mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-10 15:10:38 +00:00
706f2ada82
The vector instruction macros can also be used in inline assemblies. For this the magic asm(".include \"asm/vx-insn.h\"\n"); must be added to C files in order to avoid that the pre-processor eliminates the __ASSEMBLY__ guarded macros. This however comes with the problem that changes to asm/vx-insn.h do not cause a recompile of C files which have only this magic statement instead of a proper include statement. This can be observed with the arch/s390/kernel/fpu.c file. In order to fix this problem and also to avoid that the include must be specified twice, add a wrapper include header file which will do all necessary steps. This way only the vx-insn.h header file needs to be included and changes to the new vx-insn-asm.h header file cause a recompile of all dependent files like it should. Signed-off-by: Heiko Carstens <hca@linux.ibm.com> Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
265 lines
8.4 KiB
C
265 lines
8.4 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* In-kernel vector facility support functions
|
|
*
|
|
* Copyright IBM Corp. 2015
|
|
* Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/sched.h>
|
|
#include <asm/fpu/types.h>
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/vx-insn.h>
|
|
|
|
void __kernel_fpu_begin(struct kernel_fpu *state, u32 flags)
|
|
{
|
|
/*
|
|
* Limit the save to the FPU/vector registers already
|
|
* in use by the previous context
|
|
*/
|
|
flags &= state->mask;
|
|
|
|
if (flags & KERNEL_FPC)
|
|
/* Save floating point control */
|
|
asm volatile("stfpc %0" : "=Q" (state->fpc));
|
|
|
|
if (!MACHINE_HAS_VX) {
|
|
if (flags & KERNEL_VXR_V0V7) {
|
|
/* Save floating-point registers */
|
|
asm volatile("std 0,%0" : "=Q" (state->fprs[0]));
|
|
asm volatile("std 1,%0" : "=Q" (state->fprs[1]));
|
|
asm volatile("std 2,%0" : "=Q" (state->fprs[2]));
|
|
asm volatile("std 3,%0" : "=Q" (state->fprs[3]));
|
|
asm volatile("std 4,%0" : "=Q" (state->fprs[4]));
|
|
asm volatile("std 5,%0" : "=Q" (state->fprs[5]));
|
|
asm volatile("std 6,%0" : "=Q" (state->fprs[6]));
|
|
asm volatile("std 7,%0" : "=Q" (state->fprs[7]));
|
|
asm volatile("std 8,%0" : "=Q" (state->fprs[8]));
|
|
asm volatile("std 9,%0" : "=Q" (state->fprs[9]));
|
|
asm volatile("std 10,%0" : "=Q" (state->fprs[10]));
|
|
asm volatile("std 11,%0" : "=Q" (state->fprs[11]));
|
|
asm volatile("std 12,%0" : "=Q" (state->fprs[12]));
|
|
asm volatile("std 13,%0" : "=Q" (state->fprs[13]));
|
|
asm volatile("std 14,%0" : "=Q" (state->fprs[14]));
|
|
asm volatile("std 15,%0" : "=Q" (state->fprs[15]));
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Test and save vector registers */
|
|
asm volatile (
|
|
/*
|
|
* Test if any vector register must be saved and, if so,
|
|
* test if all register can be saved.
|
|
*/
|
|
" la 1,%[vxrs]\n" /* load save area */
|
|
" tmll %[m],30\n" /* KERNEL_VXR */
|
|
" jz 7f\n" /* no work -> done */
|
|
" jo 5f\n" /* -> save V0..V31 */
|
|
/*
|
|
* Test for special case KERNEL_FPU_MID only. In this
|
|
* case a vstm V8..V23 is the best instruction
|
|
*/
|
|
" chi %[m],12\n" /* KERNEL_VXR_MID */
|
|
" jne 0f\n" /* -> save V8..V23 */
|
|
" VSTM 8,23,128,1\n" /* vstm %v8,%v23,128(%r1) */
|
|
" j 7f\n"
|
|
/* Test and save the first half of 16 vector registers */
|
|
"0: tmll %[m],6\n" /* KERNEL_VXR_LOW */
|
|
" jz 3f\n" /* -> KERNEL_VXR_HIGH */
|
|
" jo 2f\n" /* 11 -> save V0..V15 */
|
|
" brc 2,1f\n" /* 10 -> save V8..V15 */
|
|
" VSTM 0,7,0,1\n" /* vstm %v0,%v7,0(%r1) */
|
|
" j 3f\n"
|
|
"1: VSTM 8,15,128,1\n" /* vstm %v8,%v15,128(%r1) */
|
|
" j 3f\n"
|
|
"2: VSTM 0,15,0,1\n" /* vstm %v0,%v15,0(%r1) */
|
|
/* Test and save the second half of 16 vector registers */
|
|
"3: tmll %[m],24\n" /* KERNEL_VXR_HIGH */
|
|
" jz 7f\n"
|
|
" jo 6f\n" /* 11 -> save V16..V31 */
|
|
" brc 2,4f\n" /* 10 -> save V24..V31 */
|
|
" VSTM 16,23,256,1\n" /* vstm %v16,%v23,256(%r1) */
|
|
" j 7f\n"
|
|
"4: VSTM 24,31,384,1\n" /* vstm %v24,%v31,384(%r1) */
|
|
" j 7f\n"
|
|
"5: VSTM 0,15,0,1\n" /* vstm %v0,%v15,0(%r1) */
|
|
"6: VSTM 16,31,256,1\n" /* vstm %v16,%v31,256(%r1) */
|
|
"7:"
|
|
: [vxrs] "=Q" (*(struct vx_array *) &state->vxrs)
|
|
: [m] "d" (flags)
|
|
: "1", "cc");
|
|
}
|
|
EXPORT_SYMBOL(__kernel_fpu_begin);
|
|
|
|
void __kernel_fpu_end(struct kernel_fpu *state, u32 flags)
|
|
{
|
|
/*
|
|
* Limit the restore to the FPU/vector registers of the
|
|
* previous context that have been overwritte by the
|
|
* current context
|
|
*/
|
|
flags &= state->mask;
|
|
|
|
if (flags & KERNEL_FPC)
|
|
/* Restore floating-point controls */
|
|
asm volatile("lfpc %0" : : "Q" (state->fpc));
|
|
|
|
if (!MACHINE_HAS_VX) {
|
|
if (flags & KERNEL_VXR_V0V7) {
|
|
/* Restore floating-point registers */
|
|
asm volatile("ld 0,%0" : : "Q" (state->fprs[0]));
|
|
asm volatile("ld 1,%0" : : "Q" (state->fprs[1]));
|
|
asm volatile("ld 2,%0" : : "Q" (state->fprs[2]));
|
|
asm volatile("ld 3,%0" : : "Q" (state->fprs[3]));
|
|
asm volatile("ld 4,%0" : : "Q" (state->fprs[4]));
|
|
asm volatile("ld 5,%0" : : "Q" (state->fprs[5]));
|
|
asm volatile("ld 6,%0" : : "Q" (state->fprs[6]));
|
|
asm volatile("ld 7,%0" : : "Q" (state->fprs[7]));
|
|
asm volatile("ld 8,%0" : : "Q" (state->fprs[8]));
|
|
asm volatile("ld 9,%0" : : "Q" (state->fprs[9]));
|
|
asm volatile("ld 10,%0" : : "Q" (state->fprs[10]));
|
|
asm volatile("ld 11,%0" : : "Q" (state->fprs[11]));
|
|
asm volatile("ld 12,%0" : : "Q" (state->fprs[12]));
|
|
asm volatile("ld 13,%0" : : "Q" (state->fprs[13]));
|
|
asm volatile("ld 14,%0" : : "Q" (state->fprs[14]));
|
|
asm volatile("ld 15,%0" : : "Q" (state->fprs[15]));
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Test and restore (load) vector registers */
|
|
asm volatile (
|
|
/*
|
|
* Test if any vector register must be loaded and, if so,
|
|
* test if all registers can be loaded at once.
|
|
*/
|
|
" la 1,%[vxrs]\n" /* load restore area */
|
|
" tmll %[m],30\n" /* KERNEL_VXR */
|
|
" jz 7f\n" /* no work -> done */
|
|
" jo 5f\n" /* -> restore V0..V31 */
|
|
/*
|
|
* Test for special case KERNEL_FPU_MID only. In this
|
|
* case a vlm V8..V23 is the best instruction
|
|
*/
|
|
" chi %[m],12\n" /* KERNEL_VXR_MID */
|
|
" jne 0f\n" /* -> restore V8..V23 */
|
|
" VLM 8,23,128,1\n" /* vlm %v8,%v23,128(%r1) */
|
|
" j 7f\n"
|
|
/* Test and restore the first half of 16 vector registers */
|
|
"0: tmll %[m],6\n" /* KERNEL_VXR_LOW */
|
|
" jz 3f\n" /* -> KERNEL_VXR_HIGH */
|
|
" jo 2f\n" /* 11 -> restore V0..V15 */
|
|
" brc 2,1f\n" /* 10 -> restore V8..V15 */
|
|
" VLM 0,7,0,1\n" /* vlm %v0,%v7,0(%r1) */
|
|
" j 3f\n"
|
|
"1: VLM 8,15,128,1\n" /* vlm %v8,%v15,128(%r1) */
|
|
" j 3f\n"
|
|
"2: VLM 0,15,0,1\n" /* vlm %v0,%v15,0(%r1) */
|
|
/* Test and restore the second half of 16 vector registers */
|
|
"3: tmll %[m],24\n" /* KERNEL_VXR_HIGH */
|
|
" jz 7f\n"
|
|
" jo 6f\n" /* 11 -> restore V16..V31 */
|
|
" brc 2,4f\n" /* 10 -> restore V24..V31 */
|
|
" VLM 16,23,256,1\n" /* vlm %v16,%v23,256(%r1) */
|
|
" j 7f\n"
|
|
"4: VLM 24,31,384,1\n" /* vlm %v24,%v31,384(%r1) */
|
|
" j 7f\n"
|
|
"5: VLM 0,15,0,1\n" /* vlm %v0,%v15,0(%r1) */
|
|
"6: VLM 16,31,256,1\n" /* vlm %v16,%v31,256(%r1) */
|
|
"7:"
|
|
: [vxrs] "=Q" (*(struct vx_array *) &state->vxrs)
|
|
: [m] "d" (flags)
|
|
: "1", "cc");
|
|
}
|
|
EXPORT_SYMBOL(__kernel_fpu_end);
|
|
|
|
void __load_fpu_regs(void)
|
|
{
|
|
struct fpu *state = ¤t->thread.fpu;
|
|
unsigned long *regs = current->thread.fpu.regs;
|
|
|
|
asm volatile("lfpc %0" : : "Q" (state->fpc));
|
|
if (likely(MACHINE_HAS_VX)) {
|
|
asm volatile("lgr 1,%0\n"
|
|
"VLM 0,15,0,1\n"
|
|
"VLM 16,31,256,1\n"
|
|
:
|
|
: "d" (regs)
|
|
: "1", "cc", "memory");
|
|
} else {
|
|
asm volatile("ld 0,%0" : : "Q" (regs[0]));
|
|
asm volatile("ld 1,%0" : : "Q" (regs[1]));
|
|
asm volatile("ld 2,%0" : : "Q" (regs[2]));
|
|
asm volatile("ld 3,%0" : : "Q" (regs[3]));
|
|
asm volatile("ld 4,%0" : : "Q" (regs[4]));
|
|
asm volatile("ld 5,%0" : : "Q" (regs[5]));
|
|
asm volatile("ld 6,%0" : : "Q" (regs[6]));
|
|
asm volatile("ld 7,%0" : : "Q" (regs[7]));
|
|
asm volatile("ld 8,%0" : : "Q" (regs[8]));
|
|
asm volatile("ld 9,%0" : : "Q" (regs[9]));
|
|
asm volatile("ld 10,%0" : : "Q" (regs[10]));
|
|
asm volatile("ld 11,%0" : : "Q" (regs[11]));
|
|
asm volatile("ld 12,%0" : : "Q" (regs[12]));
|
|
asm volatile("ld 13,%0" : : "Q" (regs[13]));
|
|
asm volatile("ld 14,%0" : : "Q" (regs[14]));
|
|
asm volatile("ld 15,%0" : : "Q" (regs[15]));
|
|
}
|
|
clear_cpu_flag(CIF_FPU);
|
|
}
|
|
EXPORT_SYMBOL(__load_fpu_regs);
|
|
|
|
void load_fpu_regs(void)
|
|
{
|
|
raw_local_irq_disable();
|
|
__load_fpu_regs();
|
|
raw_local_irq_enable();
|
|
}
|
|
EXPORT_SYMBOL(load_fpu_regs);
|
|
|
|
void save_fpu_regs(void)
|
|
{
|
|
unsigned long flags, *regs;
|
|
struct fpu *state;
|
|
|
|
local_irq_save(flags);
|
|
|
|
if (test_cpu_flag(CIF_FPU))
|
|
goto out;
|
|
|
|
state = ¤t->thread.fpu;
|
|
regs = current->thread.fpu.regs;
|
|
|
|
asm volatile("stfpc %0" : "=Q" (state->fpc));
|
|
if (likely(MACHINE_HAS_VX)) {
|
|
asm volatile("lgr 1,%0\n"
|
|
"VSTM 0,15,0,1\n"
|
|
"VSTM 16,31,256,1\n"
|
|
:
|
|
: "d" (regs)
|
|
: "1", "cc", "memory");
|
|
} else {
|
|
asm volatile("std 0,%0" : "=Q" (regs[0]));
|
|
asm volatile("std 1,%0" : "=Q" (regs[1]));
|
|
asm volatile("std 2,%0" : "=Q" (regs[2]));
|
|
asm volatile("std 3,%0" : "=Q" (regs[3]));
|
|
asm volatile("std 4,%0" : "=Q" (regs[4]));
|
|
asm volatile("std 5,%0" : "=Q" (regs[5]));
|
|
asm volatile("std 6,%0" : "=Q" (regs[6]));
|
|
asm volatile("std 7,%0" : "=Q" (regs[7]));
|
|
asm volatile("std 8,%0" : "=Q" (regs[8]));
|
|
asm volatile("std 9,%0" : "=Q" (regs[9]));
|
|
asm volatile("std 10,%0" : "=Q" (regs[10]));
|
|
asm volatile("std 11,%0" : "=Q" (regs[11]));
|
|
asm volatile("std 12,%0" : "=Q" (regs[12]));
|
|
asm volatile("std 13,%0" : "=Q" (regs[13]));
|
|
asm volatile("std 14,%0" : "=Q" (regs[14]));
|
|
asm volatile("std 15,%0" : "=Q" (regs[15]));
|
|
}
|
|
set_cpu_flag(CIF_FPU);
|
|
out:
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(save_fpu_regs);
|