Rob Herring b64aa11eb2 PCI: Set bridge map_irq and swizzle_irq to default functions
The majority of DT based host drivers use the default .map_irq() and
.swizzle_irq() functions, so let's initialize the function pointers to
the default and drop setting them in the host drivers.

Drivers like iProc which don't support legacy interrupts need to set
.map_irq() back to NULL.

Link: https://lore.kernel.org/r/20200722022514.1283916-20-robh@kernel.org
Signed-off-by: Rob Herring <robh@kernel.org>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
2020-08-04 16:36:30 +01:00

1607 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2014 Hauke Mehrtens <hauke@hauke-m.de>
* Copyright (C) 2015 Broadcom Corporation
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/msi.h>
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/mbus.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/platform_device.h>
#include <linux/of_address.h>
#include <linux/of_pci.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include "pcie-iproc.h"
#define EP_PERST_SOURCE_SELECT_SHIFT 2
#define EP_PERST_SOURCE_SELECT BIT(EP_PERST_SOURCE_SELECT_SHIFT)
#define EP_MODE_SURVIVE_PERST_SHIFT 1
#define EP_MODE_SURVIVE_PERST BIT(EP_MODE_SURVIVE_PERST_SHIFT)
#define RC_PCIE_RST_OUTPUT_SHIFT 0
#define RC_PCIE_RST_OUTPUT BIT(RC_PCIE_RST_OUTPUT_SHIFT)
#define PAXC_RESET_MASK 0x7f
#define GIC_V3_CFG_SHIFT 0
#define GIC_V3_CFG BIT(GIC_V3_CFG_SHIFT)
#define MSI_ENABLE_CFG_SHIFT 0
#define MSI_ENABLE_CFG BIT(MSI_ENABLE_CFG_SHIFT)
#define CFG_IND_ADDR_MASK 0x00001ffc
#define CFG_ADDR_BUS_NUM_SHIFT 20
#define CFG_ADDR_BUS_NUM_MASK 0x0ff00000
#define CFG_ADDR_DEV_NUM_SHIFT 15
#define CFG_ADDR_DEV_NUM_MASK 0x000f8000
#define CFG_ADDR_FUNC_NUM_SHIFT 12
#define CFG_ADDR_FUNC_NUM_MASK 0x00007000
#define CFG_ADDR_REG_NUM_SHIFT 2
#define CFG_ADDR_REG_NUM_MASK 0x00000ffc
#define CFG_ADDR_CFG_TYPE_SHIFT 0
#define CFG_ADDR_CFG_TYPE_MASK 0x00000003
#define SYS_RC_INTX_MASK 0xf
#define PCIE_PHYLINKUP_SHIFT 3
#define PCIE_PHYLINKUP BIT(PCIE_PHYLINKUP_SHIFT)
#define PCIE_DL_ACTIVE_SHIFT 2
#define PCIE_DL_ACTIVE BIT(PCIE_DL_ACTIVE_SHIFT)
#define APB_ERR_EN_SHIFT 0
#define APB_ERR_EN BIT(APB_ERR_EN_SHIFT)
#define CFG_RD_SUCCESS 0
#define CFG_RD_UR 1
#define CFG_RD_CRS 2
#define CFG_RD_CA 3
#define CFG_RETRY_STATUS 0xffff0001
#define CFG_RETRY_STATUS_TIMEOUT_US 500000 /* 500 milliseconds */
/* derive the enum index of the outbound/inbound mapping registers */
#define MAP_REG(base_reg, index) ((base_reg) + (index) * 2)
/*
* Maximum number of outbound mapping window sizes that can be supported by any
* OARR/OMAP mapping pair
*/
#define MAX_NUM_OB_WINDOW_SIZES 4
#define OARR_VALID_SHIFT 0
#define OARR_VALID BIT(OARR_VALID_SHIFT)
#define OARR_SIZE_CFG_SHIFT 1
/*
* Maximum number of inbound mapping region sizes that can be supported by an
* IARR
*/
#define MAX_NUM_IB_REGION_SIZES 9
#define IMAP_VALID_SHIFT 0
#define IMAP_VALID BIT(IMAP_VALID_SHIFT)
#define IPROC_PCI_PM_CAP 0x48
#define IPROC_PCI_PM_CAP_MASK 0xffff
#define IPROC_PCI_EXP_CAP 0xac
#define IPROC_PCIE_REG_INVALID 0xffff
/**
* iProc PCIe outbound mapping controller specific parameters
*
* @window_sizes: list of supported outbound mapping window sizes in MB
* @nr_sizes: number of supported outbound mapping window sizes
*/
struct iproc_pcie_ob_map {
resource_size_t window_sizes[MAX_NUM_OB_WINDOW_SIZES];
unsigned int nr_sizes;
};
static const struct iproc_pcie_ob_map paxb_ob_map[] = {
{
/* OARR0/OMAP0 */
.window_sizes = { 128, 256 },
.nr_sizes = 2,
},
{
/* OARR1/OMAP1 */
.window_sizes = { 128, 256 },
.nr_sizes = 2,
},
};
static const struct iproc_pcie_ob_map paxb_v2_ob_map[] = {
{
/* OARR0/OMAP0 */
.window_sizes = { 128, 256 },
.nr_sizes = 2,
},
{
/* OARR1/OMAP1 */
.window_sizes = { 128, 256 },
.nr_sizes = 2,
},
{
/* OARR2/OMAP2 */
.window_sizes = { 128, 256, 512, 1024 },
.nr_sizes = 4,
},
{
/* OARR3/OMAP3 */
.window_sizes = { 128, 256, 512, 1024 },
.nr_sizes = 4,
},
};
/**
* iProc PCIe inbound mapping type
*/
enum iproc_pcie_ib_map_type {
/* for DDR memory */
IPROC_PCIE_IB_MAP_MEM = 0,
/* for device I/O memory */
IPROC_PCIE_IB_MAP_IO,
/* invalid or unused */
IPROC_PCIE_IB_MAP_INVALID
};
/**
* iProc PCIe inbound mapping controller specific parameters
*
* @type: inbound mapping region type
* @size_unit: inbound mapping region size unit, could be SZ_1K, SZ_1M, or
* SZ_1G
* @region_sizes: list of supported inbound mapping region sizes in KB, MB, or
* GB, depending on the size unit
* @nr_sizes: number of supported inbound mapping region sizes
* @nr_windows: number of supported inbound mapping windows for the region
* @imap_addr_offset: register offset between the upper and lower 32-bit
* IMAP address registers
* @imap_window_offset: register offset between each IMAP window
*/
struct iproc_pcie_ib_map {
enum iproc_pcie_ib_map_type type;
unsigned int size_unit;
resource_size_t region_sizes[MAX_NUM_IB_REGION_SIZES];
unsigned int nr_sizes;
unsigned int nr_windows;
u16 imap_addr_offset;
u16 imap_window_offset;
};
static const struct iproc_pcie_ib_map paxb_v2_ib_map[] = {
{
/* IARR0/IMAP0 */
.type = IPROC_PCIE_IB_MAP_IO,
.size_unit = SZ_1K,
.region_sizes = { 32 },
.nr_sizes = 1,
.nr_windows = 8,
.imap_addr_offset = 0x40,
.imap_window_offset = 0x4,
},
{
/* IARR1/IMAP1 (currently unused) */
.type = IPROC_PCIE_IB_MAP_INVALID,
},
{
/* IARR2/IMAP2 */
.type = IPROC_PCIE_IB_MAP_MEM,
.size_unit = SZ_1M,
.region_sizes = { 64, 128, 256, 512, 1024, 2048, 4096, 8192,
16384 },
.nr_sizes = 9,
.nr_windows = 1,
.imap_addr_offset = 0x4,
.imap_window_offset = 0x8,
},
{
/* IARR3/IMAP3 */
.type = IPROC_PCIE_IB_MAP_MEM,
.size_unit = SZ_1G,
.region_sizes = { 1, 2, 4, 8, 16, 32 },
.nr_sizes = 6,
.nr_windows = 8,
.imap_addr_offset = 0x4,
.imap_window_offset = 0x8,
},
{
/* IARR4/IMAP4 */
.type = IPROC_PCIE_IB_MAP_MEM,
.size_unit = SZ_1G,
.region_sizes = { 32, 64, 128, 256, 512 },
.nr_sizes = 5,
.nr_windows = 8,
.imap_addr_offset = 0x4,
.imap_window_offset = 0x8,
},
};
/*
* iProc PCIe host registers
*/
enum iproc_pcie_reg {
/* clock/reset signal control */
IPROC_PCIE_CLK_CTRL = 0,
/*
* To allow MSI to be steered to an external MSI controller (e.g., ARM
* GICv3 ITS)
*/
IPROC_PCIE_MSI_GIC_MODE,
/*
* IPROC_PCIE_MSI_BASE_ADDR and IPROC_PCIE_MSI_WINDOW_SIZE define the
* window where the MSI posted writes are written, for the writes to be
* interpreted as MSI writes.
*/
IPROC_PCIE_MSI_BASE_ADDR,
IPROC_PCIE_MSI_WINDOW_SIZE,
/*
* To hold the address of the register where the MSI writes are
* programed. When ARM GICv3 ITS is used, this should be programmed
* with the address of the GITS_TRANSLATER register.
*/
IPROC_PCIE_MSI_ADDR_LO,
IPROC_PCIE_MSI_ADDR_HI,
/* enable MSI */
IPROC_PCIE_MSI_EN_CFG,
/* allow access to root complex configuration space */
IPROC_PCIE_CFG_IND_ADDR,
IPROC_PCIE_CFG_IND_DATA,
/* allow access to device configuration space */
IPROC_PCIE_CFG_ADDR,
IPROC_PCIE_CFG_DATA,
/* enable INTx */
IPROC_PCIE_INTX_EN,
/* outbound address mapping */
IPROC_PCIE_OARR0,
IPROC_PCIE_OMAP0,
IPROC_PCIE_OARR1,
IPROC_PCIE_OMAP1,
IPROC_PCIE_OARR2,
IPROC_PCIE_OMAP2,
IPROC_PCIE_OARR3,
IPROC_PCIE_OMAP3,
/* inbound address mapping */
IPROC_PCIE_IARR0,
IPROC_PCIE_IMAP0,
IPROC_PCIE_IARR1,
IPROC_PCIE_IMAP1,
IPROC_PCIE_IARR2,
IPROC_PCIE_IMAP2,
IPROC_PCIE_IARR3,
IPROC_PCIE_IMAP3,
IPROC_PCIE_IARR4,
IPROC_PCIE_IMAP4,
/* config read status */
IPROC_PCIE_CFG_RD_STATUS,
/* link status */
IPROC_PCIE_LINK_STATUS,
/* enable APB error for unsupported requests */
IPROC_PCIE_APB_ERR_EN,
/* total number of core registers */
IPROC_PCIE_MAX_NUM_REG,
};
/* iProc PCIe PAXB BCMA registers */
static const u16 iproc_pcie_reg_paxb_bcma[] = {
[IPROC_PCIE_CLK_CTRL] = 0x000,
[IPROC_PCIE_CFG_IND_ADDR] = 0x120,
[IPROC_PCIE_CFG_IND_DATA] = 0x124,
[IPROC_PCIE_CFG_ADDR] = 0x1f8,
[IPROC_PCIE_CFG_DATA] = 0x1fc,
[IPROC_PCIE_INTX_EN] = 0x330,
[IPROC_PCIE_LINK_STATUS] = 0xf0c,
};
/* iProc PCIe PAXB registers */
static const u16 iproc_pcie_reg_paxb[] = {
[IPROC_PCIE_CLK_CTRL] = 0x000,
[IPROC_PCIE_CFG_IND_ADDR] = 0x120,
[IPROC_PCIE_CFG_IND_DATA] = 0x124,
[IPROC_PCIE_CFG_ADDR] = 0x1f8,
[IPROC_PCIE_CFG_DATA] = 0x1fc,
[IPROC_PCIE_INTX_EN] = 0x330,
[IPROC_PCIE_OARR0] = 0xd20,
[IPROC_PCIE_OMAP0] = 0xd40,
[IPROC_PCIE_OARR1] = 0xd28,
[IPROC_PCIE_OMAP1] = 0xd48,
[IPROC_PCIE_LINK_STATUS] = 0xf0c,
[IPROC_PCIE_APB_ERR_EN] = 0xf40,
};
/* iProc PCIe PAXB v2 registers */
static const u16 iproc_pcie_reg_paxb_v2[] = {
[IPROC_PCIE_CLK_CTRL] = 0x000,
[IPROC_PCIE_CFG_IND_ADDR] = 0x120,
[IPROC_PCIE_CFG_IND_DATA] = 0x124,
[IPROC_PCIE_CFG_ADDR] = 0x1f8,
[IPROC_PCIE_CFG_DATA] = 0x1fc,
[IPROC_PCIE_INTX_EN] = 0x330,
[IPROC_PCIE_OARR0] = 0xd20,
[IPROC_PCIE_OMAP0] = 0xd40,
[IPROC_PCIE_OARR1] = 0xd28,
[IPROC_PCIE_OMAP1] = 0xd48,
[IPROC_PCIE_OARR2] = 0xd60,
[IPROC_PCIE_OMAP2] = 0xd68,
[IPROC_PCIE_OARR3] = 0xdf0,
[IPROC_PCIE_OMAP3] = 0xdf8,
[IPROC_PCIE_IARR0] = 0xd00,
[IPROC_PCIE_IMAP0] = 0xc00,
[IPROC_PCIE_IARR2] = 0xd10,
[IPROC_PCIE_IMAP2] = 0xcc0,
[IPROC_PCIE_IARR3] = 0xe00,
[IPROC_PCIE_IMAP3] = 0xe08,
[IPROC_PCIE_IARR4] = 0xe68,
[IPROC_PCIE_IMAP4] = 0xe70,
[IPROC_PCIE_CFG_RD_STATUS] = 0xee0,
[IPROC_PCIE_LINK_STATUS] = 0xf0c,
[IPROC_PCIE_APB_ERR_EN] = 0xf40,
};
/* iProc PCIe PAXC v1 registers */
static const u16 iproc_pcie_reg_paxc[] = {
[IPROC_PCIE_CLK_CTRL] = 0x000,
[IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
[IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
[IPROC_PCIE_CFG_ADDR] = 0x1f8,
[IPROC_PCIE_CFG_DATA] = 0x1fc,
};
/* iProc PCIe PAXC v2 registers */
static const u16 iproc_pcie_reg_paxc_v2[] = {
[IPROC_PCIE_MSI_GIC_MODE] = 0x050,
[IPROC_PCIE_MSI_BASE_ADDR] = 0x074,
[IPROC_PCIE_MSI_WINDOW_SIZE] = 0x078,
[IPROC_PCIE_MSI_ADDR_LO] = 0x07c,
[IPROC_PCIE_MSI_ADDR_HI] = 0x080,
[IPROC_PCIE_MSI_EN_CFG] = 0x09c,
[IPROC_PCIE_CFG_IND_ADDR] = 0x1f0,
[IPROC_PCIE_CFG_IND_DATA] = 0x1f4,
[IPROC_PCIE_CFG_ADDR] = 0x1f8,
[IPROC_PCIE_CFG_DATA] = 0x1fc,
};
/*
* List of device IDs of controllers that have corrupted capability list that
* require SW fixup
*/
static const u16 iproc_pcie_corrupt_cap_did[] = {
0x16cd,
0x16f0,
0xd802,
0xd804
};
static inline struct iproc_pcie *iproc_data(struct pci_bus *bus)
{
struct iproc_pcie *pcie = bus->sysdata;
return pcie;
}
static inline bool iproc_pcie_reg_is_invalid(u16 reg_offset)
{
return !!(reg_offset == IPROC_PCIE_REG_INVALID);
}
static inline u16 iproc_pcie_reg_offset(struct iproc_pcie *pcie,
enum iproc_pcie_reg reg)
{
return pcie->reg_offsets[reg];
}
static inline u32 iproc_pcie_read_reg(struct iproc_pcie *pcie,
enum iproc_pcie_reg reg)
{
u16 offset = iproc_pcie_reg_offset(pcie, reg);
if (iproc_pcie_reg_is_invalid(offset))
return 0;
return readl(pcie->base + offset);
}
static inline void iproc_pcie_write_reg(struct iproc_pcie *pcie,
enum iproc_pcie_reg reg, u32 val)
{
u16 offset = iproc_pcie_reg_offset(pcie, reg);
if (iproc_pcie_reg_is_invalid(offset))
return;
writel(val, pcie->base + offset);
}
/**
* APB error forwarding can be disabled during access of configuration
* registers of the endpoint device, to prevent unsupported requests
* (typically seen during enumeration with multi-function devices) from
* triggering a system exception.
*/
static inline void iproc_pcie_apb_err_disable(struct pci_bus *bus,
bool disable)
{
struct iproc_pcie *pcie = iproc_data(bus);
u32 val;
if (bus->number && pcie->has_apb_err_disable) {
val = iproc_pcie_read_reg(pcie, IPROC_PCIE_APB_ERR_EN);
if (disable)
val &= ~APB_ERR_EN;
else
val |= APB_ERR_EN;
iproc_pcie_write_reg(pcie, IPROC_PCIE_APB_ERR_EN, val);
}
}
static void __iomem *iproc_pcie_map_ep_cfg_reg(struct iproc_pcie *pcie,
unsigned int busno,
unsigned int slot,
unsigned int fn,
int where)
{
u16 offset;
u32 val;
/* EP device access */
val = (busno << CFG_ADDR_BUS_NUM_SHIFT) |
(slot << CFG_ADDR_DEV_NUM_SHIFT) |
(fn << CFG_ADDR_FUNC_NUM_SHIFT) |
(where & CFG_ADDR_REG_NUM_MASK) |
(1 & CFG_ADDR_CFG_TYPE_MASK);
iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_ADDR, val);
offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_DATA);
if (iproc_pcie_reg_is_invalid(offset))
return NULL;
return (pcie->base + offset);
}
static unsigned int iproc_pcie_cfg_retry(struct iproc_pcie *pcie,
void __iomem *cfg_data_p)
{
int timeout = CFG_RETRY_STATUS_TIMEOUT_US;
unsigned int data;
u32 status;
/*
* As per PCIe spec r3.1, sec 2.3.2, CRS Software Visibility only
* affects config reads of the Vendor ID. For config writes or any
* other config reads, the Root may automatically reissue the
* configuration request again as a new request.
*
* For config reads, this hardware returns CFG_RETRY_STATUS data
* when it receives a CRS completion, regardless of the address of
* the read or the CRS Software Visibility Enable bit. As a
* partial workaround for this, we retry in software any read that
* returns CFG_RETRY_STATUS.
*
* Note that a non-Vendor ID config register may have a value of
* CFG_RETRY_STATUS. If we read that, we can't distinguish it from
* a CRS completion, so we will incorrectly retry the read and
* eventually return the wrong data (0xffffffff).
*/
data = readl(cfg_data_p);
while (data == CFG_RETRY_STATUS && timeout--) {
/*
* CRS state is set in CFG_RD status register
* This will handle the case where CFG_RETRY_STATUS is
* valid config data.
*/
status = iproc_pcie_read_reg(pcie, IPROC_PCIE_CFG_RD_STATUS);
if (status != CFG_RD_CRS)
return data;
udelay(1);
data = readl(cfg_data_p);
}
if (data == CFG_RETRY_STATUS)
data = 0xffffffff;
return data;
}
static void iproc_pcie_fix_cap(struct iproc_pcie *pcie, int where, u32 *val)
{
u32 i, dev_id;
switch (where & ~0x3) {
case PCI_VENDOR_ID:
dev_id = *val >> 16;
/*
* Activate fixup for those controllers that have corrupted
* capability list registers
*/
for (i = 0; i < ARRAY_SIZE(iproc_pcie_corrupt_cap_did); i++)
if (dev_id == iproc_pcie_corrupt_cap_did[i])
pcie->fix_paxc_cap = true;
break;
case IPROC_PCI_PM_CAP:
if (pcie->fix_paxc_cap) {
/* advertise PM, force next capability to PCIe */
*val &= ~IPROC_PCI_PM_CAP_MASK;
*val |= IPROC_PCI_EXP_CAP << 8 | PCI_CAP_ID_PM;
}
break;
case IPROC_PCI_EXP_CAP:
if (pcie->fix_paxc_cap) {
/* advertise root port, version 2, terminate here */
*val = (PCI_EXP_TYPE_ROOT_PORT << 4 | 2) << 16 |
PCI_CAP_ID_EXP;
}
break;
case IPROC_PCI_EXP_CAP + PCI_EXP_RTCTL:
/* Don't advertise CRS SV support */
*val &= ~(PCI_EXP_RTCAP_CRSVIS << 16);
break;
default:
break;
}
}
static int iproc_pcie_config_read(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *val)
{
struct iproc_pcie *pcie = iproc_data(bus);
unsigned int slot = PCI_SLOT(devfn);
unsigned int fn = PCI_FUNC(devfn);
unsigned int busno = bus->number;
void __iomem *cfg_data_p;
unsigned int data;
int ret;
/* root complex access */
if (busno == 0) {
ret = pci_generic_config_read32(bus, devfn, where, size, val);
if (ret == PCIBIOS_SUCCESSFUL)
iproc_pcie_fix_cap(pcie, where, val);
return ret;
}
cfg_data_p = iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
if (!cfg_data_p)
return PCIBIOS_DEVICE_NOT_FOUND;
data = iproc_pcie_cfg_retry(pcie, cfg_data_p);
*val = data;
if (size <= 2)
*val = (data >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
/*
* For PAXC and PAXCv2, the total number of PFs that one can enumerate
* depends on the firmware configuration. Unfortunately, due to an ASIC
* bug, unconfigured PFs cannot be properly hidden from the root
* complex. As a result, write access to these PFs will cause bus lock
* up on the embedded processor
*
* Since all unconfigured PFs are left with an incorrect, staled device
* ID of 0x168e (PCI_DEVICE_ID_NX2_57810), we try to catch those access
* early here and reject them all
*/
#define DEVICE_ID_MASK 0xffff0000
#define DEVICE_ID_SHIFT 16
if (pcie->rej_unconfig_pf &&
(where & CFG_ADDR_REG_NUM_MASK) == PCI_VENDOR_ID)
if ((*val & DEVICE_ID_MASK) ==
(PCI_DEVICE_ID_NX2_57810 << DEVICE_ID_SHIFT))
return PCIBIOS_FUNC_NOT_SUPPORTED;
return PCIBIOS_SUCCESSFUL;
}
/**
* Note access to the configuration registers are protected at the higher layer
* by 'pci_lock' in drivers/pci/access.c
*/
static void __iomem *iproc_pcie_map_cfg_bus(struct iproc_pcie *pcie,
int busno, unsigned int devfn,
int where)
{
unsigned slot = PCI_SLOT(devfn);
unsigned fn = PCI_FUNC(devfn);
u16 offset;
/* root complex access */
if (busno == 0) {
if (slot > 0 || fn > 0)
return NULL;
iproc_pcie_write_reg(pcie, IPROC_PCIE_CFG_IND_ADDR,
where & CFG_IND_ADDR_MASK);
offset = iproc_pcie_reg_offset(pcie, IPROC_PCIE_CFG_IND_DATA);
if (iproc_pcie_reg_is_invalid(offset))
return NULL;
else
return (pcie->base + offset);
}
return iproc_pcie_map_ep_cfg_reg(pcie, busno, slot, fn, where);
}
static void __iomem *iproc_pcie_bus_map_cfg_bus(struct pci_bus *bus,
unsigned int devfn,
int where)
{
return iproc_pcie_map_cfg_bus(iproc_data(bus), bus->number, devfn,
where);
}
static int iproc_pci_raw_config_read32(struct iproc_pcie *pcie,
unsigned int devfn, int where,
int size, u32 *val)
{
void __iomem *addr;
addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
if (!addr) {
*val = ~0;
return PCIBIOS_DEVICE_NOT_FOUND;
}
*val = readl(addr);
if (size <= 2)
*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
return PCIBIOS_SUCCESSFUL;
}
static int iproc_pci_raw_config_write32(struct iproc_pcie *pcie,
unsigned int devfn, int where,
int size, u32 val)
{
void __iomem *addr;
u32 mask, tmp;
addr = iproc_pcie_map_cfg_bus(pcie, 0, devfn, where & ~0x3);
if (!addr)
return PCIBIOS_DEVICE_NOT_FOUND;
if (size == 4) {
writel(val, addr);
return PCIBIOS_SUCCESSFUL;
}
mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
tmp = readl(addr) & mask;
tmp |= val << ((where & 0x3) * 8);
writel(tmp, addr);
return PCIBIOS_SUCCESSFUL;
}
static int iproc_pcie_config_read32(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *val)
{
int ret;
struct iproc_pcie *pcie = iproc_data(bus);
iproc_pcie_apb_err_disable(bus, true);
if (pcie->iproc_cfg_read)
ret = iproc_pcie_config_read(bus, devfn, where, size, val);
else
ret = pci_generic_config_read32(bus, devfn, where, size, val);
iproc_pcie_apb_err_disable(bus, false);
return ret;
}
static int iproc_pcie_config_write32(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 val)
{
int ret;
iproc_pcie_apb_err_disable(bus, true);
ret = pci_generic_config_write32(bus, devfn, where, size, val);
iproc_pcie_apb_err_disable(bus, false);
return ret;
}
static struct pci_ops iproc_pcie_ops = {
.map_bus = iproc_pcie_bus_map_cfg_bus,
.read = iproc_pcie_config_read32,
.write = iproc_pcie_config_write32,
};
static void iproc_pcie_perst_ctrl(struct iproc_pcie *pcie, bool assert)
{
u32 val;
/*
* PAXC and the internal emulated endpoint device downstream should not
* be reset. If firmware has been loaded on the endpoint device at an
* earlier boot stage, reset here causes issues.
*/
if (pcie->ep_is_internal)
return;
if (assert) {
val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
val &= ~EP_PERST_SOURCE_SELECT & ~EP_MODE_SURVIVE_PERST &
~RC_PCIE_RST_OUTPUT;
iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
udelay(250);
} else {
val = iproc_pcie_read_reg(pcie, IPROC_PCIE_CLK_CTRL);
val |= RC_PCIE_RST_OUTPUT;
iproc_pcie_write_reg(pcie, IPROC_PCIE_CLK_CTRL, val);
msleep(100);
}
}
int iproc_pcie_shutdown(struct iproc_pcie *pcie)
{
iproc_pcie_perst_ctrl(pcie, true);
msleep(500);
return 0;
}
EXPORT_SYMBOL_GPL(iproc_pcie_shutdown);
static int iproc_pcie_check_link(struct iproc_pcie *pcie)
{
struct device *dev = pcie->dev;
u32 hdr_type, link_ctrl, link_status, class, val;
bool link_is_active = false;
/*
* PAXC connects to emulated endpoint devices directly and does not
* have a Serdes. Therefore skip the link detection logic here.
*/
if (pcie->ep_is_internal)
return 0;
val = iproc_pcie_read_reg(pcie, IPROC_PCIE_LINK_STATUS);
if (!(val & PCIE_PHYLINKUP) || !(val & PCIE_DL_ACTIVE)) {
dev_err(dev, "PHY or data link is INACTIVE!\n");
return -ENODEV;
}
/* make sure we are not in EP mode */
iproc_pci_raw_config_read32(pcie, 0, PCI_HEADER_TYPE, 1, &hdr_type);
if ((hdr_type & 0x7f) != PCI_HEADER_TYPE_BRIDGE) {
dev_err(dev, "in EP mode, hdr=%#02x\n", hdr_type);
return -EFAULT;
}
/* force class to PCI_CLASS_BRIDGE_PCI (0x0604) */
#define PCI_BRIDGE_CTRL_REG_OFFSET 0x43c
#define PCI_CLASS_BRIDGE_MASK 0xffff00
#define PCI_CLASS_BRIDGE_SHIFT 8
iproc_pci_raw_config_read32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
4, &class);
class &= ~PCI_CLASS_BRIDGE_MASK;
class |= (PCI_CLASS_BRIDGE_PCI << PCI_CLASS_BRIDGE_SHIFT);
iproc_pci_raw_config_write32(pcie, 0, PCI_BRIDGE_CTRL_REG_OFFSET,
4, class);
/* check link status to see if link is active */
iproc_pci_raw_config_read32(pcie, 0, IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
2, &link_status);
if (link_status & PCI_EXP_LNKSTA_NLW)
link_is_active = true;
if (!link_is_active) {
/* try GEN 1 link speed */
#define PCI_TARGET_LINK_SPEED_MASK 0xf
#define PCI_TARGET_LINK_SPEED_GEN2 0x2
#define PCI_TARGET_LINK_SPEED_GEN1 0x1
iproc_pci_raw_config_read32(pcie, 0,
IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
4, &link_ctrl);
if ((link_ctrl & PCI_TARGET_LINK_SPEED_MASK) ==
PCI_TARGET_LINK_SPEED_GEN2) {
link_ctrl &= ~PCI_TARGET_LINK_SPEED_MASK;
link_ctrl |= PCI_TARGET_LINK_SPEED_GEN1;
iproc_pci_raw_config_write32(pcie, 0,
IPROC_PCI_EXP_CAP + PCI_EXP_LNKCTL2,
4, link_ctrl);
msleep(100);
iproc_pci_raw_config_read32(pcie, 0,
IPROC_PCI_EXP_CAP + PCI_EXP_LNKSTA,
2, &link_status);
if (link_status & PCI_EXP_LNKSTA_NLW)
link_is_active = true;
}
}
dev_info(dev, "link: %s\n", link_is_active ? "UP" : "DOWN");
return link_is_active ? 0 : -ENODEV;
}
static void iproc_pcie_enable(struct iproc_pcie *pcie)
{
iproc_pcie_write_reg(pcie, IPROC_PCIE_INTX_EN, SYS_RC_INTX_MASK);
}
static inline bool iproc_pcie_ob_is_valid(struct iproc_pcie *pcie,
int window_idx)
{
u32 val;
val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_OARR0, window_idx));
return !!(val & OARR_VALID);
}
static inline int iproc_pcie_ob_write(struct iproc_pcie *pcie, int window_idx,
int size_idx, u64 axi_addr, u64 pci_addr)
{
struct device *dev = pcie->dev;
u16 oarr_offset, omap_offset;
/*
* Derive the OARR/OMAP offset from the first pair (OARR0/OMAP0) based
* on window index.
*/
oarr_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OARR0,
window_idx));
omap_offset = iproc_pcie_reg_offset(pcie, MAP_REG(IPROC_PCIE_OMAP0,
window_idx));
if (iproc_pcie_reg_is_invalid(oarr_offset) ||
iproc_pcie_reg_is_invalid(omap_offset))
return -EINVAL;
/*
* Program the OARR registers. The upper 32-bit OARR register is
* always right after the lower 32-bit OARR register.
*/
writel(lower_32_bits(axi_addr) | (size_idx << OARR_SIZE_CFG_SHIFT) |
OARR_VALID, pcie->base + oarr_offset);
writel(upper_32_bits(axi_addr), pcie->base + oarr_offset + 4);
/* now program the OMAP registers */
writel(lower_32_bits(pci_addr), pcie->base + omap_offset);
writel(upper_32_bits(pci_addr), pcie->base + omap_offset + 4);
dev_dbg(dev, "ob window [%d]: offset 0x%x axi %pap pci %pap\n",
window_idx, oarr_offset, &axi_addr, &pci_addr);
dev_dbg(dev, "oarr lo 0x%x oarr hi 0x%x\n",
readl(pcie->base + oarr_offset),
readl(pcie->base + oarr_offset + 4));
dev_dbg(dev, "omap lo 0x%x omap hi 0x%x\n",
readl(pcie->base + omap_offset),
readl(pcie->base + omap_offset + 4));
return 0;
}
/**
* Some iProc SoCs require the SW to configure the outbound address mapping
*
* Outbound address translation:
*
* iproc_pcie_address = axi_address - axi_offset
* OARR = iproc_pcie_address
* OMAP = pci_addr
*
* axi_addr -> iproc_pcie_address -> OARR -> OMAP -> pci_address
*/
static int iproc_pcie_setup_ob(struct iproc_pcie *pcie, u64 axi_addr,
u64 pci_addr, resource_size_t size)
{
struct iproc_pcie_ob *ob = &pcie->ob;
struct device *dev = pcie->dev;
int ret = -EINVAL, window_idx, size_idx;
if (axi_addr < ob->axi_offset) {
dev_err(dev, "axi address %pap less than offset %pap\n",
&axi_addr, &ob->axi_offset);
return -EINVAL;
}
/*
* Translate the AXI address to the internal address used by the iProc
* PCIe core before programming the OARR
*/
axi_addr -= ob->axi_offset;
/* iterate through all OARR/OMAP mapping windows */
for (window_idx = ob->nr_windows - 1; window_idx >= 0; window_idx--) {
const struct iproc_pcie_ob_map *ob_map =
&pcie->ob_map[window_idx];
/*
* If current outbound window is already in use, move on to the
* next one.
*/
if (iproc_pcie_ob_is_valid(pcie, window_idx))
continue;
/*
* Iterate through all supported window sizes within the
* OARR/OMAP pair to find a match. Go through the window sizes
* in a descending order.
*/
for (size_idx = ob_map->nr_sizes - 1; size_idx >= 0;
size_idx--) {
resource_size_t window_size =
ob_map->window_sizes[size_idx] * SZ_1M;
/*
* Keep iterating until we reach the last window and
* with the minimal window size at index zero. In this
* case, we take a compromise by mapping it using the
* minimum window size that can be supported
*/
if (size < window_size) {
if (size_idx > 0 || window_idx > 0)
continue;
/*
* For the corner case of reaching the minimal
* window size that can be supported on the
* last window
*/
axi_addr = ALIGN_DOWN(axi_addr, window_size);
pci_addr = ALIGN_DOWN(pci_addr, window_size);
size = window_size;
}
if (!IS_ALIGNED(axi_addr, window_size) ||
!IS_ALIGNED(pci_addr, window_size)) {
dev_err(dev,
"axi %pap or pci %pap not aligned\n",
&axi_addr, &pci_addr);
return -EINVAL;
}
/*
* Match found! Program both OARR and OMAP and mark
* them as a valid entry.
*/
ret = iproc_pcie_ob_write(pcie, window_idx, size_idx,
axi_addr, pci_addr);
if (ret)
goto err_ob;
size -= window_size;
if (size == 0)
return 0;
/*
* If we are here, we are done with the current window,
* but not yet finished all mappings. Need to move on
* to the next window.
*/
axi_addr += window_size;
pci_addr += window_size;
break;
}
}
err_ob:
dev_err(dev, "unable to configure outbound mapping\n");
dev_err(dev,
"axi %pap, axi offset %pap, pci %pap, res size %pap\n",
&axi_addr, &ob->axi_offset, &pci_addr, &size);
return ret;
}
static int iproc_pcie_map_ranges(struct iproc_pcie *pcie,
struct list_head *resources)
{
struct device *dev = pcie->dev;
struct resource_entry *window;
int ret;
resource_list_for_each_entry(window, resources) {
struct resource *res = window->res;
u64 res_type = resource_type(res);
switch (res_type) {
case IORESOURCE_IO:
case IORESOURCE_BUS:
break;
case IORESOURCE_MEM:
ret = iproc_pcie_setup_ob(pcie, res->start,
res->start - window->offset,
resource_size(res));
if (ret)
return ret;
break;
default:
dev_err(dev, "invalid resource %pR\n", res);
return -EINVAL;
}
}
return 0;
}
static inline bool iproc_pcie_ib_is_in_use(struct iproc_pcie *pcie,
int region_idx)
{
const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
u32 val;
val = iproc_pcie_read_reg(pcie, MAP_REG(IPROC_PCIE_IARR0, region_idx));
return !!(val & (BIT(ib_map->nr_sizes) - 1));
}
static inline bool iproc_pcie_ib_check_type(const struct iproc_pcie_ib_map *ib_map,
enum iproc_pcie_ib_map_type type)
{
return !!(ib_map->type == type);
}
static int iproc_pcie_ib_write(struct iproc_pcie *pcie, int region_idx,
int size_idx, int nr_windows, u64 axi_addr,
u64 pci_addr, resource_size_t size)
{
struct device *dev = pcie->dev;
const struct iproc_pcie_ib_map *ib_map = &pcie->ib_map[region_idx];
u16 iarr_offset, imap_offset;
u32 val;
int window_idx;
iarr_offset = iproc_pcie_reg_offset(pcie,
MAP_REG(IPROC_PCIE_IARR0, region_idx));
imap_offset = iproc_pcie_reg_offset(pcie,
MAP_REG(IPROC_PCIE_IMAP0, region_idx));
if (iproc_pcie_reg_is_invalid(iarr_offset) ||
iproc_pcie_reg_is_invalid(imap_offset))
return -EINVAL;
dev_dbg(dev, "ib region [%d]: offset 0x%x axi %pap pci %pap\n",
region_idx, iarr_offset, &axi_addr, &pci_addr);
/*
* Program the IARR registers. The upper 32-bit IARR register is
* always right after the lower 32-bit IARR register.
*/
writel(lower_32_bits(pci_addr) | BIT(size_idx),
pcie->base + iarr_offset);
writel(upper_32_bits(pci_addr), pcie->base + iarr_offset + 4);
dev_dbg(dev, "iarr lo 0x%x iarr hi 0x%x\n",
readl(pcie->base + iarr_offset),
readl(pcie->base + iarr_offset + 4));
/*
* Now program the IMAP registers. Each IARR region may have one or
* more IMAP windows.
*/
size >>= ilog2(nr_windows);
for (window_idx = 0; window_idx < nr_windows; window_idx++) {
val = readl(pcie->base + imap_offset);
val |= lower_32_bits(axi_addr) | IMAP_VALID;
writel(val, pcie->base + imap_offset);
writel(upper_32_bits(axi_addr),
pcie->base + imap_offset + ib_map->imap_addr_offset);
dev_dbg(dev, "imap window [%d] lo 0x%x hi 0x%x\n",
window_idx, readl(pcie->base + imap_offset),
readl(pcie->base + imap_offset +
ib_map->imap_addr_offset));
imap_offset += ib_map->imap_window_offset;
axi_addr += size;
}
return 0;
}
static int iproc_pcie_setup_ib(struct iproc_pcie *pcie,
struct resource_entry *entry,
enum iproc_pcie_ib_map_type type)
{
struct device *dev = pcie->dev;
struct iproc_pcie_ib *ib = &pcie->ib;
int ret;
unsigned int region_idx, size_idx;
u64 axi_addr = entry->res->start;
u64 pci_addr = entry->res->start - entry->offset;
resource_size_t size = resource_size(entry->res);
/* iterate through all IARR mapping regions */
for (region_idx = 0; region_idx < ib->nr_regions; region_idx++) {
const struct iproc_pcie_ib_map *ib_map =
&pcie->ib_map[region_idx];
/*
* If current inbound region is already in use or not a
* compatible type, move on to the next.
*/
if (iproc_pcie_ib_is_in_use(pcie, region_idx) ||
!iproc_pcie_ib_check_type(ib_map, type))
continue;
/* iterate through all supported region sizes to find a match */
for (size_idx = 0; size_idx < ib_map->nr_sizes; size_idx++) {
resource_size_t region_size =
ib_map->region_sizes[size_idx] * ib_map->size_unit;
if (size != region_size)
continue;
if (!IS_ALIGNED(axi_addr, region_size) ||
!IS_ALIGNED(pci_addr, region_size)) {
dev_err(dev,
"axi %pap or pci %pap not aligned\n",
&axi_addr, &pci_addr);
return -EINVAL;
}
/* Match found! Program IARR and all IMAP windows. */
ret = iproc_pcie_ib_write(pcie, region_idx, size_idx,
ib_map->nr_windows, axi_addr,
pci_addr, size);
if (ret)
goto err_ib;
else
return 0;
}
}
ret = -EINVAL;
err_ib:
dev_err(dev, "unable to configure inbound mapping\n");
dev_err(dev, "axi %pap, pci %pap, res size %pap\n",
&axi_addr, &pci_addr, &size);
return ret;
}
static int iproc_pcie_map_dma_ranges(struct iproc_pcie *pcie)
{
struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
struct resource_entry *entry;
int ret = 0;
resource_list_for_each_entry(entry, &host->dma_ranges) {
/* Each range entry corresponds to an inbound mapping region */
ret = iproc_pcie_setup_ib(pcie, entry, IPROC_PCIE_IB_MAP_MEM);
if (ret)
break;
}
return ret;
}
static void iproc_pcie_invalidate_mapping(struct iproc_pcie *pcie)
{
struct iproc_pcie_ib *ib = &pcie->ib;
struct iproc_pcie_ob *ob = &pcie->ob;
int idx;
if (pcie->ep_is_internal)
return;
if (pcie->need_ob_cfg) {
/* iterate through all OARR mapping regions */
for (idx = ob->nr_windows - 1; idx >= 0; idx--) {
iproc_pcie_write_reg(pcie,
MAP_REG(IPROC_PCIE_OARR0, idx), 0);
}
}
if (pcie->need_ib_cfg) {
/* iterate through all IARR mapping regions */
for (idx = 0; idx < ib->nr_regions; idx++) {
iproc_pcie_write_reg(pcie,
MAP_REG(IPROC_PCIE_IARR0, idx), 0);
}
}
}
static int iproce_pcie_get_msi(struct iproc_pcie *pcie,
struct device_node *msi_node,
u64 *msi_addr)
{
struct device *dev = pcie->dev;
int ret;
struct resource res;
/*
* Check if 'msi-map' points to ARM GICv3 ITS, which is the only
* supported external MSI controller that requires steering.
*/
if (!of_device_is_compatible(msi_node, "arm,gic-v3-its")) {
dev_err(dev, "unable to find compatible MSI controller\n");
return -ENODEV;
}
/* derive GITS_TRANSLATER address from GICv3 */
ret = of_address_to_resource(msi_node, 0, &res);
if (ret < 0) {
dev_err(dev, "unable to obtain MSI controller resources\n");
return ret;
}
*msi_addr = res.start + GITS_TRANSLATER;
return 0;
}
static int iproc_pcie_paxb_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr)
{
int ret;
struct resource_entry entry;
memset(&entry, 0, sizeof(entry));
entry.res = &entry.__res;
msi_addr &= ~(SZ_32K - 1);
entry.res->start = msi_addr;
entry.res->end = msi_addr + SZ_32K - 1;
ret = iproc_pcie_setup_ib(pcie, &entry, IPROC_PCIE_IB_MAP_IO);
return ret;
}
static void iproc_pcie_paxc_v2_msi_steer(struct iproc_pcie *pcie, u64 msi_addr,
bool enable)
{
u32 val;
if (!enable) {
/*
* Disable PAXC MSI steering. All write transfers will be
* treated as non-MSI transfers
*/
val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
val &= ~MSI_ENABLE_CFG;
iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
return;
}
/*
* Program bits [43:13] of address of GITS_TRANSLATER register into
* bits [30:0] of the MSI base address register. In fact, in all iProc
* based SoCs, all I/O register bases are well below the 32-bit
* boundary, so we can safely assume bits [43:32] are always zeros.
*/
iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_BASE_ADDR,
(u32)(msi_addr >> 13));
/* use a default 8K window size */
iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_WINDOW_SIZE, 0);
/* steering MSI to GICv3 ITS */
val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_GIC_MODE);
val |= GIC_V3_CFG;
iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_GIC_MODE, val);
/*
* Program bits [43:2] of address of GITS_TRANSLATER register into the
* iProc MSI address registers.
*/
msi_addr >>= 2;
iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_HI,
upper_32_bits(msi_addr));
iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_ADDR_LO,
lower_32_bits(msi_addr));
/* enable MSI */
val = iproc_pcie_read_reg(pcie, IPROC_PCIE_MSI_EN_CFG);
val |= MSI_ENABLE_CFG;
iproc_pcie_write_reg(pcie, IPROC_PCIE_MSI_EN_CFG, val);
}
static int iproc_pcie_msi_steer(struct iproc_pcie *pcie,
struct device_node *msi_node)
{
struct device *dev = pcie->dev;
int ret;
u64 msi_addr;
ret = iproce_pcie_get_msi(pcie, msi_node, &msi_addr);
if (ret < 0) {
dev_err(dev, "msi steering failed\n");
return ret;
}
switch (pcie->type) {
case IPROC_PCIE_PAXB_V2:
ret = iproc_pcie_paxb_v2_msi_steer(pcie, msi_addr);
if (ret)
return ret;
break;
case IPROC_PCIE_PAXC_V2:
iproc_pcie_paxc_v2_msi_steer(pcie, msi_addr, true);
break;
default:
return -EINVAL;
}
return 0;
}
static int iproc_pcie_msi_enable(struct iproc_pcie *pcie)
{
struct device_node *msi_node;
int ret;
/*
* Either the "msi-parent" or the "msi-map" phandle needs to exist
* for us to obtain the MSI node.
*/
msi_node = of_parse_phandle(pcie->dev->of_node, "msi-parent", 0);
if (!msi_node) {
const __be32 *msi_map = NULL;
int len;
u32 phandle;
msi_map = of_get_property(pcie->dev->of_node, "msi-map", &len);
if (!msi_map)
return -ENODEV;
phandle = be32_to_cpup(msi_map + 1);
msi_node = of_find_node_by_phandle(phandle);
if (!msi_node)
return -ENODEV;
}
/*
* Certain revisions of the iProc PCIe controller require additional
* configurations to steer the MSI writes towards an external MSI
* controller.
*/
if (pcie->need_msi_steer) {
ret = iproc_pcie_msi_steer(pcie, msi_node);
if (ret)
goto out_put_node;
}
/*
* If another MSI controller is being used, the call below should fail
* but that is okay
*/
ret = iproc_msi_init(pcie, msi_node);
out_put_node:
of_node_put(msi_node);
return ret;
}
static void iproc_pcie_msi_disable(struct iproc_pcie *pcie)
{
iproc_msi_exit(pcie);
}
static int iproc_pcie_rev_init(struct iproc_pcie *pcie)
{
struct device *dev = pcie->dev;
unsigned int reg_idx;
const u16 *regs;
switch (pcie->type) {
case IPROC_PCIE_PAXB_BCMA:
regs = iproc_pcie_reg_paxb_bcma;
break;
case IPROC_PCIE_PAXB:
regs = iproc_pcie_reg_paxb;
pcie->has_apb_err_disable = true;
if (pcie->need_ob_cfg) {
pcie->ob_map = paxb_ob_map;
pcie->ob.nr_windows = ARRAY_SIZE(paxb_ob_map);
}
break;
case IPROC_PCIE_PAXB_V2:
regs = iproc_pcie_reg_paxb_v2;
pcie->iproc_cfg_read = true;
pcie->has_apb_err_disable = true;
if (pcie->need_ob_cfg) {
pcie->ob_map = paxb_v2_ob_map;
pcie->ob.nr_windows = ARRAY_SIZE(paxb_v2_ob_map);
}
pcie->ib.nr_regions = ARRAY_SIZE(paxb_v2_ib_map);
pcie->ib_map = paxb_v2_ib_map;
pcie->need_msi_steer = true;
dev_warn(dev, "reads of config registers that contain %#x return incorrect data\n",
CFG_RETRY_STATUS);
break;
case IPROC_PCIE_PAXC:
regs = iproc_pcie_reg_paxc;
pcie->ep_is_internal = true;
pcie->iproc_cfg_read = true;
pcie->rej_unconfig_pf = true;
break;
case IPROC_PCIE_PAXC_V2:
regs = iproc_pcie_reg_paxc_v2;
pcie->ep_is_internal = true;
pcie->iproc_cfg_read = true;
pcie->rej_unconfig_pf = true;
pcie->need_msi_steer = true;
break;
default:
dev_err(dev, "incompatible iProc PCIe interface\n");
return -EINVAL;
}
pcie->reg_offsets = devm_kcalloc(dev, IPROC_PCIE_MAX_NUM_REG,
sizeof(*pcie->reg_offsets),
GFP_KERNEL);
if (!pcie->reg_offsets)
return -ENOMEM;
/* go through the register table and populate all valid registers */
pcie->reg_offsets[0] = (pcie->type == IPROC_PCIE_PAXC_V2) ?
IPROC_PCIE_REG_INVALID : regs[0];
for (reg_idx = 1; reg_idx < IPROC_PCIE_MAX_NUM_REG; reg_idx++)
pcie->reg_offsets[reg_idx] = regs[reg_idx] ?
regs[reg_idx] : IPROC_PCIE_REG_INVALID;
return 0;
}
int iproc_pcie_setup(struct iproc_pcie *pcie, struct list_head *res)
{
struct device *dev;
int ret;
struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
dev = pcie->dev;
ret = iproc_pcie_rev_init(pcie);
if (ret) {
dev_err(dev, "unable to initialize controller parameters\n");
return ret;
}
ret = phy_init(pcie->phy);
if (ret) {
dev_err(dev, "unable to initialize PCIe PHY\n");
return ret;
}
ret = phy_power_on(pcie->phy);
if (ret) {
dev_err(dev, "unable to power on PCIe PHY\n");
goto err_exit_phy;
}
iproc_pcie_perst_ctrl(pcie, true);
iproc_pcie_perst_ctrl(pcie, false);
iproc_pcie_invalidate_mapping(pcie);
if (pcie->need_ob_cfg) {
ret = iproc_pcie_map_ranges(pcie, res);
if (ret) {
dev_err(dev, "map failed\n");
goto err_power_off_phy;
}
}
if (pcie->need_ib_cfg) {
ret = iproc_pcie_map_dma_ranges(pcie);
if (ret && ret != -ENOENT)
goto err_power_off_phy;
}
ret = iproc_pcie_check_link(pcie);
if (ret) {
dev_err(dev, "no PCIe EP device detected\n");
goto err_power_off_phy;
}
iproc_pcie_enable(pcie);
if (IS_ENABLED(CONFIG_PCI_MSI))
if (iproc_pcie_msi_enable(pcie))
dev_info(dev, "not using iProc MSI\n");
host->ops = &iproc_pcie_ops;
host->sysdata = pcie;
host->map_irq = pcie->map_irq;
ret = pci_host_probe(host);
if (ret < 0) {
dev_err(dev, "failed to scan host: %d\n", ret);
goto err_power_off_phy;
}
return 0;
err_power_off_phy:
phy_power_off(pcie->phy);
err_exit_phy:
phy_exit(pcie->phy);
return ret;
}
EXPORT_SYMBOL(iproc_pcie_setup);
int iproc_pcie_remove(struct iproc_pcie *pcie)
{
struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie);
pci_stop_root_bus(host->bus);
pci_remove_root_bus(host->bus);
iproc_pcie_msi_disable(pcie);
phy_power_off(pcie->phy);
phy_exit(pcie->phy);
return 0;
}
EXPORT_SYMBOL(iproc_pcie_remove);
/*
* The MSI parsing logic in certain revisions of Broadcom PAXC based root
* complex does not work and needs to be disabled
*/
static void quirk_paxc_disable_msi_parsing(struct pci_dev *pdev)
{
struct iproc_pcie *pcie = iproc_data(pdev->bus);
if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
iproc_pcie_paxc_v2_msi_steer(pcie, 0, false);
}
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0,
quirk_paxc_disable_msi_parsing);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802,
quirk_paxc_disable_msi_parsing);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804,
quirk_paxc_disable_msi_parsing);
static void quirk_paxc_bridge(struct pci_dev *pdev)
{
/*
* The PCI config space is shared with the PAXC root port and the first
* Ethernet device. So, we need to workaround this by telling the PCI
* code that the bridge is not an Ethernet device.
*/
if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
pdev->class = PCI_CLASS_BRIDGE_PCI << 8;
/*
* MPSS is not being set properly (as it is currently 0). This is
* because that area of the PCI config space is hard coded to zero, and
* is not modifiable by firmware. Set this to 2 (e.g., 512 byte MPS)
* so that the MPS can be set to the real max value.
*/
pdev->pcie_mpss = 2;
}
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16cd, quirk_paxc_bridge);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0x16f0, quirk_paxc_bridge);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd750, quirk_paxc_bridge);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd802, quirk_paxc_bridge);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_BROADCOM, 0xd804, quirk_paxc_bridge);
MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
MODULE_DESCRIPTION("Broadcom iPROC PCIe common driver");
MODULE_LICENSE("GPL v2");