mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-10 15:10:38 +00:00
8812600c29
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
1888 lines
45 KiB
C
1888 lines
45 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include "bcachefs.h"
|
|
#include "bkey_methods.h"
|
|
#include "btree_cache.h"
|
|
#include "btree_iter.h"
|
|
#include "btree_locking.h"
|
|
#include "debug.h"
|
|
#include "extents.h"
|
|
#include "trace.h"
|
|
|
|
#include <linux/prefetch.h>
|
|
|
|
static inline struct bkey_s_c __btree_iter_peek_all(struct btree_iter *,
|
|
struct btree_iter_level *,
|
|
struct bkey *);
|
|
|
|
#define BTREE_ITER_NOT_END ((struct btree *) 1)
|
|
|
|
static inline bool is_btree_node(struct btree_iter *iter, unsigned l)
|
|
{
|
|
return l < BTREE_MAX_DEPTH &&
|
|
iter->l[l].b &&
|
|
iter->l[l].b != BTREE_ITER_NOT_END;
|
|
}
|
|
|
|
/* Returns < 0 if @k is before iter pos, > 0 if @k is after */
|
|
static inline int __btree_iter_pos_cmp(struct btree_iter *iter,
|
|
const struct btree *b,
|
|
const struct bkey_packed *k,
|
|
bool interior_node)
|
|
{
|
|
int cmp = bkey_cmp_left_packed(b, k, &iter->pos);
|
|
|
|
if (cmp)
|
|
return cmp;
|
|
if (bkey_deleted(k))
|
|
return -1;
|
|
|
|
/*
|
|
* Normally, for extents we want the first key strictly greater than
|
|
* the iterator position - with the exception that for interior nodes,
|
|
* we don't want to advance past the last key if the iterator position
|
|
* is POS_MAX:
|
|
*/
|
|
if (iter->flags & BTREE_ITER_IS_EXTENTS &&
|
|
(!interior_node ||
|
|
bkey_cmp_left_packed_byval(b, k, POS_MAX)))
|
|
return -1;
|
|
return 1;
|
|
}
|
|
|
|
static inline int btree_iter_pos_cmp(struct btree_iter *iter,
|
|
const struct btree *b,
|
|
const struct bkey_packed *k)
|
|
{
|
|
return __btree_iter_pos_cmp(iter, b, k, b->level != 0);
|
|
}
|
|
|
|
/* Btree node locking: */
|
|
|
|
/*
|
|
* Updates the saved lock sequence number, so that bch2_btree_node_relock() will
|
|
* succeed:
|
|
*/
|
|
void bch2_btree_node_unlock_write(struct btree *b, struct btree_iter *iter)
|
|
{
|
|
struct btree_iter *linked;
|
|
|
|
EBUG_ON(iter->l[b->level].b != b);
|
|
EBUG_ON(iter->l[b->level].lock_seq + 1 != b->lock.state.seq);
|
|
|
|
for_each_btree_iter_with_node(iter, b, linked)
|
|
linked->l[b->level].lock_seq += 2;
|
|
|
|
six_unlock_write(&b->lock);
|
|
}
|
|
|
|
void __bch2_btree_node_lock_write(struct btree *b, struct btree_iter *iter)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct btree_iter *linked;
|
|
unsigned readers = 0;
|
|
|
|
EBUG_ON(btree_node_read_locked(iter, b->level));
|
|
|
|
for_each_linked_btree_iter(iter, linked)
|
|
if (linked->l[b->level].b == b &&
|
|
btree_node_read_locked(linked, b->level))
|
|
readers++;
|
|
|
|
/*
|
|
* Must drop our read locks before calling six_lock_write() -
|
|
* six_unlock() won't do wakeups until the reader count
|
|
* goes to 0, and it's safe because we have the node intent
|
|
* locked:
|
|
*/
|
|
atomic64_sub(__SIX_VAL(read_lock, readers),
|
|
&b->lock.state.counter);
|
|
btree_node_lock_type(c, b, SIX_LOCK_write);
|
|
atomic64_add(__SIX_VAL(read_lock, readers),
|
|
&b->lock.state.counter);
|
|
}
|
|
|
|
bool __bch2_btree_node_relock(struct btree_iter *iter, unsigned level)
|
|
{
|
|
struct btree *b = btree_iter_node(iter, level);
|
|
int want = __btree_lock_want(iter, level);
|
|
|
|
if (!b || b == BTREE_ITER_NOT_END)
|
|
return false;
|
|
|
|
if (race_fault())
|
|
return false;
|
|
|
|
if (!six_relock_type(&b->lock, want, iter->l[level].lock_seq) &&
|
|
!(iter->l[level].lock_seq >> 1 == b->lock.state.seq >> 1 &&
|
|
btree_node_lock_increment(iter, b, level, want)))
|
|
return false;
|
|
|
|
mark_btree_node_locked(iter, level, want);
|
|
return true;
|
|
}
|
|
|
|
static bool bch2_btree_node_upgrade(struct btree_iter *iter, unsigned level)
|
|
{
|
|
struct btree *b = iter->l[level].b;
|
|
|
|
EBUG_ON(btree_lock_want(iter, level) != BTREE_NODE_INTENT_LOCKED);
|
|
|
|
if (!is_btree_node(iter, level))
|
|
return false;
|
|
|
|
if (btree_node_intent_locked(iter, level))
|
|
return true;
|
|
|
|
if (race_fault())
|
|
return false;
|
|
|
|
if (btree_node_locked(iter, level)
|
|
? six_lock_tryupgrade(&b->lock)
|
|
: six_relock_type(&b->lock, SIX_LOCK_intent, iter->l[level].lock_seq))
|
|
goto success;
|
|
|
|
if (iter->l[level].lock_seq >> 1 == b->lock.state.seq >> 1 &&
|
|
btree_node_lock_increment(iter, b, level, BTREE_NODE_INTENT_LOCKED)) {
|
|
btree_node_unlock(iter, level);
|
|
goto success;
|
|
}
|
|
|
|
return false;
|
|
success:
|
|
mark_btree_node_intent_locked(iter, level);
|
|
return true;
|
|
}
|
|
|
|
static inline bool btree_iter_get_locks(struct btree_iter *iter,
|
|
bool upgrade)
|
|
{
|
|
unsigned l = iter->level;
|
|
int fail_idx = -1;
|
|
|
|
do {
|
|
if (!btree_iter_node(iter, l))
|
|
break;
|
|
|
|
if (!(upgrade
|
|
? bch2_btree_node_upgrade(iter, l)
|
|
: bch2_btree_node_relock(iter, l))) {
|
|
fail_idx = l;
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE);
|
|
}
|
|
|
|
l++;
|
|
} while (l < iter->locks_want);
|
|
|
|
/*
|
|
* When we fail to get a lock, we have to ensure that any child nodes
|
|
* can't be relocked so bch2_btree_iter_traverse has to walk back up to
|
|
* the node that we failed to relock:
|
|
*/
|
|
while (fail_idx >= 0) {
|
|
btree_node_unlock(iter, fail_idx);
|
|
iter->l[fail_idx].b = BTREE_ITER_NOT_END;
|
|
--fail_idx;
|
|
}
|
|
|
|
if (iter->uptodate == BTREE_ITER_NEED_RELOCK)
|
|
iter->uptodate = BTREE_ITER_NEED_PEEK;
|
|
|
|
bch2_btree_iter_verify_locks(iter);
|
|
return iter->uptodate < BTREE_ITER_NEED_RELOCK;
|
|
}
|
|
|
|
/* Slowpath: */
|
|
bool __bch2_btree_node_lock(struct btree *b, struct bpos pos,
|
|
unsigned level,
|
|
struct btree_iter *iter,
|
|
enum six_lock_type type,
|
|
bool may_drop_locks)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct btree_iter *linked;
|
|
bool ret = true;
|
|
|
|
/* Check if it's safe to block: */
|
|
for_each_btree_iter(iter, linked) {
|
|
if (!linked->nodes_locked)
|
|
continue;
|
|
|
|
/* * Must lock btree nodes in key order: */
|
|
if (__btree_iter_cmp(iter->btree_id, pos, linked) < 0)
|
|
ret = false;
|
|
|
|
/*
|
|
* Can't block taking an intent lock if we have _any_ nodes read
|
|
* locked:
|
|
*
|
|
* - Our read lock blocks another thread with an intent lock on
|
|
* the same node from getting a write lock, and thus from
|
|
* dropping its intent lock
|
|
*
|
|
* - And the other thread may have multiple nodes intent locked:
|
|
* both the node we want to intent lock, and the node we
|
|
* already have read locked - deadlock:
|
|
*/
|
|
if (type == SIX_LOCK_intent &&
|
|
linked->nodes_locked != linked->nodes_intent_locked) {
|
|
if (may_drop_locks) {
|
|
linked->locks_want = max_t(unsigned,
|
|
linked->locks_want,
|
|
__fls(linked->nodes_locked) + 1);
|
|
btree_iter_get_locks(linked, true);
|
|
}
|
|
ret = false;
|
|
}
|
|
|
|
/*
|
|
* Interior nodes must be locked before their descendants: if
|
|
* another iterator has possible descendants locked of the node
|
|
* we're about to lock, it must have the ancestors locked too:
|
|
*/
|
|
if (linked->btree_id == iter->btree_id &&
|
|
level > __fls(linked->nodes_locked)) {
|
|
if (may_drop_locks) {
|
|
linked->locks_want =
|
|
max(level + 1, max_t(unsigned,
|
|
linked->locks_want,
|
|
iter->locks_want));
|
|
btree_iter_get_locks(linked, true);
|
|
}
|
|
ret = false;
|
|
}
|
|
}
|
|
|
|
if (ret)
|
|
__btree_node_lock_type(c, b, type);
|
|
else
|
|
trans_restart();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Btree iterator locking: */
|
|
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
void bch2_btree_iter_verify_locks(struct btree_iter *iter)
|
|
{
|
|
unsigned l;
|
|
|
|
for (l = 0; btree_iter_node(iter, l); l++) {
|
|
if (iter->uptodate >= BTREE_ITER_NEED_RELOCK &&
|
|
!btree_node_locked(iter, l))
|
|
continue;
|
|
|
|
BUG_ON(btree_lock_want(iter, l) !=
|
|
btree_node_locked_type(iter, l));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
__flatten
|
|
static bool __bch2_btree_iter_relock(struct btree_iter *iter)
|
|
{
|
|
return iter->uptodate >= BTREE_ITER_NEED_RELOCK
|
|
? btree_iter_get_locks(iter, false)
|
|
: true;
|
|
}
|
|
|
|
bool bch2_btree_iter_relock(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter *linked;
|
|
bool ret = true;
|
|
|
|
for_each_btree_iter(iter, linked)
|
|
ret &= __bch2_btree_iter_relock(linked);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool __bch2_btree_iter_upgrade(struct btree_iter *iter,
|
|
unsigned new_locks_want)
|
|
{
|
|
struct btree_iter *linked;
|
|
|
|
EBUG_ON(iter->locks_want >= new_locks_want);
|
|
|
|
iter->locks_want = new_locks_want;
|
|
|
|
if (btree_iter_get_locks(iter, true))
|
|
return true;
|
|
|
|
/*
|
|
* Ancestor nodes must be locked before child nodes, so set locks_want
|
|
* on iterators that might lock ancestors before us to avoid getting
|
|
* -EINTR later:
|
|
*/
|
|
for_each_linked_btree_iter(iter, linked)
|
|
if (linked->btree_id == iter->btree_id &&
|
|
btree_iter_cmp(linked, iter) <= 0 &&
|
|
linked->locks_want < new_locks_want) {
|
|
linked->locks_want = new_locks_want;
|
|
btree_iter_get_locks(linked, true);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool __bch2_btree_iter_upgrade_nounlock(struct btree_iter *iter,
|
|
unsigned new_locks_want)
|
|
{
|
|
unsigned l = iter->level;
|
|
|
|
EBUG_ON(iter->locks_want >= new_locks_want);
|
|
|
|
iter->locks_want = new_locks_want;
|
|
|
|
do {
|
|
if (!btree_iter_node(iter, l))
|
|
break;
|
|
|
|
if (!bch2_btree_node_upgrade(iter, l)) {
|
|
iter->locks_want = l;
|
|
return false;
|
|
}
|
|
|
|
l++;
|
|
} while (l < iter->locks_want);
|
|
|
|
return true;
|
|
}
|
|
|
|
void __bch2_btree_iter_downgrade(struct btree_iter *iter,
|
|
unsigned downgrade_to)
|
|
{
|
|
struct btree_iter *linked;
|
|
unsigned l;
|
|
|
|
/*
|
|
* We downgrade linked iterators as well because btree_iter_upgrade
|
|
* might have had to modify locks_want on linked iterators due to lock
|
|
* ordering:
|
|
*/
|
|
for_each_btree_iter(iter, linked) {
|
|
unsigned new_locks_want = downgrade_to ?:
|
|
(linked->flags & BTREE_ITER_INTENT ? 1 : 0);
|
|
|
|
if (linked->locks_want <= new_locks_want)
|
|
continue;
|
|
|
|
linked->locks_want = new_locks_want;
|
|
|
|
while (linked->nodes_locked &&
|
|
(l = __fls(linked->nodes_locked)) >= linked->locks_want) {
|
|
if (l > linked->level) {
|
|
btree_node_unlock(linked, l);
|
|
} else {
|
|
if (btree_node_intent_locked(linked, l)) {
|
|
six_lock_downgrade(&linked->l[l].b->lock);
|
|
linked->nodes_intent_locked ^= 1 << l;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
bch2_btree_iter_verify_locks(linked);
|
|
}
|
|
}
|
|
|
|
int bch2_btree_iter_unlock(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter *linked;
|
|
|
|
for_each_btree_iter(iter, linked)
|
|
__bch2_btree_iter_unlock(linked);
|
|
|
|
return iter->flags & BTREE_ITER_ERROR ? -EIO : 0;
|
|
}
|
|
|
|
/* Btree iterator: */
|
|
|
|
#ifdef CONFIG_BCACHEFS_DEBUG
|
|
|
|
static void __bch2_btree_iter_verify(struct btree_iter *iter,
|
|
struct btree *b)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[b->level];
|
|
struct btree_node_iter tmp = l->iter;
|
|
struct bkey_packed *k;
|
|
|
|
if (iter->uptodate > BTREE_ITER_NEED_PEEK)
|
|
return;
|
|
|
|
bch2_btree_node_iter_verify(&l->iter, b);
|
|
|
|
/*
|
|
* For interior nodes, the iterator will have skipped past
|
|
* deleted keys:
|
|
*
|
|
* For extents, the iterator may have skipped past deleted keys (but not
|
|
* whiteouts)
|
|
*/
|
|
k = b->level || iter->flags & BTREE_ITER_IS_EXTENTS
|
|
? bch2_btree_node_iter_prev_filter(&tmp, b, KEY_TYPE_DISCARD)
|
|
: bch2_btree_node_iter_prev_all(&tmp, b);
|
|
if (k && btree_iter_pos_cmp(iter, b, k) > 0) {
|
|
char buf[100];
|
|
struct bkey uk = bkey_unpack_key(b, k);
|
|
|
|
bch2_bkey_to_text(&PBUF(buf), &uk);
|
|
panic("prev key should be before iter pos:\n%s\n%llu:%llu\n",
|
|
buf, iter->pos.inode, iter->pos.offset);
|
|
}
|
|
|
|
k = bch2_btree_node_iter_peek_all(&l->iter, b);
|
|
if (k && btree_iter_pos_cmp(iter, b, k) < 0) {
|
|
char buf[100];
|
|
struct bkey uk = bkey_unpack_key(b, k);
|
|
|
|
bch2_bkey_to_text(&PBUF(buf), &uk);
|
|
panic("iter should be after current key:\n"
|
|
"iter pos %llu:%llu\n"
|
|
"cur key %s\n",
|
|
iter->pos.inode, iter->pos.offset, buf);
|
|
}
|
|
|
|
BUG_ON(iter->uptodate == BTREE_ITER_UPTODATE &&
|
|
(iter->flags & BTREE_ITER_TYPE) == BTREE_ITER_KEYS &&
|
|
!bkey_whiteout(&iter->k) &&
|
|
bch2_btree_node_iter_end(&l->iter));
|
|
}
|
|
|
|
void bch2_btree_iter_verify(struct btree_iter *iter, struct btree *b)
|
|
{
|
|
struct btree_iter *linked;
|
|
|
|
for_each_btree_iter_with_node(iter, b, linked)
|
|
__bch2_btree_iter_verify(linked, b);
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void __bch2_btree_iter_verify(struct btree_iter *iter,
|
|
struct btree *b) {}
|
|
|
|
#endif
|
|
|
|
static void __bch2_btree_node_iter_fix(struct btree_iter *iter,
|
|
struct btree *b,
|
|
struct btree_node_iter *node_iter,
|
|
struct bset_tree *t,
|
|
struct bkey_packed *where,
|
|
unsigned clobber_u64s,
|
|
unsigned new_u64s)
|
|
{
|
|
const struct bkey_packed *end = btree_bkey_last(b, t);
|
|
struct btree_node_iter_set *set;
|
|
unsigned offset = __btree_node_key_to_offset(b, where);
|
|
int shift = new_u64s - clobber_u64s;
|
|
unsigned old_end = t->end_offset - shift;
|
|
|
|
btree_node_iter_for_each(node_iter, set)
|
|
if (set->end == old_end)
|
|
goto found;
|
|
|
|
/* didn't find the bset in the iterator - might have to readd it: */
|
|
if (new_u64s &&
|
|
btree_iter_pos_cmp(iter, b, where) > 0) {
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK);
|
|
|
|
bch2_btree_node_iter_push(node_iter, b, where, end);
|
|
|
|
if (!b->level &&
|
|
node_iter == &iter->l[0].iter)
|
|
bkey_disassemble(b,
|
|
bch2_btree_node_iter_peek_all(node_iter, b),
|
|
&iter->k);
|
|
}
|
|
return;
|
|
found:
|
|
set->end = t->end_offset;
|
|
|
|
/* Iterator hasn't gotten to the key that changed yet: */
|
|
if (set->k < offset)
|
|
return;
|
|
|
|
if (new_u64s &&
|
|
btree_iter_pos_cmp(iter, b, where) > 0) {
|
|
set->k = offset;
|
|
} else if (set->k < offset + clobber_u64s) {
|
|
set->k = offset + new_u64s;
|
|
if (set->k == set->end)
|
|
bch2_btree_node_iter_set_drop(node_iter, set);
|
|
} else {
|
|
set->k = (int) set->k + shift;
|
|
goto iter_current_key_not_modified;
|
|
}
|
|
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK);
|
|
|
|
bch2_btree_node_iter_sort(node_iter, b);
|
|
if (!b->level && node_iter == &iter->l[0].iter)
|
|
__btree_iter_peek_all(iter, &iter->l[0], &iter->k);
|
|
iter_current_key_not_modified:
|
|
|
|
/*
|
|
* Interior nodes are special because iterators for interior nodes don't
|
|
* obey the usual invariants regarding the iterator position:
|
|
*
|
|
* We may have whiteouts that compare greater than the iterator
|
|
* position, and logically should be in the iterator, but that we
|
|
* skipped past to find the first live key greater than the iterator
|
|
* position. This becomes an issue when we insert a new key that is
|
|
* greater than the current iterator position, but smaller than the
|
|
* whiteouts we've already skipped past - this happens in the course of
|
|
* a btree split.
|
|
*
|
|
* We have to rewind the iterator past to before those whiteouts here,
|
|
* else bkey_node_iter_prev() is not going to work and who knows what
|
|
* else would happen. And we have to do it manually, because here we've
|
|
* already done the insert and the iterator is currently inconsistent:
|
|
*
|
|
* We've got multiple competing invariants, here - we have to be careful
|
|
* about rewinding iterators for interior nodes, because they should
|
|
* always point to the key for the child node the btree iterator points
|
|
* to.
|
|
*/
|
|
if (b->level && new_u64s &&
|
|
btree_iter_pos_cmp(iter, b, where) > 0) {
|
|
struct bset_tree *t, *where_set = bch2_bkey_to_bset_inlined(b, where);
|
|
struct bkey_packed *k;
|
|
|
|
for_each_bset(b, t) {
|
|
if (where_set == t)
|
|
continue;
|
|
|
|
k = bch2_bkey_prev_all(b, t,
|
|
bch2_btree_node_iter_bset_pos(node_iter, b, t));
|
|
if (k &&
|
|
bkey_iter_cmp(b, k, where) > 0) {
|
|
struct btree_node_iter_set *set;
|
|
unsigned offset =
|
|
__btree_node_key_to_offset(b, bkey_next(k));
|
|
|
|
btree_node_iter_for_each(node_iter, set)
|
|
if (set->k == offset) {
|
|
set->k = __btree_node_key_to_offset(b, k);
|
|
bch2_btree_node_iter_sort(node_iter, b);
|
|
goto next_bset;
|
|
}
|
|
|
|
bch2_btree_node_iter_push(node_iter, b, k,
|
|
btree_bkey_last(b, t));
|
|
}
|
|
next_bset:
|
|
t = t;
|
|
}
|
|
}
|
|
}
|
|
|
|
void bch2_btree_node_iter_fix(struct btree_iter *iter,
|
|
struct btree *b,
|
|
struct btree_node_iter *node_iter,
|
|
struct bkey_packed *where,
|
|
unsigned clobber_u64s,
|
|
unsigned new_u64s)
|
|
{
|
|
struct bset_tree *t = bch2_bkey_to_bset_inlined(b, where);
|
|
struct btree_iter *linked;
|
|
|
|
if (node_iter != &iter->l[b->level].iter)
|
|
__bch2_btree_node_iter_fix(iter, b, node_iter, t,
|
|
where, clobber_u64s, new_u64s);
|
|
|
|
for_each_btree_iter_with_node(iter, b, linked)
|
|
__bch2_btree_node_iter_fix(linked, b,
|
|
&linked->l[b->level].iter, t,
|
|
where, clobber_u64s, new_u64s);
|
|
}
|
|
|
|
static inline struct bkey_s_c __btree_iter_unpack(struct btree_iter *iter,
|
|
struct btree_iter_level *l,
|
|
struct bkey *u,
|
|
struct bkey_packed *k)
|
|
{
|
|
struct bkey_s_c ret;
|
|
|
|
if (unlikely(!k)) {
|
|
/*
|
|
* signal to bch2_btree_iter_peek_slot() that we're currently at
|
|
* a hole
|
|
*/
|
|
u->type = KEY_TYPE_DELETED;
|
|
return bkey_s_c_null;
|
|
}
|
|
|
|
ret = bkey_disassemble(l->b, k, u);
|
|
|
|
if (debug_check_bkeys(iter->c))
|
|
bch2_bkey_debugcheck(iter->c, l->b, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* peek_all() doesn't skip deleted keys */
|
|
static inline struct bkey_s_c __btree_iter_peek_all(struct btree_iter *iter,
|
|
struct btree_iter_level *l,
|
|
struct bkey *u)
|
|
{
|
|
return __btree_iter_unpack(iter, l, u,
|
|
bch2_btree_node_iter_peek_all(&l->iter, l->b));
|
|
}
|
|
|
|
static inline struct bkey_s_c __btree_iter_peek(struct btree_iter *iter,
|
|
struct btree_iter_level *l)
|
|
{
|
|
return __btree_iter_unpack(iter, l, &iter->k,
|
|
bch2_btree_node_iter_peek(&l->iter, l->b));
|
|
}
|
|
|
|
static inline bool btree_iter_advance_to_pos(struct btree_iter *iter,
|
|
struct btree_iter_level *l,
|
|
int max_advance)
|
|
{
|
|
struct bkey_packed *k;
|
|
int nr_advanced = 0;
|
|
|
|
while ((k = bch2_btree_node_iter_peek_all(&l->iter, l->b)) &&
|
|
btree_iter_pos_cmp(iter, l->b, k) < 0) {
|
|
if (max_advance > 0 && nr_advanced >= max_advance)
|
|
return false;
|
|
|
|
bch2_btree_node_iter_advance(&l->iter, l->b);
|
|
nr_advanced++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Verify that iterator for parent node points to child node:
|
|
*/
|
|
static void btree_iter_verify_new_node(struct btree_iter *iter, struct btree *b)
|
|
{
|
|
struct btree_iter_level *l;
|
|
unsigned plevel;
|
|
bool parent_locked;
|
|
struct bkey_packed *k;
|
|
|
|
if (!IS_ENABLED(CONFIG_BCACHEFS_DEBUG))
|
|
return;
|
|
|
|
plevel = b->level + 1;
|
|
if (!btree_iter_node(iter, plevel))
|
|
return;
|
|
|
|
parent_locked = btree_node_locked(iter, plevel);
|
|
|
|
if (!bch2_btree_node_relock(iter, plevel))
|
|
return;
|
|
|
|
l = &iter->l[plevel];
|
|
k = bch2_btree_node_iter_peek_all(&l->iter, l->b);
|
|
if (!k ||
|
|
bkey_deleted(k) ||
|
|
bkey_cmp_left_packed(l->b, k, &b->key.k.p)) {
|
|
char buf[100];
|
|
struct bkey uk = bkey_unpack_key(b, k);
|
|
|
|
bch2_bkey_to_text(&PBUF(buf), &uk);
|
|
panic("parent iter doesn't point to new node:\n%s\n%llu:%llu\n",
|
|
buf, b->key.k.p.inode, b->key.k.p.offset);
|
|
}
|
|
|
|
if (!parent_locked)
|
|
btree_node_unlock(iter, b->level + 1);
|
|
}
|
|
|
|
static inline bool btree_iter_pos_after_node(struct btree_iter *iter,
|
|
struct btree *b)
|
|
{
|
|
return __btree_iter_pos_cmp(iter, NULL,
|
|
bkey_to_packed(&b->key), true) < 0;
|
|
}
|
|
|
|
static inline bool btree_iter_pos_in_node(struct btree_iter *iter,
|
|
struct btree *b)
|
|
{
|
|
return iter->btree_id == b->btree_id &&
|
|
bkey_cmp(iter->pos, b->data->min_key) >= 0 &&
|
|
!btree_iter_pos_after_node(iter, b);
|
|
}
|
|
|
|
static inline void __btree_iter_init(struct btree_iter *iter,
|
|
unsigned level)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[level];
|
|
|
|
bch2_btree_node_iter_init(&l->iter, l->b, &iter->pos);
|
|
|
|
if (iter->flags & BTREE_ITER_IS_EXTENTS)
|
|
btree_iter_advance_to_pos(iter, l, -1);
|
|
|
|
/* Skip to first non whiteout: */
|
|
if (level)
|
|
bch2_btree_node_iter_peek(&l->iter, l->b);
|
|
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK);
|
|
}
|
|
|
|
static inline void btree_iter_node_set(struct btree_iter *iter,
|
|
struct btree *b)
|
|
{
|
|
btree_iter_verify_new_node(iter, b);
|
|
|
|
EBUG_ON(!btree_iter_pos_in_node(iter, b));
|
|
EBUG_ON(b->lock.state.seq & 1);
|
|
|
|
iter->l[b->level].lock_seq = b->lock.state.seq;
|
|
iter->l[b->level].b = b;
|
|
__btree_iter_init(iter, b->level);
|
|
}
|
|
|
|
/*
|
|
* A btree node is being replaced - update the iterator to point to the new
|
|
* node:
|
|
*/
|
|
void bch2_btree_iter_node_replace(struct btree_iter *iter, struct btree *b)
|
|
{
|
|
enum btree_node_locked_type t;
|
|
struct btree_iter *linked;
|
|
|
|
for_each_btree_iter(iter, linked)
|
|
if (btree_iter_pos_in_node(linked, b)) {
|
|
/*
|
|
* bch2_btree_iter_node_drop() has already been called -
|
|
* the old node we're replacing has already been
|
|
* unlocked and the pointer invalidated
|
|
*/
|
|
BUG_ON(btree_node_locked(linked, b->level));
|
|
|
|
t = btree_lock_want(linked, b->level);
|
|
if (t != BTREE_NODE_UNLOCKED) {
|
|
six_lock_increment(&b->lock, (enum six_lock_type) t);
|
|
mark_btree_node_locked(linked, b->level, (enum six_lock_type) t);
|
|
}
|
|
|
|
btree_iter_node_set(linked, b);
|
|
}
|
|
|
|
six_unlock_intent(&b->lock);
|
|
}
|
|
|
|
void bch2_btree_iter_node_drop(struct btree_iter *iter, struct btree *b)
|
|
{
|
|
struct btree_iter *linked;
|
|
unsigned level = b->level;
|
|
|
|
for_each_btree_iter(iter, linked)
|
|
if (linked->l[level].b == b) {
|
|
btree_node_unlock(linked, level);
|
|
linked->l[level].b = BTREE_ITER_NOT_END;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A btree node has been modified in such a way as to invalidate iterators - fix
|
|
* them:
|
|
*/
|
|
void bch2_btree_iter_reinit_node(struct btree_iter *iter, struct btree *b)
|
|
{
|
|
struct btree_iter *linked;
|
|
|
|
for_each_btree_iter_with_node(iter, b, linked)
|
|
__btree_iter_init(linked, b->level);
|
|
}
|
|
|
|
static inline int btree_iter_lock_root(struct btree_iter *iter,
|
|
unsigned depth_want)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct btree *b;
|
|
enum six_lock_type lock_type;
|
|
unsigned i;
|
|
|
|
EBUG_ON(iter->nodes_locked);
|
|
|
|
while (1) {
|
|
b = READ_ONCE(c->btree_roots[iter->btree_id].b);
|
|
iter->level = READ_ONCE(b->level);
|
|
|
|
if (unlikely(iter->level < depth_want)) {
|
|
/*
|
|
* the root is at a lower depth than the depth we want:
|
|
* got to the end of the btree, or we're walking nodes
|
|
* greater than some depth and there are no nodes >=
|
|
* that depth
|
|
*/
|
|
iter->level = depth_want;
|
|
iter->l[iter->level].b = NULL;
|
|
return 1;
|
|
}
|
|
|
|
lock_type = __btree_lock_want(iter, iter->level);
|
|
if (unlikely(!btree_node_lock(b, POS_MAX, iter->level,
|
|
iter, lock_type, true)))
|
|
return -EINTR;
|
|
|
|
if (likely(b == c->btree_roots[iter->btree_id].b &&
|
|
b->level == iter->level &&
|
|
!race_fault())) {
|
|
for (i = 0; i < iter->level; i++)
|
|
iter->l[i].b = BTREE_ITER_NOT_END;
|
|
iter->l[iter->level].b = b;
|
|
|
|
mark_btree_node_locked(iter, iter->level, lock_type);
|
|
btree_iter_node_set(iter, b);
|
|
return 0;
|
|
|
|
}
|
|
|
|
six_unlock_type(&b->lock, lock_type);
|
|
}
|
|
}
|
|
|
|
noinline
|
|
static void btree_iter_prefetch(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[iter->level];
|
|
struct btree_node_iter node_iter = l->iter;
|
|
struct bkey_packed *k;
|
|
BKEY_PADDED(k) tmp;
|
|
unsigned nr = test_bit(BCH_FS_STARTED, &iter->c->flags)
|
|
? (iter->level > 1 ? 0 : 2)
|
|
: (iter->level > 1 ? 1 : 16);
|
|
bool was_locked = btree_node_locked(iter, iter->level);
|
|
|
|
while (nr) {
|
|
if (!bch2_btree_node_relock(iter, iter->level))
|
|
return;
|
|
|
|
bch2_btree_node_iter_advance(&node_iter, l->b);
|
|
k = bch2_btree_node_iter_peek(&node_iter, l->b);
|
|
if (!k)
|
|
break;
|
|
|
|
bch2_bkey_unpack(l->b, &tmp.k, k);
|
|
bch2_btree_node_prefetch(iter->c, iter, &tmp.k,
|
|
iter->level - 1);
|
|
}
|
|
|
|
if (!was_locked)
|
|
btree_node_unlock(iter, iter->level);
|
|
}
|
|
|
|
static inline int btree_iter_down(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[iter->level];
|
|
struct btree *b;
|
|
unsigned level = iter->level - 1;
|
|
enum six_lock_type lock_type = __btree_lock_want(iter, level);
|
|
BKEY_PADDED(k) tmp;
|
|
|
|
BUG_ON(!btree_node_locked(iter, iter->level));
|
|
|
|
bch2_bkey_unpack(l->b, &tmp.k,
|
|
bch2_btree_node_iter_peek(&l->iter, l->b));
|
|
|
|
b = bch2_btree_node_get(iter->c, iter, &tmp.k, level, lock_type, true);
|
|
if (unlikely(IS_ERR(b)))
|
|
return PTR_ERR(b);
|
|
|
|
mark_btree_node_locked(iter, level, lock_type);
|
|
btree_iter_node_set(iter, b);
|
|
|
|
if (iter->flags & BTREE_ITER_PREFETCH)
|
|
btree_iter_prefetch(iter);
|
|
|
|
iter->level = level;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btree_iter_up(struct btree_iter *iter)
|
|
{
|
|
btree_node_unlock(iter, iter->level++);
|
|
}
|
|
|
|
int __must_check __bch2_btree_iter_traverse(struct btree_iter *);
|
|
|
|
static int btree_iter_traverse_error(struct btree_iter *iter, int ret)
|
|
{
|
|
struct bch_fs *c = iter->c;
|
|
struct btree_iter *linked, *sorted_iters, **i;
|
|
retry_all:
|
|
bch2_btree_iter_unlock(iter);
|
|
|
|
if (ret != -ENOMEM && ret != -EINTR)
|
|
goto io_error;
|
|
|
|
if (ret == -ENOMEM) {
|
|
struct closure cl;
|
|
|
|
closure_init_stack(&cl);
|
|
|
|
do {
|
|
ret = bch2_btree_cache_cannibalize_lock(c, &cl);
|
|
closure_sync(&cl);
|
|
} while (ret);
|
|
}
|
|
|
|
/*
|
|
* Linked iters are normally a circular singly linked list - break cycle
|
|
* while we sort them:
|
|
*/
|
|
linked = iter->next;
|
|
iter->next = NULL;
|
|
sorted_iters = NULL;
|
|
|
|
while (linked) {
|
|
iter = linked;
|
|
linked = linked->next;
|
|
|
|
i = &sorted_iters;
|
|
while (*i && btree_iter_cmp(iter, *i) > 0)
|
|
i = &(*i)->next;
|
|
|
|
iter->next = *i;
|
|
*i = iter;
|
|
}
|
|
|
|
/* Make list circular again: */
|
|
iter = sorted_iters;
|
|
while (iter->next)
|
|
iter = iter->next;
|
|
iter->next = sorted_iters;
|
|
|
|
/* Now, redo traversals in correct order: */
|
|
|
|
iter = sorted_iters;
|
|
do {
|
|
retry:
|
|
ret = __bch2_btree_iter_traverse(iter);
|
|
if (unlikely(ret)) {
|
|
if (ret == -EINTR)
|
|
goto retry;
|
|
goto retry_all;
|
|
}
|
|
|
|
iter = iter->next;
|
|
} while (iter != sorted_iters);
|
|
|
|
ret = btree_iter_linked(iter) ? -EINTR : 0;
|
|
out:
|
|
bch2_btree_cache_cannibalize_unlock(c);
|
|
return ret;
|
|
io_error:
|
|
BUG_ON(ret != -EIO);
|
|
|
|
iter->flags |= BTREE_ITER_ERROR;
|
|
iter->l[iter->level].b = BTREE_ITER_NOT_END;
|
|
goto out;
|
|
}
|
|
|
|
static unsigned btree_iter_up_until_locked(struct btree_iter *iter,
|
|
bool check_pos)
|
|
{
|
|
unsigned l = iter->level;
|
|
|
|
while (btree_iter_node(iter, l) &&
|
|
!(is_btree_node(iter, l) &&
|
|
bch2_btree_node_relock(iter, l) &&
|
|
(!check_pos ||
|
|
btree_iter_pos_in_node(iter, iter->l[l].b)))) {
|
|
btree_node_unlock(iter, l);
|
|
iter->l[l].b = BTREE_ITER_NOT_END;
|
|
l++;
|
|
}
|
|
|
|
return l;
|
|
}
|
|
|
|
/*
|
|
* This is the main state machine for walking down the btree - walks down to a
|
|
* specified depth
|
|
*
|
|
* Returns 0 on success, -EIO on error (error reading in a btree node).
|
|
*
|
|
* On error, caller (peek_node()/peek_key()) must return NULL; the error is
|
|
* stashed in the iterator and returned from bch2_btree_iter_unlock().
|
|
*/
|
|
int __must_check __bch2_btree_iter_traverse(struct btree_iter *iter)
|
|
{
|
|
unsigned depth_want = iter->level;
|
|
|
|
if (unlikely(iter->level >= BTREE_MAX_DEPTH))
|
|
return 0;
|
|
|
|
if (__bch2_btree_iter_relock(iter))
|
|
return 0;
|
|
|
|
/*
|
|
* XXX: correctly using BTREE_ITER_UPTODATE should make using check_pos
|
|
* here unnecessary
|
|
*/
|
|
iter->level = btree_iter_up_until_locked(iter, true);
|
|
|
|
/*
|
|
* If we've got a btree node locked (i.e. we aren't about to relock the
|
|
* root) - advance its node iterator if necessary:
|
|
*
|
|
* XXX correctly using BTREE_ITER_UPTODATE should make this unnecessary
|
|
*/
|
|
if (btree_iter_node(iter, iter->level))
|
|
btree_iter_advance_to_pos(iter, &iter->l[iter->level], -1);
|
|
|
|
/*
|
|
* Note: iter->nodes[iter->level] may be temporarily NULL here - that
|
|
* would indicate to other code that we got to the end of the btree,
|
|
* here it indicates that relocking the root failed - it's critical that
|
|
* btree_iter_lock_root() comes next and that it can't fail
|
|
*/
|
|
while (iter->level > depth_want) {
|
|
int ret = btree_iter_node(iter, iter->level)
|
|
? btree_iter_down(iter)
|
|
: btree_iter_lock_root(iter, depth_want);
|
|
if (unlikely(ret)) {
|
|
if (ret == 1)
|
|
return 0;
|
|
|
|
iter->level = depth_want;
|
|
iter->l[iter->level].b = BTREE_ITER_NOT_END;
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
iter->uptodate = BTREE_ITER_NEED_PEEK;
|
|
|
|
bch2_btree_iter_verify_locks(iter);
|
|
__bch2_btree_iter_verify(iter, iter->l[iter->level].b);
|
|
return 0;
|
|
}
|
|
|
|
int __must_check bch2_btree_iter_traverse(struct btree_iter *iter)
|
|
{
|
|
int ret;
|
|
|
|
ret = __bch2_btree_iter_traverse(iter);
|
|
if (unlikely(ret))
|
|
ret = btree_iter_traverse_error(iter, ret);
|
|
|
|
BUG_ON(ret == -EINTR && !btree_iter_linked(iter));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline void bch2_btree_iter_checks(struct btree_iter *iter,
|
|
enum btree_iter_type type)
|
|
{
|
|
EBUG_ON(iter->btree_id >= BTREE_ID_NR);
|
|
EBUG_ON(!!(iter->flags & BTREE_ITER_IS_EXTENTS) !=
|
|
(iter->btree_id == BTREE_ID_EXTENTS &&
|
|
type != BTREE_ITER_NODES));
|
|
|
|
bch2_btree_iter_verify_locks(iter);
|
|
}
|
|
|
|
/* Iterate across nodes (leaf and interior nodes) */
|
|
|
|
struct btree *bch2_btree_iter_peek_node(struct btree_iter *iter)
|
|
{
|
|
struct btree *b;
|
|
int ret;
|
|
|
|
bch2_btree_iter_checks(iter, BTREE_ITER_NODES);
|
|
|
|
if (iter->uptodate == BTREE_ITER_UPTODATE)
|
|
return iter->l[iter->level].b;
|
|
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (ret)
|
|
return NULL;
|
|
|
|
b = btree_iter_node(iter, iter->level);
|
|
if (!b)
|
|
return NULL;
|
|
|
|
BUG_ON(bkey_cmp(b->key.k.p, iter->pos) < 0);
|
|
|
|
iter->pos = b->key.k.p;
|
|
iter->uptodate = BTREE_ITER_UPTODATE;
|
|
|
|
return b;
|
|
}
|
|
|
|
struct btree *bch2_btree_iter_next_node(struct btree_iter *iter, unsigned depth)
|
|
{
|
|
struct btree *b;
|
|
int ret;
|
|
|
|
bch2_btree_iter_checks(iter, BTREE_ITER_NODES);
|
|
|
|
/* already got to end? */
|
|
if (!btree_iter_node(iter, iter->level))
|
|
return NULL;
|
|
|
|
btree_iter_up(iter);
|
|
|
|
if (!bch2_btree_node_relock(iter, iter->level))
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_RELOCK);
|
|
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (ret)
|
|
return NULL;
|
|
|
|
/* got to end? */
|
|
b = btree_iter_node(iter, iter->level);
|
|
if (!b)
|
|
return NULL;
|
|
|
|
if (bkey_cmp(iter->pos, b->key.k.p) < 0) {
|
|
/*
|
|
* Haven't gotten to the end of the parent node: go back down to
|
|
* the next child node
|
|
*/
|
|
|
|
/*
|
|
* We don't really want to be unlocking here except we can't
|
|
* directly tell btree_iter_traverse() "traverse to this level"
|
|
* except by setting iter->level, so we have to unlock so we
|
|
* don't screw up our lock invariants:
|
|
*/
|
|
if (btree_node_read_locked(iter, iter->level))
|
|
btree_node_unlock(iter, iter->level);
|
|
|
|
/* ick: */
|
|
iter->pos = iter->btree_id == BTREE_ID_INODES
|
|
? btree_type_successor(iter->btree_id, iter->pos)
|
|
: bkey_successor(iter->pos);
|
|
iter->level = depth;
|
|
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE);
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (ret)
|
|
return NULL;
|
|
|
|
b = iter->l[iter->level].b;
|
|
}
|
|
|
|
iter->pos = b->key.k.p;
|
|
iter->uptodate = BTREE_ITER_UPTODATE;
|
|
|
|
return b;
|
|
}
|
|
|
|
/* Iterate across keys (in leaf nodes only) */
|
|
|
|
void bch2_btree_iter_set_pos_same_leaf(struct btree_iter *iter, struct bpos new_pos)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
|
|
EBUG_ON(iter->level != 0);
|
|
EBUG_ON(bkey_cmp(new_pos, iter->pos) < 0);
|
|
EBUG_ON(!btree_node_locked(iter, 0));
|
|
EBUG_ON(bkey_cmp(new_pos, l->b->key.k.p) > 0);
|
|
|
|
iter->pos = new_pos;
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK);
|
|
|
|
btree_iter_advance_to_pos(iter, l, -1);
|
|
|
|
if (bch2_btree_node_iter_end(&l->iter) &&
|
|
btree_iter_pos_after_node(iter, l->b))
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE);
|
|
}
|
|
|
|
void bch2_btree_iter_set_pos(struct btree_iter *iter, struct bpos new_pos)
|
|
{
|
|
int cmp = bkey_cmp(new_pos, iter->pos);
|
|
unsigned level;
|
|
|
|
if (!cmp)
|
|
return;
|
|
|
|
iter->pos = new_pos;
|
|
|
|
level = btree_iter_up_until_locked(iter, true);
|
|
|
|
if (btree_iter_node(iter, level)) {
|
|
/*
|
|
* We might have to skip over many keys, or just a few: try
|
|
* advancing the node iterator, and if we have to skip over too
|
|
* many keys just reinit it (or if we're rewinding, since that
|
|
* is expensive).
|
|
*/
|
|
if (cmp < 0 ||
|
|
!btree_iter_advance_to_pos(iter, &iter->l[level], 8))
|
|
__btree_iter_init(iter, level);
|
|
|
|
/* Don't leave it locked if we're not supposed to: */
|
|
if (btree_lock_want(iter, level) == BTREE_NODE_UNLOCKED)
|
|
btree_node_unlock(iter, level);
|
|
}
|
|
|
|
if (level != iter->level)
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE);
|
|
else
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK);
|
|
}
|
|
|
|
static inline struct bkey_s_c btree_iter_peek_uptodate(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
struct bkey_s_c ret = { .k = &iter->k };
|
|
|
|
if (!bkey_deleted(&iter->k)) {
|
|
EBUG_ON(bch2_btree_node_iter_end(&l->iter));
|
|
ret.v = bkeyp_val(&l->b->format,
|
|
__bch2_btree_node_iter_peek_all(&l->iter, l->b));
|
|
}
|
|
|
|
if (debug_check_bkeys(iter->c) &&
|
|
!bkey_deleted(ret.k))
|
|
bch2_bkey_debugcheck(iter->c, l->b, ret);
|
|
return ret;
|
|
}
|
|
|
|
struct bkey_s_c bch2_btree_iter_peek(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
bch2_btree_iter_checks(iter, BTREE_ITER_KEYS);
|
|
|
|
if (iter->uptodate == BTREE_ITER_UPTODATE)
|
|
return btree_iter_peek_uptodate(iter);
|
|
|
|
while (1) {
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (unlikely(ret))
|
|
return bkey_s_c_err(ret);
|
|
|
|
k = __btree_iter_peek(iter, l);
|
|
if (likely(k.k))
|
|
break;
|
|
|
|
/* got to the end of the leaf, iterator needs to be traversed: */
|
|
iter->pos = l->b->key.k.p;
|
|
iter->uptodate = BTREE_ITER_NEED_TRAVERSE;
|
|
|
|
if (!bkey_cmp(iter->pos, POS_MAX))
|
|
return bkey_s_c_null;
|
|
|
|
iter->pos = btree_type_successor(iter->btree_id, iter->pos);
|
|
}
|
|
|
|
/*
|
|
* iter->pos should always be equal to the key we just
|
|
* returned - except extents can straddle iter->pos:
|
|
*/
|
|
if (!(iter->flags & BTREE_ITER_IS_EXTENTS) ||
|
|
bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0)
|
|
iter->pos = bkey_start_pos(k.k);
|
|
|
|
iter->uptodate = BTREE_ITER_UPTODATE;
|
|
return k;
|
|
}
|
|
|
|
static noinline
|
|
struct bkey_s_c bch2_btree_iter_peek_next_leaf(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
|
|
iter->pos = l->b->key.k.p;
|
|
iter->uptodate = BTREE_ITER_NEED_TRAVERSE;
|
|
|
|
if (!bkey_cmp(iter->pos, POS_MAX))
|
|
return bkey_s_c_null;
|
|
|
|
iter->pos = btree_type_successor(iter->btree_id, iter->pos);
|
|
|
|
return bch2_btree_iter_peek(iter);
|
|
}
|
|
|
|
struct bkey_s_c bch2_btree_iter_next(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
struct bkey_packed *p;
|
|
struct bkey_s_c k;
|
|
|
|
bch2_btree_iter_checks(iter, BTREE_ITER_KEYS);
|
|
|
|
if (unlikely(iter->uptodate != BTREE_ITER_UPTODATE)) {
|
|
k = bch2_btree_iter_peek(iter);
|
|
if (IS_ERR_OR_NULL(k.k))
|
|
return k;
|
|
}
|
|
|
|
do {
|
|
bch2_btree_node_iter_advance(&l->iter, l->b);
|
|
p = bch2_btree_node_iter_peek_all(&l->iter, l->b);
|
|
if (unlikely(!p))
|
|
return bch2_btree_iter_peek_next_leaf(iter);
|
|
} while (bkey_whiteout(p));
|
|
|
|
k = __btree_iter_unpack(iter, l, &iter->k, p);
|
|
|
|
EBUG_ON(bkey_cmp(bkey_start_pos(k.k), iter->pos) < 0);
|
|
iter->pos = bkey_start_pos(k.k);
|
|
return k;
|
|
}
|
|
|
|
struct bkey_s_c bch2_btree_iter_prev(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
struct bkey_packed *p;
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
bch2_btree_iter_checks(iter, BTREE_ITER_KEYS);
|
|
|
|
if (unlikely(iter->uptodate != BTREE_ITER_UPTODATE)) {
|
|
k = bch2_btree_iter_peek(iter);
|
|
if (IS_ERR(k.k))
|
|
return k;
|
|
}
|
|
|
|
while (1) {
|
|
p = bch2_btree_node_iter_prev(&l->iter, l->b);
|
|
if (likely(p))
|
|
break;
|
|
|
|
iter->pos = l->b->data->min_key;
|
|
if (!bkey_cmp(iter->pos, POS_MIN))
|
|
return bkey_s_c_null;
|
|
|
|
bch2_btree_iter_set_pos(iter,
|
|
btree_type_predecessor(iter->btree_id, iter->pos));
|
|
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (unlikely(ret))
|
|
return bkey_s_c_err(ret);
|
|
|
|
p = bch2_btree_node_iter_peek(&l->iter, l->b);
|
|
if (p)
|
|
break;
|
|
}
|
|
|
|
k = __btree_iter_unpack(iter, l, &iter->k, p);
|
|
|
|
EBUG_ON(bkey_cmp(bkey_start_pos(k.k), iter->pos) > 0);
|
|
|
|
iter->pos = bkey_start_pos(k.k);
|
|
iter->uptodate = BTREE_ITER_UPTODATE;
|
|
return k;
|
|
}
|
|
|
|
static inline struct bkey_s_c
|
|
__bch2_btree_iter_peek_slot_extents(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
struct btree_node_iter node_iter;
|
|
struct bkey_s_c k;
|
|
struct bkey n;
|
|
int ret;
|
|
|
|
recheck:
|
|
while ((k = __btree_iter_peek_all(iter, l, &iter->k)).k &&
|
|
bkey_deleted(k.k) &&
|
|
bkey_cmp(bkey_start_pos(k.k), iter->pos) == 0)
|
|
bch2_btree_node_iter_advance(&l->iter, l->b);
|
|
|
|
/*
|
|
* iterator is now at the correct position for inserting at iter->pos,
|
|
* but we need to keep iterating until we find the first non whiteout so
|
|
* we know how big a hole we have, if any:
|
|
*/
|
|
|
|
node_iter = l->iter;
|
|
if (k.k && bkey_whiteout(k.k))
|
|
k = __btree_iter_unpack(iter, l, &iter->k,
|
|
bch2_btree_node_iter_peek(&node_iter, l->b));
|
|
|
|
/*
|
|
* If we got to the end of the node, check if we need to traverse to the
|
|
* next node:
|
|
*/
|
|
if (unlikely(!k.k && btree_iter_pos_after_node(iter, l->b))) {
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE);
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (unlikely(ret))
|
|
return bkey_s_c_err(ret);
|
|
|
|
goto recheck;
|
|
}
|
|
|
|
if (k.k &&
|
|
!bkey_whiteout(k.k) &&
|
|
bkey_cmp(bkey_start_pos(k.k), iter->pos) <= 0) {
|
|
/*
|
|
* if we skipped forward to find the first non whiteout and
|
|
* there _wasn't_ actually a hole, we want the iterator to be
|
|
* pointed at the key we found:
|
|
*/
|
|
l->iter = node_iter;
|
|
|
|
EBUG_ON(bkey_cmp(k.k->p, iter->pos) < 0);
|
|
EBUG_ON(bkey_deleted(k.k));
|
|
iter->uptodate = BTREE_ITER_UPTODATE;
|
|
return k;
|
|
}
|
|
|
|
/* hole */
|
|
|
|
/* holes can't span inode numbers: */
|
|
if (iter->pos.offset == KEY_OFFSET_MAX) {
|
|
if (iter->pos.inode == KEY_INODE_MAX)
|
|
return bkey_s_c_null;
|
|
|
|
iter->pos = bkey_successor(iter->pos);
|
|
goto recheck;
|
|
}
|
|
|
|
if (!k.k)
|
|
k.k = &l->b->key.k;
|
|
|
|
bkey_init(&n);
|
|
n.p = iter->pos;
|
|
bch2_key_resize(&n,
|
|
min_t(u64, KEY_SIZE_MAX,
|
|
(k.k->p.inode == n.p.inode
|
|
? bkey_start_offset(k.k)
|
|
: KEY_OFFSET_MAX) -
|
|
n.p.offset));
|
|
|
|
EBUG_ON(!n.size);
|
|
|
|
iter->k = n;
|
|
iter->uptodate = BTREE_ITER_UPTODATE;
|
|
return (struct bkey_s_c) { &iter->k, NULL };
|
|
}
|
|
|
|
static inline struct bkey_s_c
|
|
__bch2_btree_iter_peek_slot(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter_level *l = &iter->l[0];
|
|
struct bkey_s_c k;
|
|
int ret;
|
|
|
|
if (iter->flags & BTREE_ITER_IS_EXTENTS)
|
|
return __bch2_btree_iter_peek_slot_extents(iter);
|
|
|
|
recheck:
|
|
while ((k = __btree_iter_peek_all(iter, l, &iter->k)).k &&
|
|
bkey_deleted(k.k) &&
|
|
bkey_cmp(k.k->p, iter->pos) == 0)
|
|
bch2_btree_node_iter_advance(&l->iter, l->b);
|
|
|
|
/*
|
|
* If we got to the end of the node, check if we need to traverse to the
|
|
* next node:
|
|
*/
|
|
if (unlikely(!k.k && btree_iter_pos_after_node(iter, l->b))) {
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE);
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (unlikely(ret))
|
|
return bkey_s_c_err(ret);
|
|
|
|
goto recheck;
|
|
}
|
|
|
|
if (k.k &&
|
|
!bkey_deleted(k.k) &&
|
|
!bkey_cmp(iter->pos, k.k->p)) {
|
|
iter->uptodate = BTREE_ITER_UPTODATE;
|
|
return k;
|
|
} else {
|
|
/* hole */
|
|
bkey_init(&iter->k);
|
|
iter->k.p = iter->pos;
|
|
|
|
iter->uptodate = BTREE_ITER_UPTODATE;
|
|
return (struct bkey_s_c) { &iter->k, NULL };
|
|
}
|
|
}
|
|
|
|
struct bkey_s_c bch2_btree_iter_peek_slot(struct btree_iter *iter)
|
|
{
|
|
int ret;
|
|
|
|
bch2_btree_iter_checks(iter, BTREE_ITER_SLOTS);
|
|
|
|
if (iter->uptodate == BTREE_ITER_UPTODATE)
|
|
return btree_iter_peek_uptodate(iter);
|
|
|
|
ret = bch2_btree_iter_traverse(iter);
|
|
if (unlikely(ret))
|
|
return bkey_s_c_err(ret);
|
|
|
|
return __bch2_btree_iter_peek_slot(iter);
|
|
}
|
|
|
|
struct bkey_s_c bch2_btree_iter_next_slot(struct btree_iter *iter)
|
|
{
|
|
bch2_btree_iter_checks(iter, BTREE_ITER_SLOTS);
|
|
|
|
iter->pos = btree_type_successor(iter->btree_id, iter->k.p);
|
|
|
|
if (unlikely(iter->uptodate != BTREE_ITER_UPTODATE)) {
|
|
/*
|
|
* XXX: when we just need to relock we should be able to avoid
|
|
* calling traverse, but we need to kill BTREE_ITER_NEED_PEEK
|
|
* for that to work
|
|
*/
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_TRAVERSE);
|
|
|
|
return bch2_btree_iter_peek_slot(iter);
|
|
}
|
|
|
|
if (!bkey_deleted(&iter->k))
|
|
bch2_btree_node_iter_advance(&iter->l[0].iter, iter->l[0].b);
|
|
|
|
btree_iter_set_dirty(iter, BTREE_ITER_NEED_PEEK);
|
|
|
|
return __bch2_btree_iter_peek_slot(iter);
|
|
}
|
|
|
|
void __bch2_btree_iter_init(struct btree_iter *iter, struct bch_fs *c,
|
|
enum btree_id btree_id, struct bpos pos,
|
|
unsigned locks_want, unsigned depth,
|
|
unsigned flags)
|
|
{
|
|
unsigned i;
|
|
|
|
EBUG_ON(depth >= BTREE_MAX_DEPTH);
|
|
EBUG_ON(locks_want > BTREE_MAX_DEPTH);
|
|
|
|
iter->c = c;
|
|
iter->pos = pos;
|
|
bkey_init(&iter->k);
|
|
iter->k.p = pos;
|
|
iter->flags = flags;
|
|
iter->uptodate = BTREE_ITER_NEED_TRAVERSE;
|
|
iter->btree_id = btree_id;
|
|
iter->level = depth;
|
|
iter->locks_want = locks_want;
|
|
iter->nodes_locked = 0;
|
|
iter->nodes_intent_locked = 0;
|
|
for (i = 0; i < ARRAY_SIZE(iter->l); i++)
|
|
iter->l[i].b = NULL;
|
|
iter->l[iter->level].b = BTREE_ITER_NOT_END;
|
|
iter->next = iter;
|
|
|
|
prefetch(c->btree_roots[btree_id].b);
|
|
}
|
|
|
|
void bch2_btree_iter_unlink(struct btree_iter *iter)
|
|
{
|
|
struct btree_iter *linked;
|
|
|
|
__bch2_btree_iter_unlock(iter);
|
|
|
|
if (!btree_iter_linked(iter))
|
|
return;
|
|
|
|
for_each_linked_btree_iter(iter, linked)
|
|
if (linked->next == iter) {
|
|
linked->next = iter->next;
|
|
iter->next = iter;
|
|
return;
|
|
}
|
|
|
|
BUG();
|
|
}
|
|
|
|
void bch2_btree_iter_link(struct btree_iter *iter, struct btree_iter *new)
|
|
{
|
|
BUG_ON(btree_iter_linked(new));
|
|
|
|
new->next = iter->next;
|
|
iter->next = new;
|
|
}
|
|
|
|
void bch2_btree_iter_copy(struct btree_iter *dst, struct btree_iter *src)
|
|
{
|
|
unsigned i;
|
|
|
|
__bch2_btree_iter_unlock(dst);
|
|
memcpy(dst, src, offsetof(struct btree_iter, next));
|
|
|
|
for (i = 0; i < BTREE_MAX_DEPTH; i++)
|
|
if (btree_node_locked(dst, i))
|
|
six_lock_increment(&dst->l[i].b->lock,
|
|
__btree_lock_want(dst, i));
|
|
}
|
|
|
|
/* new transactional stuff: */
|
|
|
|
static void btree_trans_verify(struct btree_trans *trans)
|
|
{
|
|
unsigned i;
|
|
|
|
for (i = 0; i < trans->nr_iters; i++) {
|
|
struct btree_iter *iter = &trans->iters[i];
|
|
|
|
BUG_ON(btree_iter_linked(iter) !=
|
|
((trans->iters_linked & (1 << i)) &&
|
|
!is_power_of_2(trans->iters_linked)));
|
|
}
|
|
}
|
|
|
|
static inline unsigned btree_trans_iter_idx(struct btree_trans *trans,
|
|
struct btree_iter *iter)
|
|
{
|
|
ssize_t idx = iter - trans->iters;
|
|
|
|
BUG_ON(idx < 0 || idx >= trans->nr_iters);
|
|
BUG_ON(!(trans->iters_live & (1U << idx)));
|
|
|
|
return idx;
|
|
}
|
|
|
|
void bch2_trans_iter_put(struct btree_trans *trans,
|
|
struct btree_iter *iter)
|
|
{
|
|
ssize_t idx = btree_trans_iter_idx(trans, iter);
|
|
|
|
trans->iters_live &= ~(1U << idx);
|
|
}
|
|
|
|
void bch2_trans_iter_free(struct btree_trans *trans,
|
|
struct btree_iter *iter)
|
|
{
|
|
ssize_t idx = btree_trans_iter_idx(trans, iter);
|
|
|
|
trans->iters_live &= ~(1U << idx);
|
|
trans->iters_linked &= ~(1U << idx);
|
|
bch2_btree_iter_unlink(iter);
|
|
}
|
|
|
|
static int btree_trans_realloc_iters(struct btree_trans *trans)
|
|
{
|
|
struct btree_iter *new_iters;
|
|
unsigned i;
|
|
|
|
bch2_trans_unlock(trans);
|
|
|
|
new_iters = mempool_alloc(&trans->c->btree_iters_pool, GFP_NOFS);
|
|
|
|
memcpy(new_iters, trans->iters,
|
|
sizeof(struct btree_iter) * trans->nr_iters);
|
|
trans->iters = new_iters;
|
|
|
|
for (i = 0; i < trans->nr_iters; i++)
|
|
trans->iters[i].next = &trans->iters[i];
|
|
|
|
if (trans->iters_linked) {
|
|
unsigned first_linked = __ffs(trans->iters_linked);
|
|
|
|
for (i = first_linked + 1; i < trans->nr_iters; i++)
|
|
if (trans->iters_linked & (1 << i))
|
|
bch2_btree_iter_link(&trans->iters[first_linked],
|
|
&trans->iters[i]);
|
|
}
|
|
|
|
btree_trans_verify(trans);
|
|
|
|
if (trans->iters_live) {
|
|
trans_restart();
|
|
return -EINTR;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bch2_trans_preload_iters(struct btree_trans *trans)
|
|
{
|
|
if (trans->iters == trans->iters_onstack)
|
|
btree_trans_realloc_iters(trans);
|
|
}
|
|
|
|
static struct btree_iter *__btree_trans_get_iter(struct btree_trans *trans,
|
|
unsigned btree_id,
|
|
unsigned flags, u64 iter_id)
|
|
{
|
|
struct btree_iter *iter;
|
|
int idx;
|
|
|
|
BUG_ON(trans->nr_iters > BTREE_ITER_MAX);
|
|
|
|
for (idx = 0; idx < trans->nr_iters; idx++)
|
|
if (trans->iter_ids[idx] == iter_id)
|
|
goto found;
|
|
idx = -1;
|
|
found:
|
|
if (idx < 0) {
|
|
idx = ffz(trans->iters_linked);
|
|
if (idx < trans->nr_iters)
|
|
goto got_slot;
|
|
|
|
BUG_ON(trans->nr_iters == BTREE_ITER_MAX);
|
|
|
|
if (trans->iters == trans->iters_onstack &&
|
|
trans->nr_iters == ARRAY_SIZE(trans->iters_onstack)) {
|
|
int ret = btree_trans_realloc_iters(trans);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
idx = trans->nr_iters++;
|
|
got_slot:
|
|
trans->iter_ids[idx] = iter_id;
|
|
iter = &trans->iters[idx];
|
|
|
|
bch2_btree_iter_init(iter, trans->c, btree_id, POS_MIN, flags);
|
|
} else {
|
|
iter = &trans->iters[idx];
|
|
|
|
iter->flags &= ~(BTREE_ITER_INTENT|BTREE_ITER_PREFETCH);
|
|
iter->flags |= flags & (BTREE_ITER_INTENT|BTREE_ITER_PREFETCH);
|
|
}
|
|
|
|
BUG_ON(trans->iters_live & (1 << idx));
|
|
trans->iters_live |= 1 << idx;
|
|
|
|
if (trans->iters_linked &&
|
|
!(trans->iters_linked & (1 << idx)))
|
|
bch2_btree_iter_link(&trans->iters[__ffs(trans->iters_linked)],
|
|
iter);
|
|
|
|
trans->iters_linked |= 1 << idx;
|
|
|
|
btree_trans_verify(trans);
|
|
|
|
BUG_ON(iter->btree_id != btree_id);
|
|
BUG_ON((iter->flags ^ flags) & BTREE_ITER_TYPE);
|
|
|
|
return iter;
|
|
}
|
|
|
|
struct btree_iter *__bch2_trans_get_iter(struct btree_trans *trans,
|
|
enum btree_id btree_id,
|
|
struct bpos pos, unsigned flags,
|
|
u64 iter_id)
|
|
{
|
|
struct btree_iter *iter =
|
|
__btree_trans_get_iter(trans, btree_id, flags, iter_id);
|
|
|
|
if (!IS_ERR(iter))
|
|
bch2_btree_iter_set_pos(iter, pos);
|
|
return iter;
|
|
}
|
|
|
|
struct btree_iter *__bch2_trans_copy_iter(struct btree_trans *trans,
|
|
struct btree_iter *src,
|
|
u64 iter_id)
|
|
{
|
|
struct btree_iter *iter =
|
|
__btree_trans_get_iter(trans, src->btree_id,
|
|
src->flags, iter_id);
|
|
|
|
if (!IS_ERR(iter))
|
|
bch2_btree_iter_copy(iter, src);
|
|
return iter;
|
|
}
|
|
|
|
void *bch2_trans_kmalloc(struct btree_trans *trans,
|
|
size_t size)
|
|
{
|
|
void *ret;
|
|
|
|
if (trans->mem_top + size > trans->mem_bytes) {
|
|
size_t old_bytes = trans->mem_bytes;
|
|
size_t new_bytes = roundup_pow_of_two(trans->mem_top + size);
|
|
void *new_mem = krealloc(trans->mem, new_bytes, GFP_NOFS);
|
|
|
|
if (!new_mem)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
trans->mem = new_mem;
|
|
trans->mem_bytes = new_bytes;
|
|
|
|
if (old_bytes) {
|
|
trans_restart();
|
|
return ERR_PTR(-EINTR);
|
|
}
|
|
}
|
|
|
|
ret = trans->mem + trans->mem_top;
|
|
trans->mem_top += size;
|
|
return ret;
|
|
}
|
|
|
|
int bch2_trans_unlock(struct btree_trans *trans)
|
|
{
|
|
unsigned iters = trans->iters_linked;
|
|
int ret = 0;
|
|
|
|
while (iters) {
|
|
unsigned idx = __ffs(iters);
|
|
struct btree_iter *iter = &trans->iters[idx];
|
|
|
|
if (iter->flags & BTREE_ITER_ERROR)
|
|
ret = -EIO;
|
|
|
|
__bch2_btree_iter_unlock(iter);
|
|
iters ^= 1 << idx;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void __bch2_trans_begin(struct btree_trans *trans)
|
|
{
|
|
unsigned idx;
|
|
|
|
btree_trans_verify(trans);
|
|
|
|
/*
|
|
* On transaction restart, the transaction isn't required to allocate
|
|
* all the same iterators it on the last iteration:
|
|
*
|
|
* Unlink any iterators it didn't use this iteration, assuming it got
|
|
* further (allocated an iter with a higher idx) than where the iter
|
|
* was originally allocated:
|
|
*/
|
|
while (trans->iters_linked &&
|
|
trans->iters_live &&
|
|
(idx = __fls(trans->iters_linked)) >
|
|
__fls(trans->iters_live)) {
|
|
trans->iters_linked ^= 1 << idx;
|
|
bch2_btree_iter_unlink(&trans->iters[idx]);
|
|
}
|
|
|
|
trans->iters_live = 0;
|
|
trans->nr_updates = 0;
|
|
trans->mem_top = 0;
|
|
|
|
btree_trans_verify(trans);
|
|
}
|
|
|
|
void bch2_trans_init(struct btree_trans *trans, struct bch_fs *c)
|
|
{
|
|
trans->c = c;
|
|
trans->nr_restarts = 0;
|
|
trans->nr_iters = 0;
|
|
trans->iters_live = 0;
|
|
trans->iters_linked = 0;
|
|
trans->nr_updates = 0;
|
|
trans->mem_top = 0;
|
|
trans->mem_bytes = 0;
|
|
trans->mem = NULL;
|
|
trans->iters = trans->iters_onstack;
|
|
}
|
|
|
|
int bch2_trans_exit(struct btree_trans *trans)
|
|
{
|
|
int ret = bch2_trans_unlock(trans);
|
|
|
|
kfree(trans->mem);
|
|
if (trans->iters != trans->iters_onstack)
|
|
mempool_free(trans->iters, &trans->c->btree_iters_pool);
|
|
trans->mem = (void *) 0x1;
|
|
trans->iters = (void *) 0x1;
|
|
return ret;
|
|
}
|