7930_BBTB);
if (amd->p_left == 0)
elapsed |= AMD7930_FLAG_PLAYBACK;
} else
sbus_writeb(0, amd->regs + AMD7930_BBTB);
} else if (amd->flags & AMD7930_FLAG_CAPTURE) {
byte = sbus_readb(amd->regs + AMD7930_BBRB);
if (amd->c_left > 0) {
*(amd->c_cur++) = byte;
amd->c_left--;
if (amd->c_left == 0)
elapsed |= AMD7930_FLAG_CAPTURE;
}
}
}
spin_unlock(&amd->lock);
if (elapsed & AMD7930_FLAG_PLAYBACK)
snd_pcm_period_elapsed(amd->playback_substream);
else
snd_pcm_period_elapsed(amd->capture_substream);
return IRQ_HANDLED;
}
static int snd_amd7930_trigger(struct snd_amd7930 *amd, unsigned int flag, int cmd)
{
unsigned long flags;
int result = 0;
spin_lock_irqsave(&amd->lock, flags);
if (cmd == SNDRV_PCM_TRIGGER_START) {
if (!(amd->flags & flag)) {
amd->flags |= flag;
/* Enable B channel interrupts. */
sbus_writeb(AMR_MUX_MCR4, amd->regs + AMD7930_CR);
sbus_writeb(AM_MUX_MCR4_ENABLE_INTS, amd->regs + AMD7930_DR);
}
} else if (cmd == SNDRV_PCM_TRIGGER_STOP) {
if (amd->flags & flag) {
amd->flags &= ~flag;
/* Disable B channel interrupts. */
sbus_writeb(AMR_MUX_MCR4, amd->regs + AMD7930_CR);
sbus_writeb(0, amd->regs + AMD7930_DR);
}
} else {
result = -EINVAL;
}
spin_unlock_irqrestore(&amd->lock, flags);
return result;
}
static int snd_amd7930_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
return snd_amd7930_trigger(amd, AMD7930_FLAG_PLAYBACK, cmd);
}
static int snd_amd7930_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
return snd_amd7930_trigger(amd, AMD7930_FLAG_CAPTURE, cmd);
}
static int snd_amd7930_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int size = snd_pcm_lib_buffer_bytes(substream);
unsigned long flags;
u8 new_mmr1;
spin_lock_irqsave(&amd->lock, flags);
amd->flags |= AMD7930_FLAG_PLAYBACK;
/* Setup the pseudo-dma transfer pointers. */
amd->p_orig = amd->p_cur = runtime->dma_area;
amd->p_left = size;
/* Put the chip into the correct encoding format. */
new_mmr1 = amd->map.mmr1;
if (runtime->format == SNDRV_PCM_FORMAT_A_LAW)
new_mmr1 |= AM_MAP_MMR1_ALAW;
else
new_mmr1 &= ~AM_MAP_MMR1_ALAW;
if (new_mmr1 != amd->map.mmr1) {
amd->map.mmr1 = new_mmr1;
__amd7930_update_map(amd);
}
spin_unlock_irqrestore(&amd->lock, flags);
return 0;
}
static int snd_amd7930_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
unsigned int size = snd_pcm_lib_buffer_bytes(substream);
unsigned long flags;
u8 new_mmr1;
spin_lock_irqsave(&amd->lock, flags);
amd->flags |= AMD7930_FLAG_CAPTURE;
/* Setup the pseudo-dma transfer pointers. */
amd->c_orig = amd->c_cur = runtime->dma_area;
amd->c_left = size;
/* Put the chip into the correct encoding format. */
new_mmr1 = amd->map.mmr1;
if (runtime->format == SNDRV_PCM_FORMAT_A_LAW)
new_mmr1 |= AM_MAP_MMR1_ALAW;
else
new_mmr1 &= ~AM_MAP_MMR1_ALAW;
if (new_mmr1 != amd->map.mmr1) {
amd->map.mmr1 = new_mmr1;
__amd7930_update_map(amd);
}
spin_unlock_irqrestore(&amd->lock, flags);
return 0;
}
static snd_pcm_uframes_t snd_amd7930_playback_pointer(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
size_t ptr;
if (!(amd->flags & AMD7930_FLAG_PLAYBACK))
return 0;
ptr = amd->p_cur - amd->p_orig;
return bytes_to_frames(substream->runtime, ptr);
}
static snd_pcm_uframes_t snd_amd7930_capture_pointer(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
size_t ptr;
if (!(amd->flags & AMD7930_FLAG_CAPTURE))
return 0;
ptr = amd->c_cur - amd->c_orig;
return bytes_to_frames(substream->runtime, ptr);
}
/* Playback and capture have identical properties. */
static struct snd_pcm_hardware snd_amd7930_pcm_hw =
{
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_HALF_DUPLEX),
.formats = SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
.rates = SNDRV_PCM_RATE_8000,
.rate_min = 8000,
.rate_max = 8000,
.channels_min = 1,
.channels_max = 1,
.buffer_bytes_max = (64*1024),
.period_bytes_min = 1,
.period_bytes_max = (64*1024),
.periods_min = 1,
.periods_max = 1024,
};
static int snd_amd7930_playback_open(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
amd->playback_substream = substream;
runtime->hw = snd_amd7930_pcm_hw;
return 0;
}
static int snd_amd7930_capture_open(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
amd->capture_substream = substream;
runtime->hw = snd_amd7930_pcm_hw;
return 0;
}
static int snd_amd7930_playback_close(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
amd->playback_substream = NULL;
return 0;
}
static int snd_amd7930_capture_close(struct snd_pcm_substream *substream)
{
struct snd_amd7930 *amd = snd_pcm_substream_chip(substream);
amd->capture_substream = NULL;
return 0;
}
static int snd_amd7930_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}
static int snd_amd7930_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static struct snd_pcm_ops snd_amd7930_playback_ops = {
.open = snd_amd7930_playback_open,
.close = snd_amd7930_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_amd7930_hw_params,
.hw_free = snd_amd7930_hw_free,
.prepare = snd_amd7930_playback_prepare,
.trigger = snd_amd7930_playback_trigger,
.pointer = snd_amd7930_playback_pointer,
};
static struct snd_pcm_ops snd_amd7930_capture_ops = {
.open = snd_amd7930_capture_open,
.close = snd_amd7930_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_amd7930_hw_params,
.hw_free = snd_amd7930_hw_free,
.prepare = snd_amd7930_capture_prepare,
.trigger = snd_amd7930_capture_trigger,
.pointer = snd_amd7930_capture_pointer,
};
static int __devinit snd_amd7930_pcm(struct snd_amd7930 *amd)
{
struct snd_pcm *pcm;
int err;
if ((err = snd_pcm_new(amd->card,
/* ID */ "sun_amd7930",
/* device */ 0,
/* playback count */ 1,
/* capture count */ 1, &pcm)) < 0)
return err;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_amd7930_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_amd7930_capture_ops);
pcm->private_data = amd;
pcm->info_flags = 0;
strcpy(pcm->name, amd->card->shortname);
amd->pcm = pcm;
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
snd_dma_continuous_data(GFP_KERNEL),
64*1024, 64*1024);
return 0;
}
#define VOLUME_MONITOR 0
#define VOLUME_CAPTURE 1
#define VOLUME_PLAYBACK 2
static int snd_amd7930_info_volume(struct snd_kcontrol *kctl, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 1;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = 255;
return 0;
}
static int snd_amd7930_get_volume(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol)
{
struct snd_amd7930 *amd = snd_kcontrol_chip(kctl);
int type = kctl->private_value;
int *swval;
switch (type) {
case VOLUME_MONITOR:
swval = &amd->mgain;
break;
case VOLUME_CAPTURE:
swval = &amd->rgain;
break;
case VOLUME_PLAYBACK:
default:
swval = &amd->pgain;
break;
};
ucontrol->value.integer.value[0] = *swval;
return 0;
}
static int snd_amd7930_put_volume(struct snd_kcontrol *kctl, struct snd_ctl_elem_value *ucontrol)
{
struct snd_amd7930 *amd = snd_kcontrol_chip(kctl);
unsigned long flags;
int type = kctl->private_value;
int *swval, change;
switch (type) {
case VOLUME_MONITOR:
swval = &amd->mgain;
break;
case VOLUME_CAPTURE:
swval = &amd->rgain;
break;
case VOLUME_PLAYBACK:
default:
swval = &amd->pgain;
break;
};
spin_lock_irqsave(&amd->lock, flags);
if (*swval != ucontrol->value.integer.value[0]) {
*swval = ucontrol->value.integer.value[0] & 0xff;
__amd7930_update_map(amd);
change = 1;
} else
change = 0;
spin_unlock_irqrestore(&amd->lock, flags);
return change;
}
static struct snd_kcontrol_new amd7930_controls[] __devinitdata = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Monitor Volume",
.index = 0,
.info = snd_amd7930_info_volume,
.get = snd_amd7930_get_volume,
.put = snd_amd7930_put_volume,
.private_value = VOLUME_MONITOR,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Capture Volume",
.index = 0,
.info = snd_amd7930_info_volume,
.get = snd_amd7930_get_volume,
.put = snd_amd7930_put_volume,
.private_value = VOLUME_CAPTURE,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Playback Volume",
.index = 0,
.info = snd_amd7930_info_volume,
.get = snd_amd7930_get_volume,
.put = snd_amd7930_put_volume,
.private_value = VOLUME_PLAYBACK,
},
};
static int __devinit snd_amd7930_mixer(struct snd_amd7930 *amd)
{
struct snd_card *card;
int idx, err;
if (snd_BUG_ON(!amd || !amd->card))
return -EINVAL;
card = amd->card;
strcpy(card->mixername, card->shortname);
for (idx = 0; idx < ARRAY_SIZE(amd7930_controls); idx++) {
if ((err = snd_ctl_add(card,
snd_ctl_new1(&amd7930_controls[idx], amd))) < 0)
return err;
}
return 0;
}
static int snd_amd7930_free(struct snd_amd7930 *amd)
{
struct of_device *op = amd->op;
amd7930_idle(amd);
if (amd->irq)
free_irq(amd->irq, amd);
if (amd->regs)
of_iounmap(&op->resource[0], amd->regs,
resource_size(&op->resource[0]));
kfree(amd);
return 0;
}
static int snd_amd7930_dev_free(struct snd_device *device)
{
struct snd_amd7930 *amd = device->device_data;
return snd_amd7930_free(amd);
}
static struct snd_device_ops snd_amd7930_dev_ops = {
.dev_free = snd_amd7930_dev_free,
};
static int __devinit snd_amd7930_create(struct snd_card *card,
struct of_device *op,
int irq, int dev,
struct snd_amd7930 **ramd)
{
struct snd_amd7930 *amd;
unsigned long flags;
int err;
*ramd = NULL;
amd = kzalloc(sizeof(*amd), GFP_KERNEL);
if (amd == NULL)
return -ENOMEM;
spin_lock_init(&amd->lock);
amd->card = card;
amd->op = op;
amd->regs = of_ioremap(&op->resource[0], 0,
resource_size(&op->resource[0]), "amd7930");
if (!amd->regs) {
snd_printk(KERN_ERR
"amd7930-%d: Unable to map chip registers.\n", dev);
return -EIO;
}
amd7930_idle(amd);
if (request_irq(irq, snd_amd7930_interrupt,
IRQF_DISABLED | IRQF_SHARED, "amd7930", amd)) {
snd_printk(KERN_ERR "amd7930-%d: Unable to grab IRQ %d\n",
dev, irq);
snd_amd7930_free(amd);
return -EBUSY;
}
amd->irq = irq;
amd7930_enable_ints(amd);
spin_lock_irqsave(&amd->lock, flags);
amd->rgain = 128;
amd->pgain = 200;
amd->mgain = 0;
memset(&amd->map, 0, sizeof(amd->map));
amd->map.mmr1 = (AM_MAP_MMR1_GX | AM_MAP_MMR1_GER |
AM_MAP_MMR1_GR | AM_MAP_MMR1_STG);
amd->map.mmr2 = (AM_MAP_MMR2_LS | AM_MAP_MMR2_AINB);
__amd7930_update_map(amd);
/* Always MUX audio (Ba) to channel Bb. */
sbus_writeb(AMR_MUX_MCR1, amd->regs + AMD7930_CR);
sbus_writeb(AM_MUX_CHANNEL_Ba | (AM_MUX_CHANNEL_Bb << 4),
amd->regs + AMD7930_DR);
spin_unlock_irqrestore(&amd->lock, flags);
if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL,
amd, &snd_amd7930_dev_ops)) < 0) {
snd_amd7930_free(amd);
return err;
}
*ramd = amd;
return 0;
}
static int __devinit amd7930_sbus_probe(struct of_device *op, const struct of_device_id *match)
{
struct resource *rp = &op->resource[0];
static int dev_num;
struct snd_card *card;
struct snd_amd7930 *amd;
int err, irq;
irq = op->irqs[0];
if (dev_num >= SNDRV_CARDS)
return -ENODEV;
if (!enable[dev_num]) {
dev_num++;
return -ENOENT;
}
err = snd_card_create(index[dev_num], id[dev_num], THIS_MODULE, 0,
&card);
if (err < 0)
return err;
strcpy(card->driver, "AMD7930");
strcpy(card->shortname, "Sun AMD7930");
sprintf(card->longname, "%s at 0x%02lx:0x%08Lx, irq %d",
card->shortname,
rp->flags & 0xffL,
(unsigned long long)rp->start,
irq);
if ((err = snd_amd7930_create(card, op,
irq, dev_num, &amd)) < 0)
goto out_err;
if ((err = snd_amd7930_pcm(amd)) < 0)
goto out_err;
if ((err = snd_amd7930_mixer(amd)) < 0)
goto out_err;
if ((err = snd_card_register(card)) < 0)
goto out_err;
amd->next = amd7930_list;
amd7930_list = amd;
dev_num++;
return 0;
out_err:
snd_card_free(card);
return err;
}
static const struct of_device_id amd7930_match[] = {
{
.name = "audio",
},
{},
};
static struct of_platform_driver amd7930_sbus_driver = {
.name = "audio",
.match_table = amd7930_match,
.probe = amd7930_sbus_probe,
};
static int __init amd7930_init(void)
{
return of_register_driver(&amd7930_sbus_driver, &of_bus_type);
}
static void __exit amd7930_exit(void)
{
struct snd_amd7930 *p = amd7930_list;
while (p != NULL) {
struct snd_amd7930 *next = p->next;
snd_card_free(p->card);
p = next;
}
amd7930_list = NULL;
of_unregister_driver(&amd7930_sbus_driver);
}
module_init(amd7930_init);
module_exit(amd7930_exit);