Linus Torvalds f4b0c4b508 ARM:
* Move a lot of state that was previously stored on a per vcpu
   basis into a per-CPU area, because it is only pertinent to the
   host while the vcpu is loaded. This results in better state
   tracking, and a smaller vcpu structure.
 
 * Add full handling of the ERET/ERETAA/ERETAB instructions in
   nested virtualisation. The last two instructions also require
   emulating part of the pointer authentication extension.
   As a result, the trap handling of pointer authentication has
   been greatly simplified.
 
 * Turn the global (and not very scalable) LPI translation cache
   into a per-ITS, scalable cache, making non directly injected
   LPIs much cheaper to make visible to the vcpu.
 
 * A batch of pKVM patches, mostly fixes and cleanups, as the
   upstreaming process seems to be resuming. Fingers crossed!
 
 * Allocate PPIs and SGIs outside of the vcpu structure, allowing
   for smaller EL2 mapping and some flexibility in implementing
   more or less than 32 private IRQs.
 
 * Purge stale mpidr_data if a vcpu is created after the MPIDR
   map has been created.
 
 * Preserve vcpu-specific ID registers across a vcpu reset.
 
 * Various minor cleanups and improvements.
 
 LoongArch:
 
 * Add ParaVirt IPI support.
 
 * Add software breakpoint support.
 
 * Add mmio trace events support.
 
 RISC-V:
 
 * Support guest breakpoints using ebreak
 
 * Introduce per-VCPU mp_state_lock and reset_cntx_lock
 
 * Virtualize SBI PMU snapshot and counter overflow interrupts
 
 * New selftests for SBI PMU and Guest ebreak
 
 * Some preparatory work for both TDX and SNP page fault handling.
   This also cleans up the page fault path, so that the priorities
   of various kinds of fauls (private page, no memory, write
   to read-only slot, etc.) are easier to follow.
 
 x86:
 
 * Minimize amount of time that shadow PTEs remain in the special
   REMOVED_SPTE state.  This is a state where the mmu_lock is held for
   reading but concurrent accesses to the PTE have to spin; shortening
   its use allows other vCPUs to repopulate the zapped region while
   the zapper finishes tearing down the old, defunct page tables.
 
 * Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID field,
   which is defined by hardware but left for software use.  This lets KVM
   communicate its inability to map GPAs that set bits 51:48 on hosts
   without 5-level nested page tables.  Guest firmware is expected to
   use the information when mapping BARs; this avoids that they end up at
   a legal, but unmappable, GPA.
 
 * Fixed a bug where KVM would not reject accesses to MSR that aren't
   supposed to exist given the vCPU model and/or KVM configuration.
 
 * As usual, a bunch of code cleanups.
 
 x86 (AMD):
 
 * Implement a new and improved API to initialize SEV and SEV-ES VMs, which
   will also be extendable to SEV-SNP.  The new API specifies the desired
   encryption in KVM_CREATE_VM and then separately initializes the VM.
   The new API also allows customizing the desired set of VMSA features;
   the features affect the measurement of the VM's initial state, and
   therefore enabling them cannot be done tout court by the hypervisor.
 
   While at it, the new API includes two bugfixes that couldn't be
   applied to the old one without a flag day in userspace or without
   affecting the initial measurement.  When a SEV-ES VM is created with
   the new VM type, KVM_GET_REGS/KVM_SET_REGS and friends are
   rejected once the VMSA has been encrypted.  Also, the FPU and AVX
   state will be synchronized and encrypted too.
 
 * Support for GHCB version 2 as applicable to SEV-ES guests.  This, once
   more, is only accessible when using the new KVM_SEV_INIT2 flow for
   initialization of SEV-ES VMs.
 
 x86 (Intel):
 
 * An initial bunch of prerequisite patches for Intel TDX were merged.
   They generally don't do anything interesting.  The only somewhat user
   visible change is a new debugging mode that checks that KVM's MMU
   never triggers a #VE virtualization exception in the guest.
 
 * Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig VM-Exit to
   L1, as per the SDM.
 
 Generic:
 
 * Use vfree() instead of kvfree() for allocations that always use vcalloc()
   or __vcalloc().
 
 * Remove .change_pte() MMU notifier - the changes to non-KVM code are
   small and Andrew Morton asked that I also take those through the KVM
   tree.  The callback was only ever implemented by KVM (which was also the
   original user of MMU notifiers) but it had been nonfunctional ever since
   calls to set_pte_at_notify were wrapped with invalidate_range_start
   and invalidate_range_end... in 2012.
 
 Selftests:
 
 * Enhance the demand paging test to allow for better reporting and stressing
   of UFFD performance.
 
 * Convert the steal time test to generate TAP-friendly output.
 
 * Fix a flaky false positive in the xen_shinfo_test due to comparing elapsed
   time across two different clock domains.
 
 * Skip the MONITOR/MWAIT test if the host doesn't actually support MWAIT.
 
 * Avoid unnecessary use of "sudo" in the NX hugepage test wrapper shell
   script, to play nice with running in a minimal userspace environment.
 
 * Allow skipping the RSEQ test's sanity check that the vCPU was able to
   complete a reasonable number of KVM_RUNs, as the assert can fail on a
   completely valid setup.  If the test is run on a large-ish system that is
   otherwise idle, and the test isn't affined to a low-ish number of CPUs, the
   vCPU task can be repeatedly migrated to CPUs that are in deep sleep states,
   which results in the vCPU having very little net runtime before the next
   migration due to high wakeup latencies.
 
 * Define _GNU_SOURCE for all selftests to fix a warning that was introduced by
   a change to kselftest_harness.h late in the 6.9 cycle, and because forcing
   every test to #define _GNU_SOURCE is painful.
 
 * Provide a global pseudo-RNG instance for all tests, so that library code can
   generate random, but determinstic numbers.
 
 * Use the global pRNG to randomly force emulation of select writes from guest
   code on x86, e.g. to help validate KVM's emulation of locked accesses.
 
 * Allocate and initialize x86's GDT, IDT, TSS, segments, and default exception
   handlers at VM creation, instead of forcing tests to manually trigger the
   related setup.
 
 Documentation:
 
 * Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmZE878UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroOukQf+LcvZsWtrC7Wd5K9SQbYXaS4Rk6P6
 JHoQW2d0hUN893J2WibEw+l1J/0vn5JumqHXyZgJ7CbaMtXkWWQTwDSDLuURUKpv
 XNB3Sb17G87NH+s1tOh0tA9h5upbtlHVHvrtIwdbb9+XHgQ6HTL4uk+HdfO/p9fW
 cWBEZAKoWcCIa99Numv3pmq5vdrvBlNggwBugBS8TH69EKMw+V1Vu1SFkIdNDTQk
 NJJ28cohoP3wnwlIHaXSmU4RujipPH3Lm/xupyA5MwmzO713eq2yUqV49jzhD5/I
 MA4Ruvgrdm4wpp89N9lQMyci91u6q7R9iZfMu0tSg2qYI3UPKIdstd8sOA==
 =2lED
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:

   - Move a lot of state that was previously stored on a per vcpu basis
     into a per-CPU area, because it is only pertinent to the host while
     the vcpu is loaded. This results in better state tracking, and a
     smaller vcpu structure.

   - Add full handling of the ERET/ERETAA/ERETAB instructions in nested
     virtualisation. The last two instructions also require emulating
     part of the pointer authentication extension. As a result, the trap
     handling of pointer authentication has been greatly simplified.

   - Turn the global (and not very scalable) LPI translation cache into
     a per-ITS, scalable cache, making non directly injected LPIs much
     cheaper to make visible to the vcpu.

   - A batch of pKVM patches, mostly fixes and cleanups, as the
     upstreaming process seems to be resuming. Fingers crossed!

   - Allocate PPIs and SGIs outside of the vcpu structure, allowing for
     smaller EL2 mapping and some flexibility in implementing more or
     less than 32 private IRQs.

   - Purge stale mpidr_data if a vcpu is created after the MPIDR map has
     been created.

   - Preserve vcpu-specific ID registers across a vcpu reset.

   - Various minor cleanups and improvements.

  LoongArch:

   - Add ParaVirt IPI support

   - Add software breakpoint support

   - Add mmio trace events support

  RISC-V:

   - Support guest breakpoints using ebreak

   - Introduce per-VCPU mp_state_lock and reset_cntx_lock

   - Virtualize SBI PMU snapshot and counter overflow interrupts

   - New selftests for SBI PMU and Guest ebreak

   - Some preparatory work for both TDX and SNP page fault handling.

     This also cleans up the page fault path, so that the priorities of
     various kinds of fauls (private page, no memory, write to read-only
     slot, etc.) are easier to follow.

  x86:

   - Minimize amount of time that shadow PTEs remain in the special
     REMOVED_SPTE state.

     This is a state where the mmu_lock is held for reading but
     concurrent accesses to the PTE have to spin; shortening its use
     allows other vCPUs to repopulate the zapped region while the zapper
     finishes tearing down the old, defunct page tables.

   - Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID
     field, which is defined by hardware but left for software use.

     This lets KVM communicate its inability to map GPAs that set bits
     51:48 on hosts without 5-level nested page tables. Guest firmware
     is expected to use the information when mapping BARs; this avoids
     that they end up at a legal, but unmappable, GPA.

   - Fixed a bug where KVM would not reject accesses to MSR that aren't
     supposed to exist given the vCPU model and/or KVM configuration.

   - As usual, a bunch of code cleanups.

  x86 (AMD):

   - Implement a new and improved API to initialize SEV and SEV-ES VMs,
     which will also be extendable to SEV-SNP.

     The new API specifies the desired encryption in KVM_CREATE_VM and
     then separately initializes the VM. The new API also allows
     customizing the desired set of VMSA features; the features affect
     the measurement of the VM's initial state, and therefore enabling
     them cannot be done tout court by the hypervisor.

     While at it, the new API includes two bugfixes that couldn't be
     applied to the old one without a flag day in userspace or without
     affecting the initial measurement. When a SEV-ES VM is created with
     the new VM type, KVM_GET_REGS/KVM_SET_REGS and friends are rejected
     once the VMSA has been encrypted. Also, the FPU and AVX state will
     be synchronized and encrypted too.

   - Support for GHCB version 2 as applicable to SEV-ES guests.

     This, once more, is only accessible when using the new
     KVM_SEV_INIT2 flow for initialization of SEV-ES VMs.

  x86 (Intel):

   - An initial bunch of prerequisite patches for Intel TDX were merged.

     They generally don't do anything interesting. The only somewhat
     user visible change is a new debugging mode that checks that KVM's
     MMU never triggers a #VE virtualization exception in the guest.

   - Clear vmcs.EXIT_QUALIFICATION when synthesizing an EPT Misconfig
     VM-Exit to L1, as per the SDM.

  Generic:

   - Use vfree() instead of kvfree() for allocations that always use
     vcalloc() or __vcalloc().

   - Remove .change_pte() MMU notifier - the changes to non-KVM code are
     small and Andrew Morton asked that I also take those through the
     KVM tree.

     The callback was only ever implemented by KVM (which was also the
     original user of MMU notifiers) but it had been nonfunctional ever
     since calls to set_pte_at_notify were wrapped with
     invalidate_range_start and invalidate_range_end... in 2012.

  Selftests:

   - Enhance the demand paging test to allow for better reporting and
     stressing of UFFD performance.

   - Convert the steal time test to generate TAP-friendly output.

   - Fix a flaky false positive in the xen_shinfo_test due to comparing
     elapsed time across two different clock domains.

   - Skip the MONITOR/MWAIT test if the host doesn't actually support
     MWAIT.

   - Avoid unnecessary use of "sudo" in the NX hugepage test wrapper
     shell script, to play nice with running in a minimal userspace
     environment.

   - Allow skipping the RSEQ test's sanity check that the vCPU was able
     to complete a reasonable number of KVM_RUNs, as the assert can fail
     on a completely valid setup.

     If the test is run on a large-ish system that is otherwise idle,
     and the test isn't affined to a low-ish number of CPUs, the vCPU
     task can be repeatedly migrated to CPUs that are in deep sleep
     states, which results in the vCPU having very little net runtime
     before the next migration due to high wakeup latencies.

   - Define _GNU_SOURCE for all selftests to fix a warning that was
     introduced by a change to kselftest_harness.h late in the 6.9
     cycle, and because forcing every test to #define _GNU_SOURCE is
     painful.

   - Provide a global pseudo-RNG instance for all tests, so that library
     code can generate random, but determinstic numbers.

   - Use the global pRNG to randomly force emulation of select writes
     from guest code on x86, e.g. to help validate KVM's emulation of
     locked accesses.

   - Allocate and initialize x86's GDT, IDT, TSS, segments, and default
     exception handlers at VM creation, instead of forcing tests to
     manually trigger the related setup.

  Documentation:

   - Fix a goof in the KVM_CREATE_GUEST_MEMFD documentation"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (225 commits)
  selftests/kvm: remove dead file
  KVM: selftests: arm64: Test vCPU-scoped feature ID registers
  KVM: selftests: arm64: Test that feature ID regs survive a reset
  KVM: selftests: arm64: Store expected register value in set_id_regs
  KVM: selftests: arm64: Rename helper in set_id_regs to imply VM scope
  KVM: arm64: Only reset vCPU-scoped feature ID regs once
  KVM: arm64: Reset VM feature ID regs from kvm_reset_sys_regs()
  KVM: arm64: Rename is_id_reg() to imply VM scope
  KVM: arm64: Destroy mpidr_data for 'late' vCPU creation
  KVM: arm64: Use hVHE in pKVM by default on CPUs with VHE support
  KVM: arm64: Fix hvhe/nvhe early alias parsing
  KVM: SEV: Allow per-guest configuration of GHCB protocol version
  KVM: SEV: Add GHCB handling for termination requests
  KVM: SEV: Add GHCB handling for Hypervisor Feature Support requests
  KVM: SEV: Add support to handle AP reset MSR protocol
  KVM: x86: Explicitly zero kvm_caps during vendor module load
  KVM: x86: Fully re-initialize supported_mce_cap on vendor module load
  KVM: x86: Fully re-initialize supported_vm_types on vendor module load
  KVM: x86/mmu: Sanity check that __kvm_faultin_pfn() doesn't create noslot pfns
  KVM: x86/mmu: Initialize kvm_page_fault's pfn and hva to error values
  ...
2024-05-15 14:46:43 -07:00
..
2024-05-02 14:56:43 +02:00
2024-05-15 12:34:46 -07:00
2024-05-15 14:46:43 -07:00
2024-05-15 14:46:43 -07:00
2024-05-07 13:03:03 -04:00
2024-05-15 14:05:08 -07:00
2024-03-25 17:38:29 +01:00
2024-05-07 11:02:56 +02:00