linux-stable/mm/util.c
Danilo Krummrich 590b9d576c mm: kvmalloc: align kvrealloc() with krealloc()
Besides the obvious (and desired) difference between krealloc() and
kvrealloc(), there is some inconsistency in their function signatures and
behavior:

 - krealloc() frees the memory when the requested size is zero, whereas
   kvrealloc() simply returns a pointer to the existing allocation.

 - krealloc() behaves like kmalloc() if a NULL pointer is passed, whereas
   kvrealloc() does not accept a NULL pointer at all and, if passed,
   would fault instead.

 - krealloc() is self-contained, whereas kvrealloc() relies on the caller
   to provide the size of the previous allocation.

Inconsistent behavior throughout allocation APIs is error prone, hence
make kvrealloc() behave like krealloc(), which seems superior in all
mentioned aspects.

Besides that, implementing kvrealloc() by making use of krealloc() and
vrealloc() provides oppertunities to grow (and shrink) allocations more
efficiently.  For instance, vrealloc() can be optimized to allocate and
map additional pages to grow the allocation or unmap and free unused pages
to shrink the allocation.

[dakr@kernel.org: document concurrency restrictions]
  Link: https://lkml.kernel.org/r/20240725125442.4957-1-dakr@kernel.org
[dakr@kernel.org: disable KASAN when switching to vmalloc]
  Link: https://lkml.kernel.org/r/20240730185049.6244-2-dakr@kernel.org
[dakr@kernel.org: properly document __GFP_ZERO behavior]
  Link: https://lkml.kernel.org/r/20240730185049.6244-5-dakr@kernel.org
Link: https://lkml.kernel.org/r/20240722163111.4766-3-dakr@kernel.org
Signed-off-by: Danilo Krummrich <dakr@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Chandan Babu R <chandan.babu@oracle.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <kees@kernel.org>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Oliver Upton <oliver.upton@linux.dev>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Uladzislau Rezki <urezki@gmail.com>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-09-01 20:25:44 -07:00

1238 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/compiler.h>
#include <linux/export.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/sched/signal.h>
#include <linux/sched/task_stack.h>
#include <linux/security.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/mman.h>
#include <linux/hugetlb.h>
#include <linux/vmalloc.h>
#include <linux/userfaultfd_k.h>
#include <linux/elf.h>
#include <linux/elf-randomize.h>
#include <linux/personality.h>
#include <linux/random.h>
#include <linux/processor.h>
#include <linux/sizes.h>
#include <linux/compat.h>
#include <linux/uaccess.h>
#include <kunit/visibility.h>
#include "internal.h"
#include "swap.h"
/**
* kfree_const - conditionally free memory
* @x: pointer to the memory
*
* Function calls kfree only if @x is not in .rodata section.
*/
void kfree_const(const void *x)
{
if (!is_kernel_rodata((unsigned long)x))
kfree(x);
}
EXPORT_SYMBOL(kfree_const);
/**
* kstrdup - allocate space for and copy an existing string
* @s: the string to duplicate
* @gfp: the GFP mask used in the kmalloc() call when allocating memory
*
* Return: newly allocated copy of @s or %NULL in case of error
*/
noinline
char *kstrdup(const char *s, gfp_t gfp)
{
size_t len;
char *buf;
if (!s)
return NULL;
len = strlen(s) + 1;
buf = kmalloc_track_caller(len, gfp);
if (buf)
memcpy(buf, s, len);
return buf;
}
EXPORT_SYMBOL(kstrdup);
/**
* kstrdup_const - conditionally duplicate an existing const string
* @s: the string to duplicate
* @gfp: the GFP mask used in the kmalloc() call when allocating memory
*
* Note: Strings allocated by kstrdup_const should be freed by kfree_const and
* must not be passed to krealloc().
*
* Return: source string if it is in .rodata section otherwise
* fallback to kstrdup.
*/
const char *kstrdup_const(const char *s, gfp_t gfp)
{
if (is_kernel_rodata((unsigned long)s))
return s;
return kstrdup(s, gfp);
}
EXPORT_SYMBOL(kstrdup_const);
/**
* kstrndup - allocate space for and copy an existing string
* @s: the string to duplicate
* @max: read at most @max chars from @s
* @gfp: the GFP mask used in the kmalloc() call when allocating memory
*
* Note: Use kmemdup_nul() instead if the size is known exactly.
*
* Return: newly allocated copy of @s or %NULL in case of error
*/
char *kstrndup(const char *s, size_t max, gfp_t gfp)
{
size_t len;
char *buf;
if (!s)
return NULL;
len = strnlen(s, max);
buf = kmalloc_track_caller(len+1, gfp);
if (buf) {
memcpy(buf, s, len);
buf[len] = '\0';
}
return buf;
}
EXPORT_SYMBOL(kstrndup);
/**
* kmemdup - duplicate region of memory
*
* @src: memory region to duplicate
* @len: memory region length
* @gfp: GFP mask to use
*
* Return: newly allocated copy of @src or %NULL in case of error,
* result is physically contiguous. Use kfree() to free.
*/
void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp)
{
void *p;
p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_);
if (p)
memcpy(p, src, len);
return p;
}
EXPORT_SYMBOL(kmemdup_noprof);
/**
* kmemdup_array - duplicate a given array.
*
* @src: array to duplicate.
* @count: number of elements to duplicate from array.
* @element_size: size of each element of array.
* @gfp: GFP mask to use.
*
* Return: duplicated array of @src or %NULL in case of error,
* result is physically contiguous. Use kfree() to free.
*/
void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp)
{
return kmemdup(src, size_mul(element_size, count), gfp);
}
EXPORT_SYMBOL(kmemdup_array);
/**
* kvmemdup - duplicate region of memory
*
* @src: memory region to duplicate
* @len: memory region length
* @gfp: GFP mask to use
*
* Return: newly allocated copy of @src or %NULL in case of error,
* result may be not physically contiguous. Use kvfree() to free.
*/
void *kvmemdup(const void *src, size_t len, gfp_t gfp)
{
void *p;
p = kvmalloc(len, gfp);
if (p)
memcpy(p, src, len);
return p;
}
EXPORT_SYMBOL(kvmemdup);
/**
* kmemdup_nul - Create a NUL-terminated string from unterminated data
* @s: The data to stringify
* @len: The size of the data
* @gfp: the GFP mask used in the kmalloc() call when allocating memory
*
* Return: newly allocated copy of @s with NUL-termination or %NULL in
* case of error
*/
char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
{
char *buf;
if (!s)
return NULL;
buf = kmalloc_track_caller(len + 1, gfp);
if (buf) {
memcpy(buf, s, len);
buf[len] = '\0';
}
return buf;
}
EXPORT_SYMBOL(kmemdup_nul);
static kmem_buckets *user_buckets __ro_after_init;
static int __init init_user_buckets(void)
{
user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL);
return 0;
}
subsys_initcall(init_user_buckets);
/**
* memdup_user - duplicate memory region from user space
*
* @src: source address in user space
* @len: number of bytes to copy
*
* Return: an ERR_PTR() on failure. Result is physically
* contiguous, to be freed by kfree().
*/
void *memdup_user(const void __user *src, size_t len)
{
void *p;
p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN);
if (!p)
return ERR_PTR(-ENOMEM);
if (copy_from_user(p, src, len)) {
kfree(p);
return ERR_PTR(-EFAULT);
}
return p;
}
EXPORT_SYMBOL(memdup_user);
/**
* vmemdup_user - duplicate memory region from user space
*
* @src: source address in user space
* @len: number of bytes to copy
*
* Return: an ERR_PTR() on failure. Result may be not
* physically contiguous. Use kvfree() to free.
*/
void *vmemdup_user(const void __user *src, size_t len)
{
void *p;
p = kmem_buckets_valloc(user_buckets, len, GFP_USER);
if (!p)
return ERR_PTR(-ENOMEM);
if (copy_from_user(p, src, len)) {
kvfree(p);
return ERR_PTR(-EFAULT);
}
return p;
}
EXPORT_SYMBOL(vmemdup_user);
/**
* strndup_user - duplicate an existing string from user space
* @s: The string to duplicate
* @n: Maximum number of bytes to copy, including the trailing NUL.
*
* Return: newly allocated copy of @s or an ERR_PTR() in case of error
*/
char *strndup_user(const char __user *s, long n)
{
char *p;
long length;
length = strnlen_user(s, n);
if (!length)
return ERR_PTR(-EFAULT);
if (length > n)
return ERR_PTR(-EINVAL);
p = memdup_user(s, length);
if (IS_ERR(p))
return p;
p[length - 1] = '\0';
return p;
}
EXPORT_SYMBOL(strndup_user);
/**
* memdup_user_nul - duplicate memory region from user space and NUL-terminate
*
* @src: source address in user space
* @len: number of bytes to copy
*
* Return: an ERR_PTR() on failure.
*/
void *memdup_user_nul(const void __user *src, size_t len)
{
char *p;
/*
* Always use GFP_KERNEL, since copy_from_user() can sleep and
* cause pagefault, which makes it pointless to use GFP_NOFS
* or GFP_ATOMIC.
*/
p = kmalloc_track_caller(len + 1, GFP_KERNEL);
if (!p)
return ERR_PTR(-ENOMEM);
if (copy_from_user(p, src, len)) {
kfree(p);
return ERR_PTR(-EFAULT);
}
p[len] = '\0';
return p;
}
EXPORT_SYMBOL(memdup_user_nul);
/* Check if the vma is being used as a stack by this task */
int vma_is_stack_for_current(struct vm_area_struct *vma)
{
struct task_struct * __maybe_unused t = current;
return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
}
/*
* Change backing file, only valid to use during initial VMA setup.
*/
void vma_set_file(struct vm_area_struct *vma, struct file *file)
{
/* Changing an anonymous vma with this is illegal */
get_file(file);
swap(vma->vm_file, file);
fput(file);
}
EXPORT_SYMBOL(vma_set_file);
#ifndef STACK_RND_MASK
#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
#endif
unsigned long randomize_stack_top(unsigned long stack_top)
{
unsigned long random_variable = 0;
if (current->flags & PF_RANDOMIZE) {
random_variable = get_random_long();
random_variable &= STACK_RND_MASK;
random_variable <<= PAGE_SHIFT;
}
#ifdef CONFIG_STACK_GROWSUP
return PAGE_ALIGN(stack_top) + random_variable;
#else
return PAGE_ALIGN(stack_top) - random_variable;
#endif
}
/**
* randomize_page - Generate a random, page aligned address
* @start: The smallest acceptable address the caller will take.
* @range: The size of the area, starting at @start, within which the
* random address must fall.
*
* If @start + @range would overflow, @range is capped.
*
* NOTE: Historical use of randomize_range, which this replaces, presumed that
* @start was already page aligned. We now align it regardless.
*
* Return: A page aligned address within [start, start + range). On error,
* @start is returned.
*/
unsigned long randomize_page(unsigned long start, unsigned long range)
{
if (!PAGE_ALIGNED(start)) {
range -= PAGE_ALIGN(start) - start;
start = PAGE_ALIGN(start);
}
if (start > ULONG_MAX - range)
range = ULONG_MAX - start;
range >>= PAGE_SHIFT;
if (range == 0)
return start;
return start + (get_random_long() % range << PAGE_SHIFT);
}
#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
{
/* Is the current task 32bit ? */
if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
return randomize_page(mm->brk, SZ_32M);
return randomize_page(mm->brk, SZ_1G);
}
unsigned long arch_mmap_rnd(void)
{
unsigned long rnd;
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
if (is_compat_task())
rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
else
#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
return rnd << PAGE_SHIFT;
}
static int mmap_is_legacy(struct rlimit *rlim_stack)
{
if (current->personality & ADDR_COMPAT_LAYOUT)
return 1;
/* On parisc the stack always grows up - so a unlimited stack should
* not be an indicator to use the legacy memory layout. */
if (rlim_stack->rlim_cur == RLIM_INFINITY &&
!IS_ENABLED(CONFIG_STACK_GROWSUP))
return 1;
return sysctl_legacy_va_layout;
}
/*
* Leave enough space between the mmap area and the stack to honour ulimit in
* the face of randomisation.
*/
#define MIN_GAP (SZ_128M)
#define MAX_GAP (STACK_TOP / 6 * 5)
static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
{
#ifdef CONFIG_STACK_GROWSUP
/*
* For an upwards growing stack the calculation is much simpler.
* Memory for the maximum stack size is reserved at the top of the
* task. mmap_base starts directly below the stack and grows
* downwards.
*/
return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
#else
unsigned long gap = rlim_stack->rlim_cur;
unsigned long pad = stack_guard_gap;
/* Account for stack randomization if necessary */
if (current->flags & PF_RANDOMIZE)
pad += (STACK_RND_MASK << PAGE_SHIFT);
/* Values close to RLIM_INFINITY can overflow. */
if (gap + pad > gap)
gap += pad;
if (gap < MIN_GAP)
gap = MIN_GAP;
else if (gap > MAX_GAP)
gap = MAX_GAP;
return PAGE_ALIGN(STACK_TOP - gap - rnd);
#endif
}
void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
{
unsigned long random_factor = 0UL;
if (current->flags & PF_RANDOMIZE)
random_factor = arch_mmap_rnd();
if (mmap_is_legacy(rlim_stack)) {
mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
clear_bit(MMF_TOPDOWN, &mm->flags);
} else {
mm->mmap_base = mmap_base(random_factor, rlim_stack);
set_bit(MMF_TOPDOWN, &mm->flags);
}
}
#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
{
mm->mmap_base = TASK_UNMAPPED_BASE;
clear_bit(MMF_TOPDOWN, &mm->flags);
}
#endif
#ifdef CONFIG_MMU
EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout);
#endif
/**
* __account_locked_vm - account locked pages to an mm's locked_vm
* @mm: mm to account against
* @pages: number of pages to account
* @inc: %true if @pages should be considered positive, %false if not
* @task: task used to check RLIMIT_MEMLOCK
* @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
*
* Assumes @task and @mm are valid (i.e. at least one reference on each), and
* that mmap_lock is held as writer.
*
* Return:
* * 0 on success
* * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
*/
int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
struct task_struct *task, bool bypass_rlim)
{
unsigned long locked_vm, limit;
int ret = 0;
mmap_assert_write_locked(mm);
locked_vm = mm->locked_vm;
if (inc) {
if (!bypass_rlim) {
limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
if (locked_vm + pages > limit)
ret = -ENOMEM;
}
if (!ret)
mm->locked_vm = locked_vm + pages;
} else {
WARN_ON_ONCE(pages > locked_vm);
mm->locked_vm = locked_vm - pages;
}
pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
(void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
ret ? " - exceeded" : "");
return ret;
}
EXPORT_SYMBOL_GPL(__account_locked_vm);
/**
* account_locked_vm - account locked pages to an mm's locked_vm
* @mm: mm to account against, may be NULL
* @pages: number of pages to account
* @inc: %true if @pages should be considered positive, %false if not
*
* Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
*
* Return:
* * 0 on success, or if mm is NULL
* * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
*/
int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
{
int ret;
if (pages == 0 || !mm)
return 0;
mmap_write_lock(mm);
ret = __account_locked_vm(mm, pages, inc, current,
capable(CAP_IPC_LOCK));
mmap_write_unlock(mm);
return ret;
}
EXPORT_SYMBOL_GPL(account_locked_vm);
unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flag, unsigned long pgoff)
{
unsigned long ret;
struct mm_struct *mm = current->mm;
unsigned long populate;
LIST_HEAD(uf);
ret = security_mmap_file(file, prot, flag);
if (!ret) {
if (mmap_write_lock_killable(mm))
return -EINTR;
ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
&uf);
mmap_write_unlock(mm);
userfaultfd_unmap_complete(mm, &uf);
if (populate)
mm_populate(ret, populate);
}
return ret;
}
unsigned long vm_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flag, unsigned long offset)
{
if (unlikely(offset + PAGE_ALIGN(len) < offset))
return -EINVAL;
if (unlikely(offset_in_page(offset)))
return -EINVAL;
return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
}
EXPORT_SYMBOL(vm_mmap);
static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
{
/*
* We want to attempt a large physically contiguous block first because
* it is less likely to fragment multiple larger blocks and therefore
* contribute to a long term fragmentation less than vmalloc fallback.
* However make sure that larger requests are not too disruptive - no
* OOM killer and no allocation failure warnings as we have a fallback.
*/
if (size > PAGE_SIZE) {
flags |= __GFP_NOWARN;
if (!(flags & __GFP_RETRY_MAYFAIL))
flags |= __GFP_NORETRY;
/* nofail semantic is implemented by the vmalloc fallback */
flags &= ~__GFP_NOFAIL;
}
return flags;
}
/**
* __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
* failure, fall back to non-contiguous (vmalloc) allocation.
* @size: size of the request.
* @b: which set of kmalloc buckets to allocate from.
* @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
* @node: numa node to allocate from
*
* Uses kmalloc to get the memory but if the allocation fails then falls back
* to the vmalloc allocator. Use kvfree for freeing the memory.
*
* GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
* __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
* preferable to the vmalloc fallback, due to visible performance drawbacks.
*
* Return: pointer to the allocated memory of %NULL in case of failure
*/
void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
{
void *ret;
/*
* It doesn't really make sense to fallback to vmalloc for sub page
* requests
*/
ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b),
kmalloc_gfp_adjust(flags, size),
node);
if (ret || size <= PAGE_SIZE)
return ret;
/* non-sleeping allocations are not supported by vmalloc */
if (!gfpflags_allow_blocking(flags))
return NULL;
/* Don't even allow crazy sizes */
if (unlikely(size > INT_MAX)) {
WARN_ON_ONCE(!(flags & __GFP_NOWARN));
return NULL;
}
/*
* kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
* since the callers already cannot assume anything
* about the resulting pointer, and cannot play
* protection games.
*/
return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
node, __builtin_return_address(0));
}
EXPORT_SYMBOL(__kvmalloc_node_noprof);
/**
* kvfree() - Free memory.
* @addr: Pointer to allocated memory.
*
* kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
* It is slightly more efficient to use kfree() or vfree() if you are certain
* that you know which one to use.
*
* Context: Either preemptible task context or not-NMI interrupt.
*/
void kvfree(const void *addr)
{
if (is_vmalloc_addr(addr))
vfree(addr);
else
kfree(addr);
}
EXPORT_SYMBOL(kvfree);
/**
* kvfree_sensitive - Free a data object containing sensitive information.
* @addr: address of the data object to be freed.
* @len: length of the data object.
*
* Use the special memzero_explicit() function to clear the content of a
* kvmalloc'ed object containing sensitive data to make sure that the
* compiler won't optimize out the data clearing.
*/
void kvfree_sensitive(const void *addr, size_t len)
{
if (likely(!ZERO_OR_NULL_PTR(addr))) {
memzero_explicit((void *)addr, len);
kvfree(addr);
}
}
EXPORT_SYMBOL(kvfree_sensitive);
/**
* kvrealloc - reallocate memory; contents remain unchanged
* @p: object to reallocate memory for
* @size: the size to reallocate
* @flags: the flags for the page level allocator
*
* If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
* and @p is not a %NULL pointer, the object pointed to is freed.
*
* If __GFP_ZERO logic is requested, callers must ensure that, starting with the
* initial memory allocation, every subsequent call to this API for the same
* memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
* __GFP_ZERO is not fully honored by this API.
*
* In any case, the contents of the object pointed to are preserved up to the
* lesser of the new and old sizes.
*
* This function must not be called concurrently with itself or kvfree() for the
* same memory allocation.
*
* Return: pointer to the allocated memory or %NULL in case of error
*/
void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
{
void *n;
if (is_vmalloc_addr(p))
return vrealloc_noprof(p, size, flags);
n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
if (!n) {
/* We failed to krealloc(), fall back to kvmalloc(). */
n = kvmalloc_noprof(size, flags);
if (!n)
return NULL;
if (p) {
/* We already know that `p` is not a vmalloc address. */
kasan_disable_current();
memcpy(n, kasan_reset_tag(p), ksize(p));
kasan_enable_current();
kfree(p);
}
}
return n;
}
EXPORT_SYMBOL(kvrealloc_noprof);
/**
* __vmalloc_array - allocate memory for a virtually contiguous array.
* @n: number of elements.
* @size: element size.
* @flags: the type of memory to allocate (see kmalloc).
*/
void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
{
size_t bytes;
if (unlikely(check_mul_overflow(n, size, &bytes)))
return NULL;
return __vmalloc_noprof(bytes, flags);
}
EXPORT_SYMBOL(__vmalloc_array_noprof);
/**
* vmalloc_array - allocate memory for a virtually contiguous array.
* @n: number of elements.
* @size: element size.
*/
void *vmalloc_array_noprof(size_t n, size_t size)
{
return __vmalloc_array_noprof(n, size, GFP_KERNEL);
}
EXPORT_SYMBOL(vmalloc_array_noprof);
/**
* __vcalloc - allocate and zero memory for a virtually contiguous array.
* @n: number of elements.
* @size: element size.
* @flags: the type of memory to allocate (see kmalloc).
*/
void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags)
{
return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO);
}
EXPORT_SYMBOL(__vcalloc_noprof);
/**
* vcalloc - allocate and zero memory for a virtually contiguous array.
* @n: number of elements.
* @size: element size.
*/
void *vcalloc_noprof(size_t n, size_t size)
{
return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO);
}
EXPORT_SYMBOL(vcalloc_noprof);
struct anon_vma *folio_anon_vma(struct folio *folio)
{
unsigned long mapping = (unsigned long)folio->mapping;
if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
return NULL;
return (void *)(mapping - PAGE_MAPPING_ANON);
}
/**
* folio_mapping - Find the mapping where this folio is stored.
* @folio: The folio.
*
* For folios which are in the page cache, return the mapping that this
* page belongs to. Folios in the swap cache return the swap mapping
* this page is stored in (which is different from the mapping for the
* swap file or swap device where the data is stored).
*
* You can call this for folios which aren't in the swap cache or page
* cache and it will return NULL.
*/
struct address_space *folio_mapping(struct folio *folio)
{
struct address_space *mapping;
/* This happens if someone calls flush_dcache_page on slab page */
if (unlikely(folio_test_slab(folio)))
return NULL;
if (unlikely(folio_test_swapcache(folio)))
return swap_address_space(folio->swap);
mapping = folio->mapping;
if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
return NULL;
return mapping;
}
EXPORT_SYMBOL(folio_mapping);
/**
* folio_copy - Copy the contents of one folio to another.
* @dst: Folio to copy to.
* @src: Folio to copy from.
*
* The bytes in the folio represented by @src are copied to @dst.
* Assumes the caller has validated that @dst is at least as large as @src.
* Can be called in atomic context for order-0 folios, but if the folio is
* larger, it may sleep.
*/
void folio_copy(struct folio *dst, struct folio *src)
{
long i = 0;
long nr = folio_nr_pages(src);
for (;;) {
copy_highpage(folio_page(dst, i), folio_page(src, i));
if (++i == nr)
break;
cond_resched();
}
}
EXPORT_SYMBOL(folio_copy);
int folio_mc_copy(struct folio *dst, struct folio *src)
{
long nr = folio_nr_pages(src);
long i = 0;
for (;;) {
if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i)))
return -EHWPOISON;
if (++i == nr)
break;
cond_resched();
}
return 0;
}
EXPORT_SYMBOL(folio_mc_copy);
int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
int sysctl_overcommit_ratio __read_mostly = 50;
unsigned long sysctl_overcommit_kbytes __read_mostly;
int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos)
{
int ret;
ret = proc_dointvec(table, write, buffer, lenp, ppos);
if (ret == 0 && write)
sysctl_overcommit_kbytes = 0;
return ret;
}
static void sync_overcommit_as(struct work_struct *dummy)
{
percpu_counter_sync(&vm_committed_as);
}
int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos)
{
struct ctl_table t;
int new_policy = -1;
int ret;
/*
* The deviation of sync_overcommit_as could be big with loose policy
* like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
* strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
* with the strict "NEVER", and to avoid possible race condition (even
* though user usually won't too frequently do the switching to policy
* OVERCOMMIT_NEVER), the switch is done in the following order:
* 1. changing the batch
* 2. sync percpu count on each CPU
* 3. switch the policy
*/
if (write) {
t = *table;
t.data = &new_policy;
ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
if (ret || new_policy == -1)
return ret;
mm_compute_batch(new_policy);
if (new_policy == OVERCOMMIT_NEVER)
schedule_on_each_cpu(sync_overcommit_as);
sysctl_overcommit_memory = new_policy;
} else {
ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
}
return ret;
}
int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer,
size_t *lenp, loff_t *ppos)
{
int ret;
ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
if (ret == 0 && write)
sysctl_overcommit_ratio = 0;
return ret;
}
/*
* Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
*/
unsigned long vm_commit_limit(void)
{
unsigned long allowed;
if (sysctl_overcommit_kbytes)
allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
else
allowed = ((totalram_pages() - hugetlb_total_pages())
* sysctl_overcommit_ratio / 100);
allowed += total_swap_pages;
return allowed;
}
/*
* Make sure vm_committed_as in one cacheline and not cacheline shared with
* other variables. It can be updated by several CPUs frequently.
*/
struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
/*
* The global memory commitment made in the system can be a metric
* that can be used to drive ballooning decisions when Linux is hosted
* as a guest. On Hyper-V, the host implements a policy engine for dynamically
* balancing memory across competing virtual machines that are hosted.
* Several metrics drive this policy engine including the guest reported
* memory commitment.
*
* The time cost of this is very low for small platforms, and for big
* platform like a 2S/36C/72T Skylake server, in worst case where
* vm_committed_as's spinlock is under severe contention, the time cost
* could be about 30~40 microseconds.
*/
unsigned long vm_memory_committed(void)
{
return percpu_counter_sum_positive(&vm_committed_as);
}
EXPORT_SYMBOL_GPL(vm_memory_committed);
/*
* Check that a process has enough memory to allocate a new virtual
* mapping. 0 means there is enough memory for the allocation to
* succeed and -ENOMEM implies there is not.
*
* We currently support three overcommit policies, which are set via the
* vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
*
* Strict overcommit modes added 2002 Feb 26 by Alan Cox.
* Additional code 2002 Jul 20 by Robert Love.
*
* cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
*
* Note this is a helper function intended to be used by LSMs which
* wish to use this logic.
*/
int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
{
long allowed;
unsigned long bytes_failed;
vm_acct_memory(pages);
/*
* Sometimes we want to use more memory than we have
*/
if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
return 0;
if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
if (pages > totalram_pages() + total_swap_pages)
goto error;
return 0;
}
allowed = vm_commit_limit();
/*
* Reserve some for root
*/
if (!cap_sys_admin)
allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
/*
* Don't let a single process grow so big a user can't recover
*/
if (mm) {
long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
allowed -= min_t(long, mm->total_vm / 32, reserve);
}
if (percpu_counter_read_positive(&vm_committed_as) < allowed)
return 0;
error:
bytes_failed = pages << PAGE_SHIFT;
pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
__func__, current->pid, current->comm, bytes_failed);
vm_unacct_memory(pages);
return -ENOMEM;
}
/**
* get_cmdline() - copy the cmdline value to a buffer.
* @task: the task whose cmdline value to copy.
* @buffer: the buffer to copy to.
* @buflen: the length of the buffer. Larger cmdline values are truncated
* to this length.
*
* Return: the size of the cmdline field copied. Note that the copy does
* not guarantee an ending NULL byte.
*/
int get_cmdline(struct task_struct *task, char *buffer, int buflen)
{
int res = 0;
unsigned int len;
struct mm_struct *mm = get_task_mm(task);
unsigned long arg_start, arg_end, env_start, env_end;
if (!mm)
goto out;
if (!mm->arg_end)
goto out_mm; /* Shh! No looking before we're done */
spin_lock(&mm->arg_lock);
arg_start = mm->arg_start;
arg_end = mm->arg_end;
env_start = mm->env_start;
env_end = mm->env_end;
spin_unlock(&mm->arg_lock);
len = arg_end - arg_start;
if (len > buflen)
len = buflen;
res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
/*
* If the nul at the end of args has been overwritten, then
* assume application is using setproctitle(3).
*/
if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
len = strnlen(buffer, res);
if (len < res) {
res = len;
} else {
len = env_end - env_start;
if (len > buflen - res)
len = buflen - res;
res += access_process_vm(task, env_start,
buffer+res, len,
FOLL_FORCE);
res = strnlen(buffer, res);
}
}
out_mm:
mmput(mm);
out:
return res;
}
int __weak memcmp_pages(struct page *page1, struct page *page2)
{
char *addr1, *addr2;
int ret;
addr1 = kmap_local_page(page1);
addr2 = kmap_local_page(page2);
ret = memcmp(addr1, addr2, PAGE_SIZE);
kunmap_local(addr2);
kunmap_local(addr1);
return ret;
}
#ifdef CONFIG_PRINTK
/**
* mem_dump_obj - Print available provenance information
* @object: object for which to find provenance information.
*
* This function uses pr_cont(), so that the caller is expected to have
* printed out whatever preamble is appropriate. The provenance information
* depends on the type of object and on how much debugging is enabled.
* For example, for a slab-cache object, the slab name is printed, and,
* if available, the return address and stack trace from the allocation
* and last free path of that object.
*/
void mem_dump_obj(void *object)
{
const char *type;
if (kmem_dump_obj(object))
return;
if (vmalloc_dump_obj(object))
return;
if (is_vmalloc_addr(object))
type = "vmalloc memory";
else if (virt_addr_valid(object))
type = "non-slab/vmalloc memory";
else if (object == NULL)
type = "NULL pointer";
else if (object == ZERO_SIZE_PTR)
type = "zero-size pointer";
else
type = "non-paged memory";
pr_cont(" %s\n", type);
}
EXPORT_SYMBOL_GPL(mem_dump_obj);
#endif
/*
* A driver might set a page logically offline -- PageOffline() -- and
* turn the page inaccessible in the hypervisor; after that, access to page
* content can be fatal.
*
* Some special PFN walkers -- i.e., /proc/kcore -- read content of random
* pages after checking PageOffline(); however, these PFN walkers can race
* with drivers that set PageOffline().
*
* page_offline_freeze()/page_offline_thaw() allows for a subsystem to
* synchronize with such drivers, achieving that a page cannot be set
* PageOffline() while frozen.
*
* page_offline_begin()/page_offline_end() is used by drivers that care about
* such races when setting a page PageOffline().
*/
static DECLARE_RWSEM(page_offline_rwsem);
void page_offline_freeze(void)
{
down_read(&page_offline_rwsem);
}
void page_offline_thaw(void)
{
up_read(&page_offline_rwsem);
}
void page_offline_begin(void)
{
down_write(&page_offline_rwsem);
}
EXPORT_SYMBOL(page_offline_begin);
void page_offline_end(void)
{
up_write(&page_offline_rwsem);
}
EXPORT_SYMBOL(page_offline_end);
#ifndef flush_dcache_folio
void flush_dcache_folio(struct folio *folio)
{
long i, nr = folio_nr_pages(folio);
for (i = 0; i < nr; i++)
flush_dcache_page(folio_page(folio, i));
}
EXPORT_SYMBOL(flush_dcache_folio);
#endif