linux-stable/fs/bcachefs/extent_update.c
Kent Overstreet e3e464ac6d bcachefs: Move extent overwrite handling out of core btree code
Ever since the btree code was first written, handling of overwriting
existing extents - including partially overwriting and splittin existing
extents - was handled as part of the core btree insert path. The modern
transaction and iterator infrastructure didn't exist then, so that was
the only way for it to be done.

This patch moves that outside of the core btree code to a pass that runs
at transaction commit time.

This is a significant simplification to the btree code and overall
reduction in code size, but more importantly it gets us much closer to
the core btree code being completely independent of extents and is
important prep work for snapshots.

This introduces a new feature bit; the old and new extent update models
are incompatible when the filesystem needs journal replay.

Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
2023-10-22 17:08:36 -04:00

213 lines
4.6 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include "bcachefs.h"
#include "bkey_on_stack.h"
#include "btree_update.h"
#include "btree_update_interior.h"
#include "buckets.h"
#include "debug.h"
#include "extents.h"
#include "extent_update.h"
/*
* This counts the number of iterators to the alloc & ec btrees we'll need
* inserting/removing this extent:
*/
static unsigned bch2_bkey_nr_alloc_ptrs(struct bkey_s_c k)
{
struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
const union bch_extent_entry *entry;
unsigned ret = 0;
bkey_extent_entry_for_each(ptrs, entry) {
switch (__extent_entry_type(entry)) {
case BCH_EXTENT_ENTRY_ptr:
case BCH_EXTENT_ENTRY_stripe_ptr:
ret++;
}
}
return ret;
}
static int count_iters_for_insert(struct btree_trans *trans,
struct bkey_s_c k,
unsigned offset,
struct bpos *end,
unsigned *nr_iters,
unsigned max_iters,
bool overwrite)
{
int ret = 0;
/*
* The extent update path requires an _additional_ iterator for each
* extent we're inserting and overwriting:
*/
*nr_iters += 1;
switch (k.k->type) {
case KEY_TYPE_extent:
case KEY_TYPE_reflink_v:
*nr_iters += bch2_bkey_nr_alloc_ptrs(k);
if (*nr_iters >= max_iters) {
*end = bpos_min(*end, k.k->p);
ret = 1;
}
break;
case KEY_TYPE_reflink_p: {
struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k);
u64 idx = le64_to_cpu(p.v->idx);
unsigned sectors = bpos_min(*end, p.k->p).offset -
bkey_start_offset(p.k);
struct btree_iter *iter;
struct bkey_s_c r_k;
for_each_btree_key(trans, iter,
BTREE_ID_REFLINK, POS(0, idx + offset),
BTREE_ITER_SLOTS, r_k, ret) {
if (bkey_cmp(bkey_start_pos(r_k.k),
POS(0, idx + sectors)) >= 0)
break;
*nr_iters += 1 + bch2_bkey_nr_alloc_ptrs(r_k);
if (*nr_iters >= max_iters) {
struct bpos pos = bkey_start_pos(k.k);
pos.offset += r_k.k->p.offset - idx;
*end = bpos_min(*end, pos);
ret = 1;
break;
}
}
bch2_trans_iter_put(trans, iter);
break;
}
}
return ret;
}
#define EXTENT_ITERS_MAX (BTREE_ITER_MAX / 3)
int bch2_extent_atomic_end(struct btree_iter *iter,
struct bkey_i *insert,
struct bpos *end)
{
struct btree_trans *trans = iter->trans;
struct btree *b;
struct btree_node_iter node_iter;
struct bkey_packed *_k;
unsigned nr_iters = 0;
int ret;
ret = bch2_btree_iter_traverse(iter);
if (ret)
return ret;
b = iter->l[0].b;
node_iter = iter->l[0].iter;
BUG_ON(bkey_cmp(bkey_start_pos(&insert->k), b->data->min_key) < 0);
*end = bpos_min(insert->k.p, b->key.k.p);
ret = count_iters_for_insert(trans, bkey_i_to_s_c(insert), 0, end,
&nr_iters, EXTENT_ITERS_MAX / 2, false);
if (ret < 0)
return ret;
while ((_k = bch2_btree_node_iter_peek_filter(&node_iter, b,
KEY_TYPE_discard))) {
struct bkey unpacked;
struct bkey_s_c k = bkey_disassemble(b, _k, &unpacked);
unsigned offset = 0;
if (bkey_cmp(bkey_start_pos(k.k), *end) >= 0)
break;
if (bkey_cmp(bkey_start_pos(&insert->k),
bkey_start_pos(k.k)) > 0)
offset = bkey_start_offset(&insert->k) -
bkey_start_offset(k.k);
ret = count_iters_for_insert(trans, k, offset, end,
&nr_iters, EXTENT_ITERS_MAX, true);
if (ret)
break;
bch2_btree_node_iter_advance(&node_iter, b);
}
return ret < 0 ? ret : 0;
}
int bch2_extent_trim_atomic(struct bkey_i *k, struct btree_iter *iter)
{
struct bpos end;
int ret;
ret = bch2_extent_atomic_end(iter, k, &end);
if (ret)
return ret;
bch2_cut_back(end, k);
return 0;
}
int bch2_extent_is_atomic(struct bkey_i *k, struct btree_iter *iter)
{
struct bpos end;
int ret;
ret = bch2_extent_atomic_end(iter, k, &end);
if (ret)
return ret;
return !bkey_cmp(end, k->k.p);
}
enum btree_insert_ret
bch2_extent_can_insert(struct btree_trans *trans,
struct btree_iter *iter,
struct bkey_i *insert)
{
struct btree_iter_level *l = &iter->l[0];
struct btree_node_iter node_iter = l->iter;
struct bkey_packed *_k;
struct bkey_s_c k;
struct bkey unpacked;
int sectors;
_k = bch2_btree_node_iter_peek_filter(&node_iter, l->b,
KEY_TYPE_discard);
if (!_k)
return BTREE_INSERT_OK;
k = bkey_disassemble(l->b, _k, &unpacked);
/* Check if we're splitting a compressed extent: */
if (bkey_cmp(bkey_start_pos(&insert->k), bkey_start_pos(k.k)) > 0 &&
bkey_cmp(insert->k.p, k.k->p) < 0 &&
(sectors = bch2_bkey_sectors_compressed(k))) {
int flags = trans->flags & BTREE_INSERT_NOFAIL
? BCH_DISK_RESERVATION_NOFAIL : 0;
switch (bch2_disk_reservation_add(trans->c, trans->disk_res,
sectors, flags)) {
case 0:
break;
case -ENOSPC:
return BTREE_INSERT_ENOSPC;
default:
BUG();
}
}
return BTREE_INSERT_OK;
}