linux-stable/lib/test_printf.c
Linus Torvalds 268325bda5 Random number generator updates for Linux 6.2-rc1.
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmOU+U8ACgkQSfxwEqXe
 A67NnQ//Y5DltmvibyPd7r1TFT2gUYv+Rx3sUV9ZE1NYptd/SWhhcL8c5FZ70Fuw
 bSKCa1uiWjOxosjXT1kGrWq3de7q7oUpAPSOGxgxzoaNURIt58N/ajItCX/4Au8I
 RlGAScHy5e5t41/26a498kB6qJ441fBEqCYKQpPLINMBAhe8TQ+NVp0rlpUwNHFX
 WrUGg4oKWxdBIW3HkDirQjJWDkkAiklRTifQh/Al4b6QDbOnRUGGCeckNOhixsvS
 waHWTld+Td8jRrA4b82tUb2uVZ2/b8dEvj/A8CuTv4yC0lywoyMgBWmJAGOC+UmT
 ZVNdGW02Jc2T+Iap8ZdsEmeLHNqbli4+IcbY5xNlov+tHJ2oz41H9TZoYKbudlr6
 /ReAUPSn7i50PhbQlEruj3eg+M2gjOeh8OF8UKwwRK8PghvyWQ1ScW0l3kUhPIhI
 PdIG6j4+D2mJc1FIj2rTVB+Bg933x6S+qx4zDxGlNp62AARUFYf6EgyD6aXFQVuX
 RxcKb6cjRuFkzFiKc8zkqg5edZH+IJcPNuIBmABqTGBOxbZWURXzIQvK/iULqZa4
 CdGAFIs6FuOh8pFHLI3R4YoHBopbHup/xKDEeAO9KZGyeVIuOSERDxxo5f/ITzcq
 APvT77DFOEuyvanr8RMqqh0yUjzcddXqw9+ieufsAyDwjD9DTuE=
 =QRhK
 -----END PGP SIGNATURE-----

Merge tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random

Pull random number generator updates from Jason Donenfeld:

 - Replace prandom_u32_max() and various open-coded variants of it,
   there is now a new family of functions that uses fast rejection
   sampling to choose properly uniformly random numbers within an
   interval:

       get_random_u32_below(ceil) - [0, ceil)
       get_random_u32_above(floor) - (floor, U32_MAX]
       get_random_u32_inclusive(floor, ceil) - [floor, ceil]

   Coccinelle was used to convert all current users of
   prandom_u32_max(), as well as many open-coded patterns, resulting in
   improvements throughout the tree.

   I'll have a "late" 6.1-rc1 pull for you that removes the now unused
   prandom_u32_max() function, just in case any other trees add a new
   use case of it that needs to converted. According to linux-next,
   there may be two trivial cases of prandom_u32_max() reintroductions
   that are fixable with a 's/.../.../'. So I'll have for you a final
   conversion patch doing that alongside the removal patch during the
   second week.

   This is a treewide change that touches many files throughout.

 - More consistent use of get_random_canary().

 - Updates to comments, documentation, tests, headers, and
   simplification in configuration.

 - The arch_get_random*_early() abstraction was only used by arm64 and
   wasn't entirely useful, so this has been replaced by code that works
   in all relevant contexts.

 - The kernel will use and manage random seeds in non-volatile EFI
   variables, refreshing a variable with a fresh seed when the RNG is
   initialized. The RNG GUID namespace is then hidden from efivarfs to
   prevent accidental leakage.

   These changes are split into random.c infrastructure code used in the
   EFI subsystem, in this pull request, and related support inside of
   EFISTUB, in Ard's EFI tree. These are co-dependent for full
   functionality, but the order of merging doesn't matter.

 - Part of the infrastructure added for the EFI support is also used for
   an improvement to the way vsprintf initializes its siphash key,
   replacing an sleep loop wart.

 - The hardware RNG framework now always calls its correct random.c
   input function, add_hwgenerator_randomness(), rather than sometimes
   going through helpers better suited for other cases.

 - The add_latent_entropy() function has long been called from the fork
   handler, but is a no-op when the latent entropy gcc plugin isn't
   used, which is fine for the purposes of latent entropy.

   But it was missing out on the cycle counter that was also being mixed
   in beside the latent entropy variable. So now, if the latent entropy
   gcc plugin isn't enabled, add_latent_entropy() will expand to a call
   to add_device_randomness(NULL, 0), which adds a cycle counter,
   without the absent latent entropy variable.

 - The RNG is now reseeded from a delayed worker, rather than on demand
   when used. Always running from a worker allows it to make use of the
   CPU RNG on platforms like S390x, whose instructions are too slow to
   do so from interrupts. It also has the effect of adding in new inputs
   more frequently with more regularity, amounting to a long term
   transcript of random values. Plus, it helps a bit with the upcoming
   vDSO implementation (which isn't yet ready for 6.2).

 - The jitter entropy algorithm now tries to execute on many different
   CPUs, round-robining, in hopes of hitting even more memory latencies
   and other unpredictable effects. It also will mix in a cycle counter
   when the entropy timer fires, in addition to being mixed in from the
   main loop, to account more explicitly for fluctuations in that timer
   firing. And the state it touches is now kept within the same cache
   line, so that it's assured that the different execution contexts will
   cause latencies.

* tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (23 commits)
  random: include <linux/once.h> in the right header
  random: align entropy_timer_state to cache line
  random: mix in cycle counter when jitter timer fires
  random: spread out jitter callback to different CPUs
  random: remove extraneous period and add a missing one in comments
  efi: random: refresh non-volatile random seed when RNG is initialized
  vsprintf: initialize siphash key using notifier
  random: add back async readiness notifier
  random: reseed in delayed work rather than on-demand
  random: always mix cycle counter in add_latent_entropy()
  hw_random: use add_hwgenerator_randomness() for early entropy
  random: modernize documentation comment on get_random_bytes()
  random: adjust comment to account for removed function
  random: remove early archrandom abstraction
  random: use random.trust_{bootloader,cpu} command line option only
  stackprotector: actually use get_random_canary()
  stackprotector: move get_random_canary() into stackprotector.h
  treewide: use get_random_u32_inclusive() when possible
  treewide: use get_random_u32_{above,below}() instead of manual loop
  treewide: use get_random_u32_below() instead of deprecated function
  ...
2022-12-12 16:22:22 -08:00

803 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Test cases for printf facility.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/printk.h>
#include <linux/random.h>
#include <linux/rtc.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/bitmap.h>
#include <linux/dcache.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/gfp.h>
#include <linux/mm.h>
#include <linux/property.h>
#include "../tools/testing/selftests/kselftest_module.h"
#define BUF_SIZE 256
#define PAD_SIZE 16
#define FILL_CHAR '$'
#define NOWARN(option, comment, block) \
__diag_push(); \
__diag_ignore_all(#option, comment); \
block \
__diag_pop();
KSTM_MODULE_GLOBALS();
static char *test_buffer __initdata;
static char *alloced_buffer __initdata;
extern bool no_hash_pointers;
static int __printf(4, 0) __init
do_test(int bufsize, const char *expect, int elen,
const char *fmt, va_list ap)
{
va_list aq;
int ret, written;
total_tests++;
memset(alloced_buffer, FILL_CHAR, BUF_SIZE + 2*PAD_SIZE);
va_copy(aq, ap);
ret = vsnprintf(test_buffer, bufsize, fmt, aq);
va_end(aq);
if (ret != elen) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) returned %d, expected %d\n",
bufsize, fmt, ret, elen);
return 1;
}
if (memchr_inv(alloced_buffer, FILL_CHAR, PAD_SIZE)) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) wrote before buffer\n", bufsize, fmt);
return 1;
}
if (!bufsize) {
if (memchr_inv(test_buffer, FILL_CHAR, BUF_SIZE + PAD_SIZE)) {
pr_warn("vsnprintf(buf, 0, \"%s\", ...) wrote to buffer\n",
fmt);
return 1;
}
return 0;
}
written = min(bufsize-1, elen);
if (test_buffer[written]) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) did not nul-terminate buffer\n",
bufsize, fmt);
return 1;
}
if (memchr_inv(test_buffer + written + 1, FILL_CHAR, bufsize - (written + 1))) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) wrote beyond the nul-terminator\n",
bufsize, fmt);
return 1;
}
if (memchr_inv(test_buffer + bufsize, FILL_CHAR, BUF_SIZE + PAD_SIZE - bufsize)) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) wrote beyond buffer\n", bufsize, fmt);
return 1;
}
if (memcmp(test_buffer, expect, written)) {
pr_warn("vsnprintf(buf, %d, \"%s\", ...) wrote '%s', expected '%.*s'\n",
bufsize, fmt, test_buffer, written, expect);
return 1;
}
return 0;
}
static void __printf(3, 4) __init
__test(const char *expect, int elen, const char *fmt, ...)
{
va_list ap;
int rand;
char *p;
if (elen >= BUF_SIZE) {
pr_err("error in test suite: expected output length %d too long. Format was '%s'.\n",
elen, fmt);
failed_tests++;
return;
}
va_start(ap, fmt);
/*
* Every fmt+args is subjected to four tests: Three where we
* tell vsnprintf varying buffer sizes (plenty, not quite
* enough and 0), and then we also test that kvasprintf would
* be able to print it as expected.
*/
failed_tests += do_test(BUF_SIZE, expect, elen, fmt, ap);
rand = get_random_u32_inclusive(1, elen + 1);
/* Since elen < BUF_SIZE, we have 1 <= rand <= BUF_SIZE. */
failed_tests += do_test(rand, expect, elen, fmt, ap);
failed_tests += do_test(0, expect, elen, fmt, ap);
p = kvasprintf(GFP_KERNEL, fmt, ap);
if (p) {
total_tests++;
if (memcmp(p, expect, elen+1)) {
pr_warn("kvasprintf(..., \"%s\", ...) returned '%s', expected '%s'\n",
fmt, p, expect);
failed_tests++;
}
kfree(p);
}
va_end(ap);
}
#define test(expect, fmt, ...) \
__test(expect, strlen(expect), fmt, ##__VA_ARGS__)
static void __init
test_basic(void)
{
/* Work around annoying "warning: zero-length gnu_printf format string". */
char nul = '\0';
test("", &nul);
test("100%", "100%%");
test("xxx%yyy", "xxx%cyyy", '%');
__test("xxx\0yyy", 7, "xxx%cyyy", '\0');
}
static void __init
test_number(void)
{
test("0x1234abcd ", "%#-12x", 0x1234abcd);
test(" 0x1234abcd", "%#12x", 0x1234abcd);
test("0|001| 12|+123| 1234|-123|-1234", "%d|%03d|%3d|%+d|% d|%+d|% d", 0, 1, 12, 123, 1234, -123, -1234);
NOWARN(-Wformat, "Intentionally test narrowing conversion specifiers.", {
test("0|1|1|128|255", "%hhu|%hhu|%hhu|%hhu|%hhu", 0, 1, 257, 128, -1);
test("0|1|1|-128|-1", "%hhd|%hhd|%hhd|%hhd|%hhd", 0, 1, 257, 128, -1);
test("2015122420151225", "%ho%ho%#ho", 1037, 5282, -11627);
})
/*
* POSIX/C99: »The result of converting zero with an explicit
* precision of zero shall be no characters.« Hence the output
* from the below test should really be "00|0||| ". However,
* the kernel's printf also produces a single 0 in that
* case. This test case simply documents the current
* behaviour.
*/
test("00|0|0|0|0", "%.2d|%.1d|%.0d|%.*d|%1.0d", 0, 0, 0, 0, 0, 0);
}
static void __init
test_string(void)
{
test("", "%s%.0s", "", "123");
test("ABCD|abc|123", "%s|%.3s|%.*s", "ABCD", "abcdef", 3, "123456");
test("1 | 2|3 | 4|5 ", "%-3s|%3s|%-*s|%*s|%*s", "1", "2", 3, "3", 3, "4", -3, "5");
test("1234 ", "%-10.4s", "123456");
test(" 1234", "%10.4s", "123456");
/*
* POSIX and C99 say that a negative precision (which is only
* possible to pass via a * argument) should be treated as if
* the precision wasn't present, and that if the precision is
* omitted (as in %.s), the precision should be taken to be
* 0. However, the kernel's printf behave exactly opposite,
* treating a negative precision as 0 and treating an omitted
* precision specifier as if no precision was given.
*
* These test cases document the current behaviour; should
* anyone ever feel the need to follow the standards more
* closely, this can be revisited.
*/
test(" ", "%4.*s", -5, "123456");
test("123456", "%.s", "123456");
test("a||", "%.s|%.0s|%.*s", "a", "b", 0, "c");
test("a | | ", "%-3.s|%-3.0s|%-3.*s", "a", "b", 0, "c");
}
#define PLAIN_BUF_SIZE 64 /* leave some space so we don't oops */
#if BITS_PER_LONG == 64
#define PTR_WIDTH 16
#define PTR ((void *)0xffff0123456789abUL)
#define PTR_STR "ffff0123456789ab"
#define PTR_VAL_NO_CRNG "(____ptrval____)"
#define ZEROS "00000000" /* hex 32 zero bits */
#define ONES "ffffffff" /* hex 32 one bits */
static int __init
plain_format(void)
{
char buf[PLAIN_BUF_SIZE];
int nchars;
nchars = snprintf(buf, PLAIN_BUF_SIZE, "%p", PTR);
if (nchars != PTR_WIDTH)
return -1;
if (strncmp(buf, PTR_VAL_NO_CRNG, PTR_WIDTH) == 0) {
pr_warn("crng possibly not yet initialized. plain 'p' buffer contains \"%s\"",
PTR_VAL_NO_CRNG);
return 0;
}
if (strncmp(buf, ZEROS, strlen(ZEROS)) != 0)
return -1;
return 0;
}
#else
#define PTR_WIDTH 8
#define PTR ((void *)0x456789ab)
#define PTR_STR "456789ab"
#define PTR_VAL_NO_CRNG "(ptrval)"
#define ZEROS ""
#define ONES ""
static int __init
plain_format(void)
{
/* Format is implicitly tested for 32 bit machines by plain_hash() */
return 0;
}
#endif /* BITS_PER_LONG == 64 */
static int __init
plain_hash_to_buffer(const void *p, char *buf, size_t len)
{
int nchars;
nchars = snprintf(buf, len, "%p", p);
if (nchars != PTR_WIDTH)
return -1;
if (strncmp(buf, PTR_VAL_NO_CRNG, PTR_WIDTH) == 0) {
pr_warn("crng possibly not yet initialized. plain 'p' buffer contains \"%s\"",
PTR_VAL_NO_CRNG);
return 0;
}
return 0;
}
static int __init
plain_hash(void)
{
char buf[PLAIN_BUF_SIZE];
int ret;
ret = plain_hash_to_buffer(PTR, buf, PLAIN_BUF_SIZE);
if (ret)
return ret;
if (strncmp(buf, PTR_STR, PTR_WIDTH) == 0)
return -1;
return 0;
}
/*
* We can't use test() to test %p because we don't know what output to expect
* after an address is hashed.
*/
static void __init
plain(void)
{
int err;
if (no_hash_pointers) {
pr_warn("skipping plain 'p' tests");
skipped_tests += 2;
return;
}
err = plain_hash();
if (err) {
pr_warn("plain 'p' does not appear to be hashed\n");
failed_tests++;
return;
}
err = plain_format();
if (err) {
pr_warn("hashing plain 'p' has unexpected format\n");
failed_tests++;
}
}
static void __init
test_hashed(const char *fmt, const void *p)
{
char buf[PLAIN_BUF_SIZE];
int ret;
/*
* No need to increase failed test counter since this is assumed
* to be called after plain().
*/
ret = plain_hash_to_buffer(p, buf, PLAIN_BUF_SIZE);
if (ret)
return;
test(buf, fmt, p);
}
/*
* NULL pointers aren't hashed.
*/
static void __init
null_pointer(void)
{
test(ZEROS "00000000", "%p", NULL);
test(ZEROS "00000000", "%px", NULL);
test("(null)", "%pE", NULL);
}
/*
* Error pointers aren't hashed.
*/
static void __init
error_pointer(void)
{
test(ONES "fffffff5", "%p", ERR_PTR(-11));
test(ONES "fffffff5", "%px", ERR_PTR(-11));
test("(efault)", "%pE", ERR_PTR(-11));
}
#define PTR_INVALID ((void *)0x000000ab)
static void __init
invalid_pointer(void)
{
test_hashed("%p", PTR_INVALID);
test(ZEROS "000000ab", "%px", PTR_INVALID);
test("(efault)", "%pE", PTR_INVALID);
}
static void __init
symbol_ptr(void)
{
}
static void __init
kernel_ptr(void)
{
/* We can't test this without access to kptr_restrict. */
}
static void __init
struct_resource(void)
{
}
static void __init
addr(void)
{
}
static void __init
escaped_str(void)
{
}
static void __init
hex_string(void)
{
const char buf[3] = {0xc0, 0xff, 0xee};
test("c0 ff ee|c0:ff:ee|c0-ff-ee|c0ffee",
"%3ph|%3phC|%3phD|%3phN", buf, buf, buf, buf);
test("c0 ff ee|c0:ff:ee|c0-ff-ee|c0ffee",
"%*ph|%*phC|%*phD|%*phN", 3, buf, 3, buf, 3, buf, 3, buf);
}
static void __init
mac(void)
{
const u8 addr[6] = {0x2d, 0x48, 0xd6, 0xfc, 0x7a, 0x05};
test("2d:48:d6:fc:7a:05", "%pM", addr);
test("05:7a:fc:d6:48:2d", "%pMR", addr);
test("2d-48-d6-fc-7a-05", "%pMF", addr);
test("2d48d6fc7a05", "%pm", addr);
test("057afcd6482d", "%pmR", addr);
}
static void __init
ip4(void)
{
struct sockaddr_in sa;
sa.sin_family = AF_INET;
sa.sin_port = cpu_to_be16(12345);
sa.sin_addr.s_addr = cpu_to_be32(0x7f000001);
test("127.000.000.001|127.0.0.1", "%pi4|%pI4", &sa.sin_addr, &sa.sin_addr);
test("127.000.000.001|127.0.0.1", "%piS|%pIS", &sa, &sa);
sa.sin_addr.s_addr = cpu_to_be32(0x01020304);
test("001.002.003.004:12345|1.2.3.4:12345", "%piSp|%pISp", &sa, &sa);
}
static void __init
ip6(void)
{
}
static void __init
ip(void)
{
ip4();
ip6();
}
static void __init
uuid(void)
{
const char uuid[16] = {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7,
0x8, 0x9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf};
test("00010203-0405-0607-0809-0a0b0c0d0e0f", "%pUb", uuid);
test("00010203-0405-0607-0809-0A0B0C0D0E0F", "%pUB", uuid);
test("03020100-0504-0706-0809-0a0b0c0d0e0f", "%pUl", uuid);
test("03020100-0504-0706-0809-0A0B0C0D0E0F", "%pUL", uuid);
}
static struct dentry test_dentry[4] __initdata = {
{ .d_parent = &test_dentry[0],
.d_name = QSTR_INIT(test_dentry[0].d_iname, 3),
.d_iname = "foo" },
{ .d_parent = &test_dentry[0],
.d_name = QSTR_INIT(test_dentry[1].d_iname, 5),
.d_iname = "bravo" },
{ .d_parent = &test_dentry[1],
.d_name = QSTR_INIT(test_dentry[2].d_iname, 4),
.d_iname = "alfa" },
{ .d_parent = &test_dentry[2],
.d_name = QSTR_INIT(test_dentry[3].d_iname, 5),
.d_iname = "romeo" },
};
static void __init
dentry(void)
{
test("foo", "%pd", &test_dentry[0]);
test("foo", "%pd2", &test_dentry[0]);
test("(null)", "%pd", NULL);
test("(efault)", "%pd", PTR_INVALID);
test("(null)", "%pD", NULL);
test("(efault)", "%pD", PTR_INVALID);
test("romeo", "%pd", &test_dentry[3]);
test("alfa/romeo", "%pd2", &test_dentry[3]);
test("bravo/alfa/romeo", "%pd3", &test_dentry[3]);
test("/bravo/alfa/romeo", "%pd4", &test_dentry[3]);
test("/bravo/alfa", "%pd4", &test_dentry[2]);
test("bravo/alfa |bravo/alfa ", "%-12pd2|%*pd2", &test_dentry[2], -12, &test_dentry[2]);
test(" bravo/alfa| bravo/alfa", "%12pd2|%*pd2", &test_dentry[2], 12, &test_dentry[2]);
}
static void __init
struct_va_format(void)
{
}
static void __init
time_and_date(void)
{
/* 1543210543 */
const struct rtc_time tm = {
.tm_sec = 43,
.tm_min = 35,
.tm_hour = 5,
.tm_mday = 26,
.tm_mon = 10,
.tm_year = 118,
};
/* 2019-01-04T15:32:23 */
time64_t t = 1546615943;
test("(%pt?)", "%pt", &tm);
test("2018-11-26T05:35:43", "%ptR", &tm);
test("0118-10-26T05:35:43", "%ptRr", &tm);
test("05:35:43|2018-11-26", "%ptRt|%ptRd", &tm, &tm);
test("05:35:43|0118-10-26", "%ptRtr|%ptRdr", &tm, &tm);
test("05:35:43|2018-11-26", "%ptRttr|%ptRdtr", &tm, &tm);
test("05:35:43 tr|2018-11-26 tr", "%ptRt tr|%ptRd tr", &tm, &tm);
test("2019-01-04T15:32:23", "%ptT", &t);
test("0119-00-04T15:32:23", "%ptTr", &t);
test("15:32:23|2019-01-04", "%ptTt|%ptTd", &t, &t);
test("15:32:23|0119-00-04", "%ptTtr|%ptTdr", &t, &t);
test("2019-01-04 15:32:23", "%ptTs", &t);
test("0119-00-04 15:32:23", "%ptTsr", &t);
test("15:32:23|2019-01-04", "%ptTts|%ptTds", &t, &t);
test("15:32:23|0119-00-04", "%ptTtrs|%ptTdrs", &t, &t);
}
static void __init
struct_clk(void)
{
}
static void __init
large_bitmap(void)
{
const int nbits = 1 << 16;
unsigned long *bits = bitmap_zalloc(nbits, GFP_KERNEL);
if (!bits)
return;
bitmap_set(bits, 1, 20);
bitmap_set(bits, 60000, 15);
test("1-20,60000-60014", "%*pbl", nbits, bits);
bitmap_free(bits);
}
static void __init
bitmap(void)
{
DECLARE_BITMAP(bits, 20);
const int primes[] = {2,3,5,7,11,13,17,19};
int i;
bitmap_zero(bits, 20);
test("00000|00000", "%20pb|%*pb", bits, 20, bits);
test("|", "%20pbl|%*pbl", bits, 20, bits);
for (i = 0; i < ARRAY_SIZE(primes); ++i)
set_bit(primes[i], bits);
test("a28ac|a28ac", "%20pb|%*pb", bits, 20, bits);
test("2-3,5,7,11,13,17,19|2-3,5,7,11,13,17,19", "%20pbl|%*pbl", bits, 20, bits);
bitmap_fill(bits, 20);
test("fffff|fffff", "%20pb|%*pb", bits, 20, bits);
test("0-19|0-19", "%20pbl|%*pbl", bits, 20, bits);
large_bitmap();
}
static void __init
netdev_features(void)
{
}
struct page_flags_test {
int width;
int shift;
int mask;
const char *fmt;
const char *name;
};
static const struct page_flags_test pft[] = {
{SECTIONS_WIDTH, SECTIONS_PGSHIFT, SECTIONS_MASK,
"%d", "section"},
{NODES_WIDTH, NODES_PGSHIFT, NODES_MASK,
"%d", "node"},
{ZONES_WIDTH, ZONES_PGSHIFT, ZONES_MASK,
"%d", "zone"},
{LAST_CPUPID_WIDTH, LAST_CPUPID_PGSHIFT, LAST_CPUPID_MASK,
"%#x", "lastcpupid"},
{KASAN_TAG_WIDTH, KASAN_TAG_PGSHIFT, KASAN_TAG_MASK,
"%#x", "kasantag"},
};
static void __init
page_flags_test(int section, int node, int zone, int last_cpupid,
int kasan_tag, unsigned long flags, const char *name,
char *cmp_buf)
{
unsigned long values[] = {section, node, zone, last_cpupid, kasan_tag};
unsigned long size;
bool append = false;
int i;
for (i = 0; i < ARRAY_SIZE(values); i++)
flags |= (values[i] & pft[i].mask) << pft[i].shift;
size = scnprintf(cmp_buf, BUF_SIZE, "%#lx(", flags);
if (flags & PAGEFLAGS_MASK) {
size += scnprintf(cmp_buf + size, BUF_SIZE - size, "%s", name);
append = true;
}
for (i = 0; i < ARRAY_SIZE(pft); i++) {
if (!pft[i].width)
continue;
if (append)
size += scnprintf(cmp_buf + size, BUF_SIZE - size, "|");
size += scnprintf(cmp_buf + size, BUF_SIZE - size, "%s=",
pft[i].name);
size += scnprintf(cmp_buf + size, BUF_SIZE - size, pft[i].fmt,
values[i] & pft[i].mask);
append = true;
}
snprintf(cmp_buf + size, BUF_SIZE - size, ")");
test(cmp_buf, "%pGp", &flags);
}
static void __init
flags(void)
{
unsigned long flags;
char *cmp_buffer;
gfp_t gfp;
cmp_buffer = kmalloc(BUF_SIZE, GFP_KERNEL);
if (!cmp_buffer)
return;
flags = 0;
page_flags_test(0, 0, 0, 0, 0, flags, "", cmp_buffer);
flags = 1UL << NR_PAGEFLAGS;
page_flags_test(0, 0, 0, 0, 0, flags, "", cmp_buffer);
flags |= 1UL << PG_uptodate | 1UL << PG_dirty | 1UL << PG_lru
| 1UL << PG_active | 1UL << PG_swapbacked;
page_flags_test(1, 1, 1, 0x1fffff, 1, flags,
"uptodate|dirty|lru|active|swapbacked",
cmp_buffer);
flags = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
test("read|exec|mayread|maywrite|mayexec", "%pGv", &flags);
gfp = GFP_TRANSHUGE;
test("GFP_TRANSHUGE", "%pGg", &gfp);
gfp = GFP_ATOMIC|__GFP_DMA;
test("GFP_ATOMIC|GFP_DMA", "%pGg", &gfp);
gfp = __GFP_ATOMIC;
test("__GFP_ATOMIC", "%pGg", &gfp);
/* Any flags not translated by the table should remain numeric */
gfp = ~__GFP_BITS_MASK;
snprintf(cmp_buffer, BUF_SIZE, "%#lx", (unsigned long) gfp);
test(cmp_buffer, "%pGg", &gfp);
snprintf(cmp_buffer, BUF_SIZE, "__GFP_ATOMIC|%#lx",
(unsigned long) gfp);
gfp |= __GFP_ATOMIC;
test(cmp_buffer, "%pGg", &gfp);
kfree(cmp_buffer);
}
static void __init fwnode_pointer(void)
{
const struct software_node first = { .name = "first" };
const struct software_node second = { .name = "second", .parent = &first };
const struct software_node third = { .name = "third", .parent = &second };
const struct software_node *group[] = { &first, &second, &third, NULL };
const char * const full_name_second = "first/second";
const char * const full_name_third = "first/second/third";
const char * const second_name = "second";
const char * const third_name = "third";
int rval;
rval = software_node_register_node_group(group);
if (rval) {
pr_warn("cannot register softnodes; rval %d\n", rval);
return;
}
test(full_name_second, "%pfw", software_node_fwnode(&second));
test(full_name_third, "%pfw", software_node_fwnode(&third));
test(full_name_third, "%pfwf", software_node_fwnode(&third));
test(second_name, "%pfwP", software_node_fwnode(&second));
test(third_name, "%pfwP", software_node_fwnode(&third));
software_node_unregister_node_group(group);
}
static void __init fourcc_pointer(void)
{
struct {
u32 code;
char *str;
} const try[] = {
{ 0x3231564e, "NV12 little-endian (0x3231564e)", },
{ 0xb231564e, "NV12 big-endian (0xb231564e)", },
{ 0x10111213, ".... little-endian (0x10111213)", },
{ 0x20303159, "Y10 little-endian (0x20303159)", },
};
unsigned int i;
for (i = 0; i < ARRAY_SIZE(try); i++)
test(try[i].str, "%p4cc", &try[i].code);
}
static void __init
errptr(void)
{
test("-1234", "%pe", ERR_PTR(-1234));
/* Check that %pe with a non-ERR_PTR gets treated as ordinary %p. */
BUILD_BUG_ON(IS_ERR(PTR));
test_hashed("%pe", PTR);
#ifdef CONFIG_SYMBOLIC_ERRNAME
test("(-ENOTSOCK)", "(%pe)", ERR_PTR(-ENOTSOCK));
test("(-EAGAIN)", "(%pe)", ERR_PTR(-EAGAIN));
BUILD_BUG_ON(EAGAIN != EWOULDBLOCK);
test("(-EAGAIN)", "(%pe)", ERR_PTR(-EWOULDBLOCK));
test("[-EIO ]", "[%-8pe]", ERR_PTR(-EIO));
test("[ -EIO]", "[%8pe]", ERR_PTR(-EIO));
test("-EPROBE_DEFER", "%pe", ERR_PTR(-EPROBE_DEFER));
#endif
}
static void __init
test_pointer(void)
{
plain();
null_pointer();
error_pointer();
invalid_pointer();
symbol_ptr();
kernel_ptr();
struct_resource();
addr();
escaped_str();
hex_string();
mac();
ip();
uuid();
dentry();
struct_va_format();
time_and_date();
struct_clk();
bitmap();
netdev_features();
flags();
errptr();
fwnode_pointer();
fourcc_pointer();
}
static void __init selftest(void)
{
alloced_buffer = kmalloc(BUF_SIZE + 2*PAD_SIZE, GFP_KERNEL);
if (!alloced_buffer)
return;
test_buffer = alloced_buffer + PAD_SIZE;
test_basic();
test_number();
test_string();
test_pointer();
kfree(alloced_buffer);
}
KSTM_MODULE_LOADERS(test_printf);
MODULE_AUTHOR("Rasmus Villemoes <linux@rasmusvillemoes.dk>");
MODULE_LICENSE("GPL");