mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 10:45:49 +00:00
Linux kernel stable tree
f6afdaf72a
Alan Maguire says: ==================== bpf: support resilient split BTF Split BPF Type Format (BTF) provides huge advantages in that kernel modules only have to provide type information for types that they do not share with the core kernel; for core kernel types, split BTF refers to core kernel BTF type ids. So for a STRUCT sk_buff, a module that uses that structure (or a pointer to it) simply needs to refer to the core kernel type id, saving the need to define the structure and its many dependents. This cuts down on duplication and makes BTF as compact as possible. However, there is a downside. This scheme requires the references from split BTF to base BTF to be valid not just at encoding time, but at use time (when the module is loaded). Even a small change in kernel types can perturb the type ids in core kernel BTF, and - if the new reproducible BTF option is not used - pahole's parallel processing of compilation units can lead to different type ids for the same kernel if the BTF is regenerated. So we have a robustness problem for split BTF for cases where a module is not always compiled at the same time as the kernel. This problem is particularly acute for distros which generally want module builders to be able to compile a module for the lifetime of a Linux stable-based release, and have it continue to be valid over the lifetime of that release, even as changes in data structures (and hence BTF types) accrue. Today it's not possible to generate BTF for modules that works beyond the initial kernel it is compiled against - kernel bugfixes etc invalidate the split BTF references to vmlinux BTF, and BTF is no longer usable for the module. The goal of this series is to provide options to provide additional context for cases like this. That context comes in the form of distilled base BTF; it stands in for the base BTF, and contains information about the types referenced from split BTF, but not their full descriptions. The modified split BTF will refer to type ids in this .BTF.base section, and when the kernel loads such modules it will use that .BTF.base to map references from split BTF to the equivalent current vmlinux base BTF types. Once this relocation process has succeeded, the module BTF available in /sys/kernel/btf will look exactly as if it was built with the current vmlinux; references to base types will be fixed up etc. A module builder - using this series along with the pahole changes - can then build a module with distilled base BTF via an out-of-tree module build, i.e. make -C . M=path/2/module The module will have a .BTF section (the split BTF) and a .BTF.base section. The latter is small in size - distilled base BTF does not need full struct/union/enum information for named types for example. For 2667 modules built with distilled base BTF, the average size observed was 1556 bytes (stddev 1563). The overall size added to this 2667 modules was 5.3Mb. Note that for the in-tree modules, this approach is not needed as split and base BTF in the case of in-tree modules are always built and re-built together. The series first focuses on generating split BTF with distilled base BTF; then relocation support is added to allow split BTF with an associated distlled base to be relocated with a new base BTF. Next Eduard's patch allows BTF ELF parsing to work with both .BTF and .BTF.base sections; this ensures that bpftool will be able to dump BTF for a module with a .BTF.base section for example, or indeed dump relocated BTF where a module and a "-B vmlinux" is supplied. Then we add support to resolve_btfids to ignore base BTF - i.e. to avoid relocation - if a .BTF.base section is found. This ensures the .BTF.ids section is populated with ids relative to the distilled base (these will be relocated as part of module load). Finally the series supports storage of .BTF.base data/size in modules and supports sharing of relocation code with the kernel to allow relocation of module BTF. For the kernel, this relocation process happens at module load time, and we relocate split BTF references to point at types in the current vmlinux BTF. As part of this, .BTF.ids references need to be mapped also. So concretely, what happens is - we generate split BTF in the .BTF section of a module that refers to types in the .BTF.base section as base types; the latter are not full type descriptions but provide information about the base type. So a STRUCT sk_buff would be represented as a FWD struct sk_buff in distilled base BTF for example. - when the module is loaded, the split BTF is relocated with vmlinux BTF; in the case of the FWD struct sk_buff, we find the STRUCT sk_buff in vmlinux BTF and map all split BTF references to the distilled base FWD sk_buff, replacing them with references to the vmlinux BTF STRUCT sk_buff. A previous approach to this problem [1] utilized standalone BTF for such cases - where the BTF is not defined relative to base BTF so there is no relocation required. The problem with that approach is that from the verifier perspective, some types are special, and having a custom representation of a core kernel type that did not necessarily match the current representation is not tenable. So the approach taken here was to preserve the split BTF model while minimizing the representation of the context needed to relocate split and current vmlinux BTF. To generate distilled .BTF.base sections the associated dwarves patch (to be applied on the "next" branch there) is needed [3] Without it, things will still work but modules will not be built with a .BTF.base section. Changes since v5[4]: - Update search of distilled types to return the first occurrence of a string (or a string+size pair); this allows us to iterate over all matches in distilled base BTF (Andrii, patch 3) - Update to use BTF field iterators (Andrii, patches 1, 3 and 8) - Update tests to cover multiple match and associated error cases (Eduard, patch 4) - Rename elf_sections_info to btf_elf_secs, remove use of libbpf_get_error(), reset btf->owns_base when relocation succeeds (Andrii, patch 5) Changes since v4[5]: - Moved embeddedness, duplicate name checks to relocation time and record struct/union size for all distilled struct/unions instead of using forwards. This allows us to carry out type compatibility checks based on the base BTF we want to relocate with (Eduard, patches 1, 3) - Moved to using qsort() instead of qsort_r() as support for qsort_r() appears to be missing in Android libc (Andrii, patch 3) - Sorting/searching now incorporates size matching depending on BTF kind and embeddedness of struct/union (Eduard, Andrii, patch 3) - Improved naming of various types during relocation to avoid confusion (Andrii, patch 3) - Incorporated Eduard's patch (patch 5) which handles .BTF.base sections internally in btf_parse_elf(). This makes ELF parsing work with split BTF, split BTF with a distilled base, split BTF with a distilled base _and_ base BTF (by relocating) etc. Having this avoids the need for bpftool changes; it will work as-is with .BTF.base sections (Eduard, patch 4) - Updated resolve_btfids to _not_ relocate BTF for modules where a .BTF.base section is present; in that one case we do not want to relocate BTF as the .BTF.ids section should reflect ids in .BTF.base which will later be relocated on module load (Eduard, Andrii, patch 5) Changes since v3[6]: - distill now checks for duplicate-named struct/unions and records them as a sized struct/union to help identify which of the multiple base BTF structs/unions it refers to (Eduard, patch 1) - added test support for multiple name handling (Eduard, patch 2) - simplified the string mapping when updating split BTF to use base BTF instead of distilled base. Since the only string references split BTF can make to base BTF are the names of the base types, create a string map from distilled string offset -> base BTF string offset and update string offsets by visiting all strings in split BTF; this saves having to do costly searches of base BTF (Eduard, patch 7,10) - fixed bpftool manpage and indentation issues (Quentin, patch 11) Also explored Eduard's suggestion of doing an implicit fallback to checking for .BTF.base section in btf__parse() when it is called to get base BTF. However while it is doable, it turned out to be difficult operationally. Since fallback is implicit we do not know the source of the BTF - was it from .BTF or .BTF.base? In bpftool, we want to try first standalone BTF, then split, then split with distilled base. Having a way to explicitly request .BTF.base via btf__parse_opts() fits that model better. Changes since v2[7]: - submitted patch to use --btf_features in Makefile.btf for pahole v1.26 and later separately (Andrii). That has landed in bpf-next now. - distilled base now encodes ENUM64 as fwd ENUM (size 8), eliminating the need for support for ENUM64 in btf__add_fwd (patch 1, Andrii) - moved to distilling only named types, augmenting split BTF with associated reference types; this simplifies greatly the distilled base BTF and the mapping operation between distilled and base BTF when relocating (most of the series changes, Andrii) - relocation now iterates over base BTF, looking for matches based on name in distilled BTF. Distilled BTF is pre-sorted by name (Andrii, patch 8) - removed most redundant compabitiliby checks aside from struct size for base types/embedded structs and kind compatibility (since we only match on name) (Andrii, patch 8) - btf__parse_opts() now replaces btf_parse() internally in libbpf (Eduard, patch 3) Changes since RFC [8]: - updated terminology; we replace clunky "base reference" BTF with distilling base BTF into a .BTF.base section. Similarly BTF reconcilation becomes BTF relocation (Andrii, most patches) - add distilled base BTF by default for out-of-tree modules (Alexei, patch 8) - distill algorithm updated to record size of embedded struct/union by recording it as a 0-vlen STRUCT/UNION with size preserved (Andrii, patch 2) - verify size match on relocation for such STRUCT/UNIONs (Andrii, patch 9) - with embedded STRUCT/UNION recording size, we can have bpftool dump a header representation using .BTF.base + .BTF sections rather than special-casing and refusing to use "format c" for that case (patch 5) - match enum with enum64 and vice versa (Andrii, patch 9) - ensure that resolve_btfids works with BTF without .BTF.base section (patch 7) - update tests to cover embedded types, arrays and function prototypes (patches 3, 12) [1] https://lore.kernel.org/bpf/20231112124834.388735-14-alan.maguire@oracle.com/ [2] https://lore.kernel.org/bpf/20240501175035.2476830-1-alan.maguire@oracle.com/ [3] https://lore.kernel.org/bpf/20240517102714.4072080-1-alan.maguire@oracle.com/ [4] https://lore.kernel.org/bpf/20240528122408.3154936-1-alan.maguire@oracle.com/ [5] https://lore.kernel.org/bpf/20240517102246.4070184-1-alan.maguire@oracle.com/ [6] https://lore.kernel.org/bpf/20240510103052.850012-1-alan.maguire@oracle.com/ [7] https://lore.kernel.org/bpf/20240424154806.3417662-1-alan.maguire@oracle.com/ [8] https://lore.kernel.org/bpf/20240322102455.98558-1-alan.maguire@oracle.com/ ==================== Link: https://lore.kernel.org/r/20240613095014.357981-1-alan.maguire@oracle.com Signed-off-by: Andrii Nakryiko <andrii@kernel.org> |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
io_uring | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
rust | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.editorconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
.rustfmt.toml | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the reStructuredText markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.