mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-09 06:33:34 +00:00
f7f99100d8
vmemmap_alloc_block() will no longer zero the block, so zero memory at its call sites for everything except struct pages. Struct page memory is zero'd by struct page initialization. Replace allocators in sparse-vmemmap to use the non-zeroing version. So, we will get the performance improvement by zeroing the memory in parallel when struct pages are zeroed. Add struct page zeroing as a part of initialization of other fields in __init_single_page(). This single thread performance collected on: Intel(R) Xeon(R) CPU E7-8895 v3 @ 2.60GHz with 1T of memory (268400646 pages in 8 nodes): BASE FIX sparse_init 11.244671836s 0.007199623s zone_sizes_init 4.879775891s 8.355182299s -------------------------- Total 16.124447727s 8.362381922s sparse_init is where memory for struct pages is zeroed, and the zeroing part is moved later in this patch into __init_single_page(), which is called from zone_sizes_init(). [akpm@linux-foundation.org: make vmemmap_alloc_block_zero() private to sparse-vmemmap.c] Link: http://lkml.kernel.org/r/20171013173214.27300-10-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Tested-by: Bob Picco <bob.picco@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: David S. Miller <davem@davemloft.net> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Michal Hocko <mhocko@kernel.org> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
896 lines
23 KiB
C
896 lines
23 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* sparse memory mappings.
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/export.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include "internal.h"
|
|
#include <asm/dma.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
/*
|
|
* Permanent SPARSEMEM data:
|
|
*
|
|
* 1) mem_section - memory sections, mem_map's for valid memory
|
|
*/
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
struct mem_section **mem_section;
|
|
#else
|
|
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
|
|
____cacheline_internodealigned_in_smp;
|
|
#endif
|
|
EXPORT_SYMBOL(mem_section);
|
|
|
|
#ifdef NODE_NOT_IN_PAGE_FLAGS
|
|
/*
|
|
* If we did not store the node number in the page then we have to
|
|
* do a lookup in the section_to_node_table in order to find which
|
|
* node the page belongs to.
|
|
*/
|
|
#if MAX_NUMNODES <= 256
|
|
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
|
|
#else
|
|
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
|
|
#endif
|
|
|
|
int page_to_nid(const struct page *page)
|
|
{
|
|
return section_to_node_table[page_to_section(page)];
|
|
}
|
|
EXPORT_SYMBOL(page_to_nid);
|
|
|
|
static void set_section_nid(unsigned long section_nr, int nid)
|
|
{
|
|
section_to_node_table[section_nr] = nid;
|
|
}
|
|
#else /* !NODE_NOT_IN_PAGE_FLAGS */
|
|
static inline void set_section_nid(unsigned long section_nr, int nid)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
static noinline struct mem_section __ref *sparse_index_alloc(int nid)
|
|
{
|
|
struct mem_section *section = NULL;
|
|
unsigned long array_size = SECTIONS_PER_ROOT *
|
|
sizeof(struct mem_section);
|
|
|
|
if (slab_is_available())
|
|
section = kzalloc_node(array_size, GFP_KERNEL, nid);
|
|
else
|
|
section = memblock_virt_alloc_node(array_size, nid);
|
|
|
|
return section;
|
|
}
|
|
|
|
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
|
|
{
|
|
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
|
|
struct mem_section *section;
|
|
|
|
if (mem_section[root])
|
|
return -EEXIST;
|
|
|
|
section = sparse_index_alloc(nid);
|
|
if (!section)
|
|
return -ENOMEM;
|
|
|
|
mem_section[root] = section;
|
|
|
|
return 0;
|
|
}
|
|
#else /* !SPARSEMEM_EXTREME */
|
|
static inline int sparse_index_init(unsigned long section_nr, int nid)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
int __section_nr(struct mem_section* ms)
|
|
{
|
|
unsigned long root_nr;
|
|
struct mem_section *root = NULL;
|
|
|
|
for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
|
|
root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
|
|
if (!root)
|
|
continue;
|
|
|
|
if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
|
|
break;
|
|
}
|
|
|
|
VM_BUG_ON(!root);
|
|
|
|
return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
|
|
}
|
|
#else
|
|
int __section_nr(struct mem_section* ms)
|
|
{
|
|
return (int)(ms - mem_section[0]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* During early boot, before section_mem_map is used for an actual
|
|
* mem_map, we use section_mem_map to store the section's NUMA
|
|
* node. This keeps us from having to use another data structure. The
|
|
* node information is cleared just before we store the real mem_map.
|
|
*/
|
|
static inline unsigned long sparse_encode_early_nid(int nid)
|
|
{
|
|
return (nid << SECTION_NID_SHIFT);
|
|
}
|
|
|
|
static inline int sparse_early_nid(struct mem_section *section)
|
|
{
|
|
return (section->section_mem_map >> SECTION_NID_SHIFT);
|
|
}
|
|
|
|
/* Validate the physical addressing limitations of the model */
|
|
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
|
|
unsigned long *end_pfn)
|
|
{
|
|
unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
|
|
|
|
/*
|
|
* Sanity checks - do not allow an architecture to pass
|
|
* in larger pfns than the maximum scope of sparsemem:
|
|
*/
|
|
if (*start_pfn > max_sparsemem_pfn) {
|
|
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
|
|
"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
|
|
*start_pfn, *end_pfn, max_sparsemem_pfn);
|
|
WARN_ON_ONCE(1);
|
|
*start_pfn = max_sparsemem_pfn;
|
|
*end_pfn = max_sparsemem_pfn;
|
|
} else if (*end_pfn > max_sparsemem_pfn) {
|
|
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
|
|
"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
|
|
*start_pfn, *end_pfn, max_sparsemem_pfn);
|
|
WARN_ON_ONCE(1);
|
|
*end_pfn = max_sparsemem_pfn;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There are a number of times that we loop over NR_MEM_SECTIONS,
|
|
* looking for section_present() on each. But, when we have very
|
|
* large physical address spaces, NR_MEM_SECTIONS can also be
|
|
* very large which makes the loops quite long.
|
|
*
|
|
* Keeping track of this gives us an easy way to break out of
|
|
* those loops early.
|
|
*/
|
|
int __highest_present_section_nr;
|
|
static void section_mark_present(struct mem_section *ms)
|
|
{
|
|
int section_nr = __section_nr(ms);
|
|
|
|
if (section_nr > __highest_present_section_nr)
|
|
__highest_present_section_nr = section_nr;
|
|
|
|
ms->section_mem_map |= SECTION_MARKED_PRESENT;
|
|
}
|
|
|
|
static inline int next_present_section_nr(int section_nr)
|
|
{
|
|
do {
|
|
section_nr++;
|
|
if (present_section_nr(section_nr))
|
|
return section_nr;
|
|
} while ((section_nr < NR_MEM_SECTIONS) &&
|
|
(section_nr <= __highest_present_section_nr));
|
|
|
|
return -1;
|
|
}
|
|
#define for_each_present_section_nr(start, section_nr) \
|
|
for (section_nr = next_present_section_nr(start-1); \
|
|
((section_nr >= 0) && \
|
|
(section_nr < NR_MEM_SECTIONS) && \
|
|
(section_nr <= __highest_present_section_nr)); \
|
|
section_nr = next_present_section_nr(section_nr))
|
|
|
|
/* Record a memory area against a node. */
|
|
void __init memory_present(int nid, unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
if (unlikely(!mem_section)) {
|
|
unsigned long size, align;
|
|
|
|
size = sizeof(struct mem_section) * NR_SECTION_ROOTS;
|
|
align = 1 << (INTERNODE_CACHE_SHIFT);
|
|
mem_section = memblock_virt_alloc(size, align);
|
|
}
|
|
#endif
|
|
|
|
start &= PAGE_SECTION_MASK;
|
|
mminit_validate_memmodel_limits(&start, &end);
|
|
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
|
|
unsigned long section = pfn_to_section_nr(pfn);
|
|
struct mem_section *ms;
|
|
|
|
sparse_index_init(section, nid);
|
|
set_section_nid(section, nid);
|
|
|
|
ms = __nr_to_section(section);
|
|
if (!ms->section_mem_map) {
|
|
ms->section_mem_map = sparse_encode_early_nid(nid) |
|
|
SECTION_IS_ONLINE;
|
|
section_mark_present(ms);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only used by the i386 NUMA architecures, but relatively
|
|
* generic code.
|
|
*/
|
|
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
unsigned long nr_pages = 0;
|
|
|
|
mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
|
if (nid != early_pfn_to_nid(pfn))
|
|
continue;
|
|
|
|
if (pfn_present(pfn))
|
|
nr_pages += PAGES_PER_SECTION;
|
|
}
|
|
|
|
return nr_pages * sizeof(struct page);
|
|
}
|
|
|
|
/*
|
|
* Subtle, we encode the real pfn into the mem_map such that
|
|
* the identity pfn - section_mem_map will return the actual
|
|
* physical page frame number.
|
|
*/
|
|
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
|
|
{
|
|
return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
|
|
}
|
|
|
|
/*
|
|
* Decode mem_map from the coded memmap
|
|
*/
|
|
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
|
|
{
|
|
/* mask off the extra low bits of information */
|
|
coded_mem_map &= SECTION_MAP_MASK;
|
|
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
|
|
}
|
|
|
|
static int __meminit sparse_init_one_section(struct mem_section *ms,
|
|
unsigned long pnum, struct page *mem_map,
|
|
unsigned long *pageblock_bitmap)
|
|
{
|
|
if (!present_section(ms))
|
|
return -EINVAL;
|
|
|
|
ms->section_mem_map &= ~SECTION_MAP_MASK;
|
|
ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
|
|
SECTION_HAS_MEM_MAP;
|
|
ms->pageblock_flags = pageblock_bitmap;
|
|
|
|
return 1;
|
|
}
|
|
|
|
unsigned long usemap_size(void)
|
|
{
|
|
return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static unsigned long *__kmalloc_section_usemap(void)
|
|
{
|
|
return kmalloc(usemap_size(), GFP_KERNEL);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
static unsigned long * __init
|
|
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
|
|
unsigned long size)
|
|
{
|
|
unsigned long goal, limit;
|
|
unsigned long *p;
|
|
int nid;
|
|
/*
|
|
* A page may contain usemaps for other sections preventing the
|
|
* page being freed and making a section unremovable while
|
|
* other sections referencing the usemap remain active. Similarly,
|
|
* a pgdat can prevent a section being removed. If section A
|
|
* contains a pgdat and section B contains the usemap, both
|
|
* sections become inter-dependent. This allocates usemaps
|
|
* from the same section as the pgdat where possible to avoid
|
|
* this problem.
|
|
*/
|
|
goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
|
|
limit = goal + (1UL << PA_SECTION_SHIFT);
|
|
nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
|
|
again:
|
|
p = memblock_virt_alloc_try_nid_nopanic(size,
|
|
SMP_CACHE_BYTES, goal, limit,
|
|
nid);
|
|
if (!p && limit) {
|
|
limit = 0;
|
|
goto again;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
|
|
{
|
|
unsigned long usemap_snr, pgdat_snr;
|
|
static unsigned long old_usemap_snr;
|
|
static unsigned long old_pgdat_snr;
|
|
struct pglist_data *pgdat = NODE_DATA(nid);
|
|
int usemap_nid;
|
|
|
|
/* First call */
|
|
if (!old_usemap_snr) {
|
|
old_usemap_snr = NR_MEM_SECTIONS;
|
|
old_pgdat_snr = NR_MEM_SECTIONS;
|
|
}
|
|
|
|
usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
|
|
pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
|
|
if (usemap_snr == pgdat_snr)
|
|
return;
|
|
|
|
if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
|
|
/* skip redundant message */
|
|
return;
|
|
|
|
old_usemap_snr = usemap_snr;
|
|
old_pgdat_snr = pgdat_snr;
|
|
|
|
usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
|
|
if (usemap_nid != nid) {
|
|
pr_info("node %d must be removed before remove section %ld\n",
|
|
nid, usemap_snr);
|
|
return;
|
|
}
|
|
/*
|
|
* There is a circular dependency.
|
|
* Some platforms allow un-removable section because they will just
|
|
* gather other removable sections for dynamic partitioning.
|
|
* Just notify un-removable section's number here.
|
|
*/
|
|
pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
|
|
usemap_snr, pgdat_snr, nid);
|
|
}
|
|
#else
|
|
static unsigned long * __init
|
|
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
|
|
unsigned long size)
|
|
{
|
|
return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
|
|
}
|
|
|
|
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
|
|
static void __init sparse_early_usemaps_alloc_node(void *data,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long usemap_count, int nodeid)
|
|
{
|
|
void *usemap;
|
|
unsigned long pnum;
|
|
unsigned long **usemap_map = (unsigned long **)data;
|
|
int size = usemap_size();
|
|
|
|
usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
|
|
size * usemap_count);
|
|
if (!usemap) {
|
|
pr_warn("%s: allocation failed\n", __func__);
|
|
return;
|
|
}
|
|
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
usemap_map[pnum] = usemap;
|
|
usemap += size;
|
|
check_usemap_section_nr(nodeid, usemap_map[pnum]);
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_SPARSEMEM_VMEMMAP
|
|
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
|
|
{
|
|
struct page *map;
|
|
unsigned long size;
|
|
|
|
map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
|
|
if (map)
|
|
return map;
|
|
|
|
size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
|
|
map = memblock_virt_alloc_try_nid(size,
|
|
PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
|
|
BOOTMEM_ALLOC_ACCESSIBLE, nid);
|
|
return map;
|
|
}
|
|
void __init sparse_mem_maps_populate_node(struct page **map_map,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long map_count, int nodeid)
|
|
{
|
|
void *map;
|
|
unsigned long pnum;
|
|
unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
|
|
|
|
map = alloc_remap(nodeid, size * map_count);
|
|
if (map) {
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
map_map[pnum] = map;
|
|
map += size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
size = PAGE_ALIGN(size);
|
|
map = memblock_virt_alloc_try_nid_raw(size * map_count,
|
|
PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
|
|
BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
|
|
if (map) {
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
map_map[pnum] = map;
|
|
map += size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* fallback */
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
struct mem_section *ms;
|
|
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
|
|
if (map_map[pnum])
|
|
continue;
|
|
ms = __nr_to_section(pnum);
|
|
pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
|
|
__func__);
|
|
ms->section_mem_map = 0;
|
|
}
|
|
}
|
|
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
static void __init sparse_early_mem_maps_alloc_node(void *data,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long map_count, int nodeid)
|
|
{
|
|
struct page **map_map = (struct page **)data;
|
|
sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
|
|
map_count, nodeid);
|
|
}
|
|
#else
|
|
static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
|
|
{
|
|
struct page *map;
|
|
struct mem_section *ms = __nr_to_section(pnum);
|
|
int nid = sparse_early_nid(ms);
|
|
|
|
map = sparse_mem_map_populate(pnum, nid);
|
|
if (map)
|
|
return map;
|
|
|
|
pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
|
|
__func__);
|
|
ms->section_mem_map = 0;
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
void __weak __meminit vmemmap_populate_print_last(void)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
|
|
* @map: usemap_map for pageblock flags or mmap_map for vmemmap
|
|
*/
|
|
static void __init alloc_usemap_and_memmap(void (*alloc_func)
|
|
(void *, unsigned long, unsigned long,
|
|
unsigned long, int), void *data)
|
|
{
|
|
unsigned long pnum;
|
|
unsigned long map_count;
|
|
int nodeid_begin = 0;
|
|
unsigned long pnum_begin = 0;
|
|
|
|
for_each_present_section_nr(0, pnum) {
|
|
struct mem_section *ms;
|
|
|
|
ms = __nr_to_section(pnum);
|
|
nodeid_begin = sparse_early_nid(ms);
|
|
pnum_begin = pnum;
|
|
break;
|
|
}
|
|
map_count = 1;
|
|
for_each_present_section_nr(pnum_begin + 1, pnum) {
|
|
struct mem_section *ms;
|
|
int nodeid;
|
|
|
|
ms = __nr_to_section(pnum);
|
|
nodeid = sparse_early_nid(ms);
|
|
if (nodeid == nodeid_begin) {
|
|
map_count++;
|
|
continue;
|
|
}
|
|
/* ok, we need to take cake of from pnum_begin to pnum - 1*/
|
|
alloc_func(data, pnum_begin, pnum,
|
|
map_count, nodeid_begin);
|
|
/* new start, update count etc*/
|
|
nodeid_begin = nodeid;
|
|
pnum_begin = pnum;
|
|
map_count = 1;
|
|
}
|
|
/* ok, last chunk */
|
|
alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
|
|
map_count, nodeid_begin);
|
|
}
|
|
|
|
/*
|
|
* Allocate the accumulated non-linear sections, allocate a mem_map
|
|
* for each and record the physical to section mapping.
|
|
*/
|
|
void __init sparse_init(void)
|
|
{
|
|
unsigned long pnum;
|
|
struct page *map;
|
|
unsigned long *usemap;
|
|
unsigned long **usemap_map;
|
|
int size;
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
int size2;
|
|
struct page **map_map;
|
|
#endif
|
|
|
|
/* see include/linux/mmzone.h 'struct mem_section' definition */
|
|
BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
|
|
|
|
/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
|
|
set_pageblock_order();
|
|
|
|
/*
|
|
* map is using big page (aka 2M in x86 64 bit)
|
|
* usemap is less one page (aka 24 bytes)
|
|
* so alloc 2M (with 2M align) and 24 bytes in turn will
|
|
* make next 2M slip to one more 2M later.
|
|
* then in big system, the memory will have a lot of holes...
|
|
* here try to allocate 2M pages continuously.
|
|
*
|
|
* powerpc need to call sparse_init_one_section right after each
|
|
* sparse_early_mem_map_alloc, so allocate usemap_map at first.
|
|
*/
|
|
size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
|
|
usemap_map = memblock_virt_alloc(size, 0);
|
|
if (!usemap_map)
|
|
panic("can not allocate usemap_map\n");
|
|
alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
|
|
(void *)usemap_map);
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
|
|
map_map = memblock_virt_alloc(size2, 0);
|
|
if (!map_map)
|
|
panic("can not allocate map_map\n");
|
|
alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
|
|
(void *)map_map);
|
|
#endif
|
|
|
|
for_each_present_section_nr(0, pnum) {
|
|
usemap = usemap_map[pnum];
|
|
if (!usemap)
|
|
continue;
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
map = map_map[pnum];
|
|
#else
|
|
map = sparse_early_mem_map_alloc(pnum);
|
|
#endif
|
|
if (!map)
|
|
continue;
|
|
|
|
sparse_init_one_section(__nr_to_section(pnum), pnum, map,
|
|
usemap);
|
|
}
|
|
|
|
vmemmap_populate_print_last();
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
memblock_free_early(__pa(map_map), size2);
|
|
#endif
|
|
memblock_free_early(__pa(usemap_map), size);
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
|
|
/* Mark all memory sections within the pfn range as online */
|
|
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
|
unsigned long section_nr = pfn_to_section_nr(pfn);
|
|
struct mem_section *ms;
|
|
|
|
/* onlining code should never touch invalid ranges */
|
|
if (WARN_ON(!valid_section_nr(section_nr)))
|
|
continue;
|
|
|
|
ms = __nr_to_section(section_nr);
|
|
ms->section_mem_map |= SECTION_IS_ONLINE;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
/* Mark all memory sections within the pfn range as online */
|
|
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
|
unsigned long section_nr = pfn_to_section_nr(start_pfn);
|
|
struct mem_section *ms;
|
|
|
|
/*
|
|
* TODO this needs some double checking. Offlining code makes
|
|
* sure to check pfn_valid but those checks might be just bogus
|
|
*/
|
|
if (WARN_ON(!valid_section_nr(section_nr)))
|
|
continue;
|
|
|
|
ms = __nr_to_section(section_nr);
|
|
ms->section_mem_map &= ~SECTION_IS_ONLINE;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
|
|
{
|
|
/* This will make the necessary allocations eventually. */
|
|
return sparse_mem_map_populate(pnum, nid);
|
|
}
|
|
static void __kfree_section_memmap(struct page *memmap)
|
|
{
|
|
unsigned long start = (unsigned long)memmap;
|
|
unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
|
|
|
|
vmemmap_free(start, end);
|
|
}
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
static void free_map_bootmem(struct page *memmap)
|
|
{
|
|
unsigned long start = (unsigned long)memmap;
|
|
unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
|
|
|
|
vmemmap_free(start, end);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
#else
|
|
static struct page *__kmalloc_section_memmap(void)
|
|
{
|
|
struct page *page, *ret;
|
|
unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
|
|
|
|
page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
|
|
if (page)
|
|
goto got_map_page;
|
|
|
|
ret = vmalloc(memmap_size);
|
|
if (ret)
|
|
goto got_map_ptr;
|
|
|
|
return NULL;
|
|
got_map_page:
|
|
ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
|
|
got_map_ptr:
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
|
|
{
|
|
return __kmalloc_section_memmap();
|
|
}
|
|
|
|
static void __kfree_section_memmap(struct page *memmap)
|
|
{
|
|
if (is_vmalloc_addr(memmap))
|
|
vfree(memmap);
|
|
else
|
|
free_pages((unsigned long)memmap,
|
|
get_order(sizeof(struct page) * PAGES_PER_SECTION));
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
static void free_map_bootmem(struct page *memmap)
|
|
{
|
|
unsigned long maps_section_nr, removing_section_nr, i;
|
|
unsigned long magic, nr_pages;
|
|
struct page *page = virt_to_page(memmap);
|
|
|
|
nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
|
|
>> PAGE_SHIFT;
|
|
|
|
for (i = 0; i < nr_pages; i++, page++) {
|
|
magic = (unsigned long) page->freelist;
|
|
|
|
BUG_ON(magic == NODE_INFO);
|
|
|
|
maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
|
|
removing_section_nr = page_private(page);
|
|
|
|
/*
|
|
* When this function is called, the removing section is
|
|
* logical offlined state. This means all pages are isolated
|
|
* from page allocator. If removing section's memmap is placed
|
|
* on the same section, it must not be freed.
|
|
* If it is freed, page allocator may allocate it which will
|
|
* be removed physically soon.
|
|
*/
|
|
if (maps_section_nr != removing_section_nr)
|
|
put_page_bootmem(page);
|
|
}
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
/*
|
|
* returns the number of sections whose mem_maps were properly
|
|
* set. If this is <=0, then that means that the passed-in
|
|
* map was not consumed and must be freed.
|
|
*/
|
|
int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
|
|
{
|
|
unsigned long section_nr = pfn_to_section_nr(start_pfn);
|
|
struct mem_section *ms;
|
|
struct page *memmap;
|
|
unsigned long *usemap;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
/*
|
|
* no locking for this, because it does its own
|
|
* plus, it does a kmalloc
|
|
*/
|
|
ret = sparse_index_init(section_nr, pgdat->node_id);
|
|
if (ret < 0 && ret != -EEXIST)
|
|
return ret;
|
|
memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
|
|
if (!memmap)
|
|
return -ENOMEM;
|
|
usemap = __kmalloc_section_usemap();
|
|
if (!usemap) {
|
|
__kfree_section_memmap(memmap);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
|
|
ms = __pfn_to_section(start_pfn);
|
|
if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
|
|
ret = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
|
|
|
|
section_mark_present(ms);
|
|
|
|
ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
|
|
|
|
out:
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
if (ret <= 0) {
|
|
kfree(usemap);
|
|
__kfree_section_memmap(memmap);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
|
|
{
|
|
int i;
|
|
|
|
if (!memmap)
|
|
return;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
if (PageHWPoison(&memmap[i])) {
|
|
atomic_long_sub(1, &num_poisoned_pages);
|
|
ClearPageHWPoison(&memmap[i]);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void free_section_usemap(struct page *memmap, unsigned long *usemap)
|
|
{
|
|
struct page *usemap_page;
|
|
|
|
if (!usemap)
|
|
return;
|
|
|
|
usemap_page = virt_to_page(usemap);
|
|
/*
|
|
* Check to see if allocation came from hot-plug-add
|
|
*/
|
|
if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
|
|
kfree(usemap);
|
|
if (memmap)
|
|
__kfree_section_memmap(memmap);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The usemap came from bootmem. This is packed with other usemaps
|
|
* on the section which has pgdat at boot time. Just keep it as is now.
|
|
*/
|
|
|
|
if (memmap)
|
|
free_map_bootmem(memmap);
|
|
}
|
|
|
|
void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
|
|
unsigned long map_offset)
|
|
{
|
|
struct page *memmap = NULL;
|
|
unsigned long *usemap = NULL, flags;
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
if (ms->section_mem_map) {
|
|
usemap = ms->pageblock_flags;
|
|
memmap = sparse_decode_mem_map(ms->section_mem_map,
|
|
__section_nr(ms));
|
|
ms->section_mem_map = 0;
|
|
ms->pageblock_flags = NULL;
|
|
}
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
|
|
clear_hwpoisoned_pages(memmap + map_offset,
|
|
PAGES_PER_SECTION - map_offset);
|
|
free_section_usemap(memmap, usemap);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|