linux-stable/kernel/slow-work.c
Dave Airlie 88be12c440 slow-work: use get_ref wrapper instead of directly calling get_ref
Otherwise we can get an oops if the user has no get_ref/put_ref
requirement.

Signed-off-by: Dave Airlie <airlied@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-29 09:13:30 -07:00

1069 lines
30 KiB
C

/* Worker thread pool for slow items, such as filesystem lookups or mkdirs
*
* Copyright (C) 2008 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*
* See Documentation/slow-work.txt
*/
#include <linux/module.h>
#include <linux/slow-work.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/wait.h>
#include <linux/debugfs.h>
#include "slow-work.h"
static void slow_work_cull_timeout(unsigned long);
static void slow_work_oom_timeout(unsigned long);
#ifdef CONFIG_SYSCTL
static int slow_work_min_threads_sysctl(struct ctl_table *, int,
void __user *, size_t *, loff_t *);
static int slow_work_max_threads_sysctl(struct ctl_table *, int ,
void __user *, size_t *, loff_t *);
#endif
/*
* The pool of threads has at least min threads in it as long as someone is
* using the facility, and may have as many as max.
*
* A portion of the pool may be processing very slow operations.
*/
static unsigned slow_work_min_threads = 2;
static unsigned slow_work_max_threads = 4;
static unsigned vslow_work_proportion = 50; /* % of threads that may process
* very slow work */
#ifdef CONFIG_SYSCTL
static const int slow_work_min_min_threads = 2;
static int slow_work_max_max_threads = SLOW_WORK_THREAD_LIMIT;
static const int slow_work_min_vslow = 1;
static const int slow_work_max_vslow = 99;
ctl_table slow_work_sysctls[] = {
{
.procname = "min-threads",
.data = &slow_work_min_threads,
.maxlen = sizeof(unsigned),
.mode = 0644,
.proc_handler = slow_work_min_threads_sysctl,
.extra1 = (void *) &slow_work_min_min_threads,
.extra2 = &slow_work_max_threads,
},
{
.procname = "max-threads",
.data = &slow_work_max_threads,
.maxlen = sizeof(unsigned),
.mode = 0644,
.proc_handler = slow_work_max_threads_sysctl,
.extra1 = &slow_work_min_threads,
.extra2 = (void *) &slow_work_max_max_threads,
},
{
.procname = "vslow-percentage",
.data = &vslow_work_proportion,
.maxlen = sizeof(unsigned),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = (void *) &slow_work_min_vslow,
.extra2 = (void *) &slow_work_max_vslow,
},
{}
};
#endif
/*
* The active state of the thread pool
*/
static atomic_t slow_work_thread_count;
static atomic_t vslow_work_executing_count;
static bool slow_work_may_not_start_new_thread;
static bool slow_work_cull; /* cull a thread due to lack of activity */
static DEFINE_TIMER(slow_work_cull_timer, slow_work_cull_timeout, 0, 0);
static DEFINE_TIMER(slow_work_oom_timer, slow_work_oom_timeout, 0, 0);
static struct slow_work slow_work_new_thread; /* new thread starter */
/*
* slow work ID allocation (use slow_work_queue_lock)
*/
static DECLARE_BITMAP(slow_work_ids, SLOW_WORK_THREAD_LIMIT);
/*
* Unregistration tracking to prevent put_ref() from disappearing during module
* unload
*/
#ifdef CONFIG_MODULES
static struct module *slow_work_thread_processing[SLOW_WORK_THREAD_LIMIT];
static struct module *slow_work_unreg_module;
static struct slow_work *slow_work_unreg_work_item;
static DECLARE_WAIT_QUEUE_HEAD(slow_work_unreg_wq);
static DEFINE_MUTEX(slow_work_unreg_sync_lock);
static void slow_work_set_thread_processing(int id, struct slow_work *work)
{
if (work)
slow_work_thread_processing[id] = work->owner;
}
static void slow_work_done_thread_processing(int id, struct slow_work *work)
{
struct module *module = slow_work_thread_processing[id];
slow_work_thread_processing[id] = NULL;
smp_mb();
if (slow_work_unreg_work_item == work ||
slow_work_unreg_module == module)
wake_up_all(&slow_work_unreg_wq);
}
static void slow_work_clear_thread_processing(int id)
{
slow_work_thread_processing[id] = NULL;
}
#else
static void slow_work_set_thread_processing(int id, struct slow_work *work) {}
static void slow_work_done_thread_processing(int id, struct slow_work *work) {}
static void slow_work_clear_thread_processing(int id) {}
#endif
/*
* Data for tracking currently executing items for indication through /proc
*/
#ifdef CONFIG_SLOW_WORK_DEBUG
struct slow_work *slow_work_execs[SLOW_WORK_THREAD_LIMIT];
pid_t slow_work_pids[SLOW_WORK_THREAD_LIMIT];
DEFINE_RWLOCK(slow_work_execs_lock);
#endif
/*
* The queues of work items and the lock governing access to them. These are
* shared between all the CPUs. It doesn't make sense to have per-CPU queues
* as the number of threads bears no relation to the number of CPUs.
*
* There are two queues of work items: one for slow work items, and one for
* very slow work items.
*/
LIST_HEAD(slow_work_queue);
LIST_HEAD(vslow_work_queue);
DEFINE_SPINLOCK(slow_work_queue_lock);
/*
* The following are two wait queues that get pinged when a work item is placed
* on an empty queue. These allow work items that are hogging a thread by
* sleeping in a way that could be deferred to yield their thread and enqueue
* themselves.
*/
static DECLARE_WAIT_QUEUE_HEAD(slow_work_queue_waits_for_occupation);
static DECLARE_WAIT_QUEUE_HEAD(vslow_work_queue_waits_for_occupation);
/*
* The thread controls. A variable used to signal to the threads that they
* should exit when the queue is empty, a waitqueue used by the threads to wait
* for signals, and a completion set by the last thread to exit.
*/
static bool slow_work_threads_should_exit;
static DECLARE_WAIT_QUEUE_HEAD(slow_work_thread_wq);
static DECLARE_COMPLETION(slow_work_last_thread_exited);
/*
* The number of users of the thread pool and its lock. Whilst this is zero we
* have no threads hanging around, and when this reaches zero, we wait for all
* active or queued work items to complete and kill all the threads we do have.
*/
static int slow_work_user_count;
static DEFINE_MUTEX(slow_work_user_lock);
static inline int slow_work_get_ref(struct slow_work *work)
{
if (work->ops->get_ref)
return work->ops->get_ref(work);
return 0;
}
static inline void slow_work_put_ref(struct slow_work *work)
{
if (work->ops->put_ref)
work->ops->put_ref(work);
}
/*
* Calculate the maximum number of active threads in the pool that are
* permitted to process very slow work items.
*
* The answer is rounded up to at least 1, but may not equal or exceed the
* maximum number of the threads in the pool. This means we always have at
* least one thread that can process slow work items, and we always have at
* least one thread that won't get tied up doing so.
*/
static unsigned slow_work_calc_vsmax(void)
{
unsigned vsmax;
vsmax = atomic_read(&slow_work_thread_count) * vslow_work_proportion;
vsmax /= 100;
vsmax = max(vsmax, 1U);
return min(vsmax, slow_work_max_threads - 1);
}
/*
* Attempt to execute stuff queued on a slow thread. Return true if we managed
* it, false if there was nothing to do.
*/
static noinline bool slow_work_execute(int id)
{
struct slow_work *work = NULL;
unsigned vsmax;
bool very_slow;
vsmax = slow_work_calc_vsmax();
/* see if we can schedule a new thread to be started if we're not
* keeping up with the work */
if (!waitqueue_active(&slow_work_thread_wq) &&
(!list_empty(&slow_work_queue) || !list_empty(&vslow_work_queue)) &&
atomic_read(&slow_work_thread_count) < slow_work_max_threads &&
!slow_work_may_not_start_new_thread)
slow_work_enqueue(&slow_work_new_thread);
/* find something to execute */
spin_lock_irq(&slow_work_queue_lock);
if (!list_empty(&vslow_work_queue) &&
atomic_read(&vslow_work_executing_count) < vsmax) {
work = list_entry(vslow_work_queue.next,
struct slow_work, link);
if (test_and_set_bit_lock(SLOW_WORK_EXECUTING, &work->flags))
BUG();
list_del_init(&work->link);
atomic_inc(&vslow_work_executing_count);
very_slow = true;
} else if (!list_empty(&slow_work_queue)) {
work = list_entry(slow_work_queue.next,
struct slow_work, link);
if (test_and_set_bit_lock(SLOW_WORK_EXECUTING, &work->flags))
BUG();
list_del_init(&work->link);
very_slow = false;
} else {
very_slow = false; /* avoid the compiler warning */
}
slow_work_set_thread_processing(id, work);
if (work) {
slow_work_mark_time(work);
slow_work_begin_exec(id, work);
}
spin_unlock_irq(&slow_work_queue_lock);
if (!work)
return false;
if (!test_and_clear_bit(SLOW_WORK_PENDING, &work->flags))
BUG();
/* don't execute if the work is in the process of being cancelled */
if (!test_bit(SLOW_WORK_CANCELLING, &work->flags))
work->ops->execute(work);
if (very_slow)
atomic_dec(&vslow_work_executing_count);
clear_bit_unlock(SLOW_WORK_EXECUTING, &work->flags);
/* wake up anyone waiting for this work to be complete */
wake_up_bit(&work->flags, SLOW_WORK_EXECUTING);
slow_work_end_exec(id, work);
/* if someone tried to enqueue the item whilst we were executing it,
* then it'll be left unenqueued to avoid multiple threads trying to
* execute it simultaneously
*
* there is, however, a race between us testing the pending flag and
* getting the spinlock, and between the enqueuer setting the pending
* flag and getting the spinlock, so we use a deferral bit to tell us
* if the enqueuer got there first
*/
if (test_bit(SLOW_WORK_PENDING, &work->flags)) {
spin_lock_irq(&slow_work_queue_lock);
if (!test_bit(SLOW_WORK_EXECUTING, &work->flags) &&
test_and_clear_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags))
goto auto_requeue;
spin_unlock_irq(&slow_work_queue_lock);
}
/* sort out the race between module unloading and put_ref() */
slow_work_put_ref(work);
slow_work_done_thread_processing(id, work);
return true;
auto_requeue:
/* we must complete the enqueue operation
* - we transfer our ref on the item back to the appropriate queue
* - don't wake another thread up as we're awake already
*/
slow_work_mark_time(work);
if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags))
list_add_tail(&work->link, &vslow_work_queue);
else
list_add_tail(&work->link, &slow_work_queue);
spin_unlock_irq(&slow_work_queue_lock);
slow_work_clear_thread_processing(id);
return true;
}
/**
* slow_work_sleep_till_thread_needed - Sleep till thread needed by other work
* work: The work item under execution that wants to sleep
* _timeout: Scheduler sleep timeout
*
* Allow a requeueable work item to sleep on a slow-work processor thread until
* that thread is needed to do some other work or the sleep is interrupted by
* some other event.
*
* The caller must set up a wake up event before calling this and must have set
* the appropriate sleep mode (such as TASK_UNINTERRUPTIBLE) and tested its own
* condition before calling this function as no test is made here.
*
* False is returned if there is nothing on the queue; true is returned if the
* work item should be requeued
*/
bool slow_work_sleep_till_thread_needed(struct slow_work *work,
signed long *_timeout)
{
wait_queue_head_t *wfo_wq;
struct list_head *queue;
DEFINE_WAIT(wait);
if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) {
wfo_wq = &vslow_work_queue_waits_for_occupation;
queue = &vslow_work_queue;
} else {
wfo_wq = &slow_work_queue_waits_for_occupation;
queue = &slow_work_queue;
}
if (!list_empty(queue))
return true;
add_wait_queue_exclusive(wfo_wq, &wait);
if (list_empty(queue))
*_timeout = schedule_timeout(*_timeout);
finish_wait(wfo_wq, &wait);
return !list_empty(queue);
}
EXPORT_SYMBOL(slow_work_sleep_till_thread_needed);
/**
* slow_work_enqueue - Schedule a slow work item for processing
* @work: The work item to queue
*
* Schedule a slow work item for processing. If the item is already undergoing
* execution, this guarantees not to re-enter the execution routine until the
* first execution finishes.
*
* The item is pinned by this function as it retains a reference to it, managed
* through the item operations. The item is unpinned once it has been
* executed.
*
* An item may hog the thread that is running it for a relatively large amount
* of time, sufficient, for example, to perform several lookup, mkdir, create
* and setxattr operations. It may sleep on I/O and may sleep to obtain locks.
*
* Conversely, if a number of items are awaiting processing, it may take some
* time before any given item is given attention. The number of threads in the
* pool may be increased to deal with demand, but only up to a limit.
*
* If SLOW_WORK_VERY_SLOW is set on the work item, then it will be placed in
* the very slow queue, from which only a portion of the threads will be
* allowed to pick items to execute. This ensures that very slow items won't
* overly block ones that are just ordinarily slow.
*
* Returns 0 if successful, -EAGAIN if not (or -ECANCELED if cancelled work is
* attempted queued)
*/
int slow_work_enqueue(struct slow_work *work)
{
wait_queue_head_t *wfo_wq;
struct list_head *queue;
unsigned long flags;
int ret;
if (test_bit(SLOW_WORK_CANCELLING, &work->flags))
return -ECANCELED;
BUG_ON(slow_work_user_count <= 0);
BUG_ON(!work);
BUG_ON(!work->ops);
/* when honouring an enqueue request, we only promise that we will run
* the work function in the future; we do not promise to run it once
* per enqueue request
*
* we use the PENDING bit to merge together repeat requests without
* having to disable IRQs and take the spinlock, whilst still
* maintaining our promise
*/
if (!test_and_set_bit_lock(SLOW_WORK_PENDING, &work->flags)) {
if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) {
wfo_wq = &vslow_work_queue_waits_for_occupation;
queue = &vslow_work_queue;
} else {
wfo_wq = &slow_work_queue_waits_for_occupation;
queue = &slow_work_queue;
}
spin_lock_irqsave(&slow_work_queue_lock, flags);
if (unlikely(test_bit(SLOW_WORK_CANCELLING, &work->flags)))
goto cancelled;
/* we promise that we will not attempt to execute the work
* function in more than one thread simultaneously
*
* this, however, leaves us with a problem if we're asked to
* enqueue the work whilst someone is executing the work
* function as simply queueing the work immediately means that
* another thread may try executing it whilst it is already
* under execution
*
* to deal with this, we set the ENQ_DEFERRED bit instead of
* enqueueing, and the thread currently executing the work
* function will enqueue the work item when the work function
* returns and it has cleared the EXECUTING bit
*/
if (test_bit(SLOW_WORK_EXECUTING, &work->flags)) {
set_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags);
} else {
ret = slow_work_get_ref(work);
if (ret < 0)
goto failed;
slow_work_mark_time(work);
list_add_tail(&work->link, queue);
wake_up(&slow_work_thread_wq);
/* if someone who could be requeued is sleeping on a
* thread, then ask them to yield their thread */
if (work->link.prev == queue)
wake_up(wfo_wq);
}
spin_unlock_irqrestore(&slow_work_queue_lock, flags);
}
return 0;
cancelled:
ret = -ECANCELED;
failed:
spin_unlock_irqrestore(&slow_work_queue_lock, flags);
return ret;
}
EXPORT_SYMBOL(slow_work_enqueue);
static int slow_work_wait(void *word)
{
schedule();
return 0;
}
/**
* slow_work_cancel - Cancel a slow work item
* @work: The work item to cancel
*
* This function will cancel a previously enqueued work item. If we cannot
* cancel the work item, it is guarenteed to have run when this function
* returns.
*/
void slow_work_cancel(struct slow_work *work)
{
bool wait = true, put = false;
set_bit(SLOW_WORK_CANCELLING, &work->flags);
smp_mb();
/* if the work item is a delayed work item with an active timer, we
* need to wait for the timer to finish _before_ getting the spinlock,
* lest we deadlock against the timer routine
*
* the timer routine will leave DELAYED set if it notices the
* CANCELLING flag in time
*/
if (test_bit(SLOW_WORK_DELAYED, &work->flags)) {
struct delayed_slow_work *dwork =
container_of(work, struct delayed_slow_work, work);
del_timer_sync(&dwork->timer);
}
spin_lock_irq(&slow_work_queue_lock);
if (test_bit(SLOW_WORK_DELAYED, &work->flags)) {
/* the timer routine aborted or never happened, so we are left
* holding the timer's reference on the item and should just
* drop the pending flag and wait for any ongoing execution to
* finish */
struct delayed_slow_work *dwork =
container_of(work, struct delayed_slow_work, work);
BUG_ON(timer_pending(&dwork->timer));
BUG_ON(!list_empty(&work->link));
clear_bit(SLOW_WORK_DELAYED, &work->flags);
put = true;
clear_bit(SLOW_WORK_PENDING, &work->flags);
} else if (test_bit(SLOW_WORK_PENDING, &work->flags) &&
!list_empty(&work->link)) {
/* the link in the pending queue holds a reference on the item
* that we will need to release */
list_del_init(&work->link);
wait = false;
put = true;
clear_bit(SLOW_WORK_PENDING, &work->flags);
} else if (test_and_clear_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags)) {
/* the executor is holding our only reference on the item, so
* we merely need to wait for it to finish executing */
clear_bit(SLOW_WORK_PENDING, &work->flags);
}
spin_unlock_irq(&slow_work_queue_lock);
/* the EXECUTING flag is set by the executor whilst the spinlock is set
* and before the item is dequeued - so assuming the above doesn't
* actually dequeue it, simply waiting for the EXECUTING flag to be
* released here should be sufficient */
if (wait)
wait_on_bit(&work->flags, SLOW_WORK_EXECUTING, slow_work_wait,
TASK_UNINTERRUPTIBLE);
clear_bit(SLOW_WORK_CANCELLING, &work->flags);
if (put)
slow_work_put_ref(work);
}
EXPORT_SYMBOL(slow_work_cancel);
/*
* Handle expiry of the delay timer, indicating that a delayed slow work item
* should now be queued if not cancelled
*/
static void delayed_slow_work_timer(unsigned long data)
{
wait_queue_head_t *wfo_wq;
struct list_head *queue;
struct slow_work *work = (struct slow_work *) data;
unsigned long flags;
bool queued = false, put = false, first = false;
if (test_bit(SLOW_WORK_VERY_SLOW, &work->flags)) {
wfo_wq = &vslow_work_queue_waits_for_occupation;
queue = &vslow_work_queue;
} else {
wfo_wq = &slow_work_queue_waits_for_occupation;
queue = &slow_work_queue;
}
spin_lock_irqsave(&slow_work_queue_lock, flags);
if (likely(!test_bit(SLOW_WORK_CANCELLING, &work->flags))) {
clear_bit(SLOW_WORK_DELAYED, &work->flags);
if (test_bit(SLOW_WORK_EXECUTING, &work->flags)) {
/* we discard the reference the timer was holding in
* favour of the one the executor holds */
set_bit(SLOW_WORK_ENQ_DEFERRED, &work->flags);
put = true;
} else {
slow_work_mark_time(work);
list_add_tail(&work->link, queue);
queued = true;
if (work->link.prev == queue)
first = true;
}
}
spin_unlock_irqrestore(&slow_work_queue_lock, flags);
if (put)
slow_work_put_ref(work);
if (first)
wake_up(wfo_wq);
if (queued)
wake_up(&slow_work_thread_wq);
}
/**
* delayed_slow_work_enqueue - Schedule a delayed slow work item for processing
* @dwork: The delayed work item to queue
* @delay: When to start executing the work, in jiffies from now
*
* This is similar to slow_work_enqueue(), but it adds a delay before the work
* is actually queued for processing.
*
* The item can have delayed processing requested on it whilst it is being
* executed. The delay will begin immediately, and if it expires before the
* item finishes executing, the item will be placed back on the queue when it
* has done executing.
*/
int delayed_slow_work_enqueue(struct delayed_slow_work *dwork,
unsigned long delay)
{
struct slow_work *work = &dwork->work;
unsigned long flags;
int ret;
if (delay == 0)
return slow_work_enqueue(&dwork->work);
BUG_ON(slow_work_user_count <= 0);
BUG_ON(!work);
BUG_ON(!work->ops);
if (test_bit(SLOW_WORK_CANCELLING, &work->flags))
return -ECANCELED;
if (!test_and_set_bit_lock(SLOW_WORK_PENDING, &work->flags)) {
spin_lock_irqsave(&slow_work_queue_lock, flags);
if (test_bit(SLOW_WORK_CANCELLING, &work->flags))
goto cancelled;
/* the timer holds a reference whilst it is pending */
ret = slow_work_get_ref(work);
if (ret < 0)
goto cant_get_ref;
if (test_and_set_bit(SLOW_WORK_DELAYED, &work->flags))
BUG();
dwork->timer.expires = jiffies + delay;
dwork->timer.data = (unsigned long) work;
dwork->timer.function = delayed_slow_work_timer;
add_timer(&dwork->timer);
spin_unlock_irqrestore(&slow_work_queue_lock, flags);
}
return 0;
cancelled:
ret = -ECANCELED;
cant_get_ref:
spin_unlock_irqrestore(&slow_work_queue_lock, flags);
return ret;
}
EXPORT_SYMBOL(delayed_slow_work_enqueue);
/*
* Schedule a cull of the thread pool at some time in the near future
*/
static void slow_work_schedule_cull(void)
{
mod_timer(&slow_work_cull_timer,
round_jiffies(jiffies + SLOW_WORK_CULL_TIMEOUT));
}
/*
* Worker thread culling algorithm
*/
static bool slow_work_cull_thread(void)
{
unsigned long flags;
bool do_cull = false;
spin_lock_irqsave(&slow_work_queue_lock, flags);
if (slow_work_cull) {
slow_work_cull = false;
if (list_empty(&slow_work_queue) &&
list_empty(&vslow_work_queue) &&
atomic_read(&slow_work_thread_count) >
slow_work_min_threads) {
slow_work_schedule_cull();
do_cull = true;
}
}
spin_unlock_irqrestore(&slow_work_queue_lock, flags);
return do_cull;
}
/*
* Determine if there is slow work available for dispatch
*/
static inline bool slow_work_available(int vsmax)
{
return !list_empty(&slow_work_queue) ||
(!list_empty(&vslow_work_queue) &&
atomic_read(&vslow_work_executing_count) < vsmax);
}
/*
* Worker thread dispatcher
*/
static int slow_work_thread(void *_data)
{
int vsmax, id;
DEFINE_WAIT(wait);
set_freezable();
set_user_nice(current, -5);
/* allocate ourselves an ID */
spin_lock_irq(&slow_work_queue_lock);
id = find_first_zero_bit(slow_work_ids, SLOW_WORK_THREAD_LIMIT);
BUG_ON(id < 0 || id >= SLOW_WORK_THREAD_LIMIT);
__set_bit(id, slow_work_ids);
slow_work_set_thread_pid(id, current->pid);
spin_unlock_irq(&slow_work_queue_lock);
sprintf(current->comm, "kslowd%03u", id);
for (;;) {
vsmax = vslow_work_proportion;
vsmax *= atomic_read(&slow_work_thread_count);
vsmax /= 100;
prepare_to_wait_exclusive(&slow_work_thread_wq, &wait,
TASK_INTERRUPTIBLE);
if (!freezing(current) &&
!slow_work_threads_should_exit &&
!slow_work_available(vsmax) &&
!slow_work_cull)
schedule();
finish_wait(&slow_work_thread_wq, &wait);
try_to_freeze();
vsmax = vslow_work_proportion;
vsmax *= atomic_read(&slow_work_thread_count);
vsmax /= 100;
if (slow_work_available(vsmax) && slow_work_execute(id)) {
cond_resched();
if (list_empty(&slow_work_queue) &&
list_empty(&vslow_work_queue) &&
atomic_read(&slow_work_thread_count) >
slow_work_min_threads)
slow_work_schedule_cull();
continue;
}
if (slow_work_threads_should_exit)
break;
if (slow_work_cull && slow_work_cull_thread())
break;
}
spin_lock_irq(&slow_work_queue_lock);
slow_work_set_thread_pid(id, 0);
__clear_bit(id, slow_work_ids);
spin_unlock_irq(&slow_work_queue_lock);
if (atomic_dec_and_test(&slow_work_thread_count))
complete_and_exit(&slow_work_last_thread_exited, 0);
return 0;
}
/*
* Handle thread cull timer expiration
*/
static void slow_work_cull_timeout(unsigned long data)
{
slow_work_cull = true;
wake_up(&slow_work_thread_wq);
}
/*
* Start a new slow work thread
*/
static void slow_work_new_thread_execute(struct slow_work *work)
{
struct task_struct *p;
if (slow_work_threads_should_exit)
return;
if (atomic_read(&slow_work_thread_count) >= slow_work_max_threads)
return;
if (!mutex_trylock(&slow_work_user_lock))
return;
slow_work_may_not_start_new_thread = true;
atomic_inc(&slow_work_thread_count);
p = kthread_run(slow_work_thread, NULL, "kslowd");
if (IS_ERR(p)) {
printk(KERN_DEBUG "Slow work thread pool: OOM\n");
if (atomic_dec_and_test(&slow_work_thread_count))
BUG(); /* we're running on a slow work thread... */
mod_timer(&slow_work_oom_timer,
round_jiffies(jiffies + SLOW_WORK_OOM_TIMEOUT));
} else {
/* ratelimit the starting of new threads */
mod_timer(&slow_work_oom_timer, jiffies + 1);
}
mutex_unlock(&slow_work_user_lock);
}
static const struct slow_work_ops slow_work_new_thread_ops = {
.owner = THIS_MODULE,
.execute = slow_work_new_thread_execute,
#ifdef CONFIG_SLOW_WORK_DEBUG
.desc = slow_work_new_thread_desc,
#endif
};
/*
* post-OOM new thread start suppression expiration
*/
static void slow_work_oom_timeout(unsigned long data)
{
slow_work_may_not_start_new_thread = false;
}
#ifdef CONFIG_SYSCTL
/*
* Handle adjustment of the minimum number of threads
*/
static int slow_work_min_threads_sysctl(struct ctl_table *table, int write,
void __user *buffer,
size_t *lenp, loff_t *ppos)
{
int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
int n;
if (ret == 0) {
mutex_lock(&slow_work_user_lock);
if (slow_work_user_count > 0) {
/* see if we need to start or stop threads */
n = atomic_read(&slow_work_thread_count) -
slow_work_min_threads;
if (n < 0 && !slow_work_may_not_start_new_thread)
slow_work_enqueue(&slow_work_new_thread);
else if (n > 0)
slow_work_schedule_cull();
}
mutex_unlock(&slow_work_user_lock);
}
return ret;
}
/*
* Handle adjustment of the maximum number of threads
*/
static int slow_work_max_threads_sysctl(struct ctl_table *table, int write,
void __user *buffer,
size_t *lenp, loff_t *ppos)
{
int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
int n;
if (ret == 0) {
mutex_lock(&slow_work_user_lock);
if (slow_work_user_count > 0) {
/* see if we need to stop threads */
n = slow_work_max_threads -
atomic_read(&slow_work_thread_count);
if (n < 0)
slow_work_schedule_cull();
}
mutex_unlock(&slow_work_user_lock);
}
return ret;
}
#endif /* CONFIG_SYSCTL */
/**
* slow_work_register_user - Register a user of the facility
* @module: The module about to make use of the facility
*
* Register a user of the facility, starting up the initial threads if there
* aren't any other users at this point. This will return 0 if successful, or
* an error if not.
*/
int slow_work_register_user(struct module *module)
{
struct task_struct *p;
int loop;
mutex_lock(&slow_work_user_lock);
if (slow_work_user_count == 0) {
printk(KERN_NOTICE "Slow work thread pool: Starting up\n");
init_completion(&slow_work_last_thread_exited);
slow_work_threads_should_exit = false;
slow_work_init(&slow_work_new_thread,
&slow_work_new_thread_ops);
slow_work_may_not_start_new_thread = false;
slow_work_cull = false;
/* start the minimum number of threads */
for (loop = 0; loop < slow_work_min_threads; loop++) {
atomic_inc(&slow_work_thread_count);
p = kthread_run(slow_work_thread, NULL, "kslowd");
if (IS_ERR(p))
goto error;
}
printk(KERN_NOTICE "Slow work thread pool: Ready\n");
}
slow_work_user_count++;
mutex_unlock(&slow_work_user_lock);
return 0;
error:
if (atomic_dec_and_test(&slow_work_thread_count))
complete(&slow_work_last_thread_exited);
if (loop > 0) {
printk(KERN_ERR "Slow work thread pool:"
" Aborting startup on ENOMEM\n");
slow_work_threads_should_exit = true;
wake_up_all(&slow_work_thread_wq);
wait_for_completion(&slow_work_last_thread_exited);
printk(KERN_ERR "Slow work thread pool: Aborted\n");
}
mutex_unlock(&slow_work_user_lock);
return PTR_ERR(p);
}
EXPORT_SYMBOL(slow_work_register_user);
/*
* wait for all outstanding items from the calling module to complete
* - note that more items may be queued whilst we're waiting
*/
static void slow_work_wait_for_items(struct module *module)
{
#ifdef CONFIG_MODULES
DECLARE_WAITQUEUE(myself, current);
struct slow_work *work;
int loop;
mutex_lock(&slow_work_unreg_sync_lock);
add_wait_queue(&slow_work_unreg_wq, &myself);
for (;;) {
spin_lock_irq(&slow_work_queue_lock);
/* first of all, we wait for the last queued item in each list
* to be processed */
list_for_each_entry_reverse(work, &vslow_work_queue, link) {
if (work->owner == module) {
set_current_state(TASK_UNINTERRUPTIBLE);
slow_work_unreg_work_item = work;
goto do_wait;
}
}
list_for_each_entry_reverse(work, &slow_work_queue, link) {
if (work->owner == module) {
set_current_state(TASK_UNINTERRUPTIBLE);
slow_work_unreg_work_item = work;
goto do_wait;
}
}
/* then we wait for the items being processed to finish */
slow_work_unreg_module = module;
smp_mb();
for (loop = 0; loop < SLOW_WORK_THREAD_LIMIT; loop++) {
if (slow_work_thread_processing[loop] == module)
goto do_wait;
}
spin_unlock_irq(&slow_work_queue_lock);
break; /* okay, we're done */
do_wait:
spin_unlock_irq(&slow_work_queue_lock);
schedule();
slow_work_unreg_work_item = NULL;
slow_work_unreg_module = NULL;
}
remove_wait_queue(&slow_work_unreg_wq, &myself);
mutex_unlock(&slow_work_unreg_sync_lock);
#endif /* CONFIG_MODULES */
}
/**
* slow_work_unregister_user - Unregister a user of the facility
* @module: The module whose items should be cleared
*
* Unregister a user of the facility, killing all the threads if this was the
* last one.
*
* This waits for all the work items belonging to the nominated module to go
* away before proceeding.
*/
void slow_work_unregister_user(struct module *module)
{
/* first of all, wait for all outstanding items from the calling module
* to complete */
if (module)
slow_work_wait_for_items(module);
/* then we can actually go about shutting down the facility if need
* be */
mutex_lock(&slow_work_user_lock);
BUG_ON(slow_work_user_count <= 0);
slow_work_user_count--;
if (slow_work_user_count == 0) {
printk(KERN_NOTICE "Slow work thread pool: Shutting down\n");
slow_work_threads_should_exit = true;
del_timer_sync(&slow_work_cull_timer);
del_timer_sync(&slow_work_oom_timer);
wake_up_all(&slow_work_thread_wq);
wait_for_completion(&slow_work_last_thread_exited);
printk(KERN_NOTICE "Slow work thread pool:"
" Shut down complete\n");
}
mutex_unlock(&slow_work_user_lock);
}
EXPORT_SYMBOL(slow_work_unregister_user);
/*
* Initialise the slow work facility
*/
static int __init init_slow_work(void)
{
unsigned nr_cpus = num_possible_cpus();
if (slow_work_max_threads < nr_cpus)
slow_work_max_threads = nr_cpus;
#ifdef CONFIG_SYSCTL
if (slow_work_max_max_threads < nr_cpus * 2)
slow_work_max_max_threads = nr_cpus * 2;
#endif
#ifdef CONFIG_SLOW_WORK_DEBUG
{
struct dentry *dbdir;
dbdir = debugfs_create_dir("slow_work", NULL);
if (dbdir && !IS_ERR(dbdir))
debugfs_create_file("runqueue", S_IFREG | 0400, dbdir,
NULL, &slow_work_runqueue_fops);
}
#endif
return 0;
}
subsys_initcall(init_slow_work);