linux-stable/drivers/counter/rz-mtu3-cnt.c
Dan Carpenter 1e28dfdf40 counter: rz-mtu3-cnt: Unlock on error in rz_mtu3_count_ceiling_write()
These error paths need to call mutex_unlock(&priv->lock) before
returning.  The lock is taken in rz_mtu3_lock_if_counter_is_valid().

Fixes: 25d21447d896 ("counter: Add Renesas RZ/G2L MTU3a counter driver")
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Acked-by: William Breathitt Gray <william.gray@linaro.org>
Signed-off-by: Lee Jones <lee@kernel.org>
Link: https://lore.kernel.org/r/7b535d6b-6031-493a-84f6-82842089e637@kili.mountain
2023-04-26 11:40:35 +01:00

907 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Renesas RZ/G2L MTU3a Counter driver
*
* Copyright (C) 2022 Renesas Electronics Corporation
*/
#include <linux/clk.h>
#include <linux/counter.h>
#include <linux/mfd/rz-mtu3.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/types.h>
/*
* Register descriptions
* TSR: Timer Status Register
* TMDR1: Timer Mode Register 1
* TMDR3: Timer Mode Register 3
* TIOR: Timer I/O Control Register
* TCR: Timer Control Register
* TCNT: Timer Counter
* TGRA: Timer general register A
* TCNTLW: Timer Longword Counter
* TGRALW: Timer longword general register A
*/
#define RZ_MTU3_TSR_TCFD BIT(7) /* Count Direction Flag */
#define RZ_MTU3_TMDR1_PH_CNT_MODE_1 (4) /* Phase counting mode 1 */
#define RZ_MTU3_TMDR1_PH_CNT_MODE_2 (5) /* Phase counting mode 2 */
#define RZ_MTU3_TMDR1_PH_CNT_MODE_3 (6) /* Phase counting mode 3 */
#define RZ_MTU3_TMDR1_PH_CNT_MODE_4 (7) /* Phase counting mode 4 */
#define RZ_MTU3_TMDR1_PH_CNT_MODE_5 (9) /* Phase counting mode 5 */
#define RZ_MTU3_TMDR1_PH_CNT_MODE_MASK (0xf)
/*
* LWA: MTU1/MTU2 Combination Longword Access Control
* 0: 16-bit, 1: 32-bit
*/
#define RZ_MTU3_TMDR3_LWA (0)
/*
* PHCKSEL: External Input Phase Clock Select
* 0: MTCLKA and MTCLKB, 1: MTCLKC and MTCLKD
*/
#define RZ_MTU3_TMDR3_PHCKSEL (1)
#define RZ_MTU3_16_BIT_MTU1_CH (0)
#define RZ_MTU3_16_BIT_MTU2_CH (1)
#define RZ_MTU3_32_BIT_CH (2)
#define RZ_MTU3_TIOR_NO_OUTPUT (0) /* Output prohibited */
#define RZ_MTU3_TIOR_IC_BOTH (10) /* Input capture at both edges */
#define SIGNAL_A_ID (0)
#define SIGNAL_B_ID (1)
#define SIGNAL_C_ID (2)
#define SIGNAL_D_ID (3)
#define RZ_MTU3_MAX_HW_CNTR_CHANNELS (2)
#define RZ_MTU3_MAX_LOGICAL_CNTR_CHANNELS (3)
/**
* struct rz_mtu3_cnt - MTU3 counter private data
*
* @clk: MTU3 module clock
* @lock: Lock to prevent concurrent access for ceiling and count
* @ch: HW channels for the counters
* @count_is_enabled: Enabled state of Counter value channel
* @mtu_16bit_max: Cache for 16-bit counters
* @mtu_32bit_max: Cache for 32-bit counters
*/
struct rz_mtu3_cnt {
struct clk *clk;
struct mutex lock;
struct rz_mtu3_channel *ch;
bool count_is_enabled[RZ_MTU3_MAX_LOGICAL_CNTR_CHANNELS];
union {
u16 mtu_16bit_max[RZ_MTU3_MAX_HW_CNTR_CHANNELS];
u32 mtu_32bit_max;
};
};
static const enum counter_function rz_mtu3_count_functions[] = {
COUNTER_FUNCTION_QUADRATURE_X4,
COUNTER_FUNCTION_PULSE_DIRECTION,
COUNTER_FUNCTION_QUADRATURE_X2_B,
};
static inline size_t rz_mtu3_get_hw_ch(const size_t id)
{
return (id == RZ_MTU3_32_BIT_CH) ? 0 : id;
}
static inline struct rz_mtu3_channel *rz_mtu3_get_ch(struct counter_device *counter, int id)
{
struct rz_mtu3_cnt *const priv = counter_priv(counter);
const size_t ch_id = rz_mtu3_get_hw_ch(id);
return &priv->ch[ch_id];
}
static bool rz_mtu3_is_counter_invalid(struct counter_device *counter, int id)
{
struct rz_mtu3_cnt *const priv = counter_priv(counter);
unsigned long tmdr;
pm_runtime_get_sync(priv->ch->dev);
tmdr = rz_mtu3_shared_reg_read(priv->ch, RZ_MTU3_TMDR3);
pm_runtime_put(priv->ch->dev);
if (id == RZ_MTU3_32_BIT_CH && test_bit(RZ_MTU3_TMDR3_LWA, &tmdr))
return false;
if (id != RZ_MTU3_32_BIT_CH && !test_bit(RZ_MTU3_TMDR3_LWA, &tmdr))
return false;
return true;
}
static int rz_mtu3_lock_if_counter_is_valid(struct counter_device *counter,
struct rz_mtu3_channel *const ch,
struct rz_mtu3_cnt *const priv,
int id)
{
mutex_lock(&priv->lock);
if (ch->is_busy && !priv->count_is_enabled[id]) {
mutex_unlock(&priv->lock);
return -EINVAL;
}
if (rz_mtu3_is_counter_invalid(counter, id)) {
mutex_unlock(&priv->lock);
return -EBUSY;
}
return 0;
}
static int rz_mtu3_lock_if_count_is_enabled(struct rz_mtu3_channel *const ch,
struct rz_mtu3_cnt *const priv,
int id)
{
mutex_lock(&priv->lock);
if (ch->is_busy && !priv->count_is_enabled[id]) {
mutex_unlock(&priv->lock);
return -EINVAL;
}
return 0;
}
static int rz_mtu3_count_read(struct counter_device *counter,
struct counter_count *count, u64 *val)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, count->id);
struct rz_mtu3_cnt *const priv = counter_priv(counter);
int ret;
ret = rz_mtu3_lock_if_counter_is_valid(counter, ch, priv, count->id);
if (ret)
return ret;
pm_runtime_get_sync(ch->dev);
if (count->id == RZ_MTU3_32_BIT_CH)
*val = rz_mtu3_32bit_ch_read(ch, RZ_MTU3_TCNTLW);
else
*val = rz_mtu3_16bit_ch_read(ch, RZ_MTU3_TCNT);
pm_runtime_put(ch->dev);
mutex_unlock(&priv->lock);
return 0;
}
static int rz_mtu3_count_write(struct counter_device *counter,
struct counter_count *count, const u64 val)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, count->id);
struct rz_mtu3_cnt *const priv = counter_priv(counter);
int ret;
ret = rz_mtu3_lock_if_counter_is_valid(counter, ch, priv, count->id);
if (ret)
return ret;
pm_runtime_get_sync(ch->dev);
if (count->id == RZ_MTU3_32_BIT_CH)
rz_mtu3_32bit_ch_write(ch, RZ_MTU3_TCNTLW, val);
else
rz_mtu3_16bit_ch_write(ch, RZ_MTU3_TCNT, val);
pm_runtime_put(ch->dev);
mutex_unlock(&priv->lock);
return 0;
}
static int rz_mtu3_count_function_read_helper(struct rz_mtu3_channel *const ch,
struct rz_mtu3_cnt *const priv,
enum counter_function *function)
{
u8 timer_mode;
pm_runtime_get_sync(ch->dev);
timer_mode = rz_mtu3_8bit_ch_read(ch, RZ_MTU3_TMDR1);
pm_runtime_put(ch->dev);
switch (timer_mode & RZ_MTU3_TMDR1_PH_CNT_MODE_MASK) {
case RZ_MTU3_TMDR1_PH_CNT_MODE_1:
*function = COUNTER_FUNCTION_QUADRATURE_X4;
return 0;
case RZ_MTU3_TMDR1_PH_CNT_MODE_2:
*function = COUNTER_FUNCTION_PULSE_DIRECTION;
return 0;
case RZ_MTU3_TMDR1_PH_CNT_MODE_4:
*function = COUNTER_FUNCTION_QUADRATURE_X2_B;
return 0;
default:
/*
* TODO:
* - need to add RZ_MTU3_TMDR1_PH_CNT_MODE_3
* - need to add RZ_MTU3_TMDR1_PH_CNT_MODE_5
*/
return -EINVAL;
}
}
static int rz_mtu3_count_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, count->id);
struct rz_mtu3_cnt *const priv = counter_priv(counter);
int ret;
ret = rz_mtu3_lock_if_count_is_enabled(ch, priv, count->id);
if (ret)
return ret;
ret = rz_mtu3_count_function_read_helper(ch, priv, function);
mutex_unlock(&priv->lock);
return ret;
}
static int rz_mtu3_count_function_write(struct counter_device *counter,
struct counter_count *count,
enum counter_function function)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, count->id);
struct rz_mtu3_cnt *const priv = counter_priv(counter);
u8 timer_mode;
int ret;
ret = rz_mtu3_lock_if_count_is_enabled(ch, priv, count->id);
if (ret)
return ret;
switch (function) {
case COUNTER_FUNCTION_QUADRATURE_X4:
timer_mode = RZ_MTU3_TMDR1_PH_CNT_MODE_1;
break;
case COUNTER_FUNCTION_PULSE_DIRECTION:
timer_mode = RZ_MTU3_TMDR1_PH_CNT_MODE_2;
break;
case COUNTER_FUNCTION_QUADRATURE_X2_B:
timer_mode = RZ_MTU3_TMDR1_PH_CNT_MODE_4;
break;
default:
/*
* TODO:
* - need to add RZ_MTU3_TMDR1_PH_CNT_MODE_3
* - need to add RZ_MTU3_TMDR1_PH_CNT_MODE_5
*/
mutex_unlock(&priv->lock);
return -EINVAL;
}
pm_runtime_get_sync(ch->dev);
rz_mtu3_8bit_ch_write(ch, RZ_MTU3_TMDR1, timer_mode);
pm_runtime_put(ch->dev);
mutex_unlock(&priv->lock);
return 0;
}
static int rz_mtu3_count_direction_read(struct counter_device *counter,
struct counter_count *count,
enum counter_count_direction *direction)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, count->id);
struct rz_mtu3_cnt *const priv = counter_priv(counter);
int ret;
u8 tsr;
ret = rz_mtu3_lock_if_count_is_enabled(ch, priv, count->id);
if (ret)
return ret;
pm_runtime_get_sync(ch->dev);
tsr = rz_mtu3_8bit_ch_read(ch, RZ_MTU3_TSR);
pm_runtime_put(ch->dev);
*direction = (tsr & RZ_MTU3_TSR_TCFD) ?
COUNTER_COUNT_DIRECTION_FORWARD : COUNTER_COUNT_DIRECTION_BACKWARD;
mutex_unlock(&priv->lock);
return 0;
}
static int rz_mtu3_count_ceiling_read(struct counter_device *counter,
struct counter_count *count,
u64 *ceiling)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, count->id);
struct rz_mtu3_cnt *const priv = counter_priv(counter);
const size_t ch_id = rz_mtu3_get_hw_ch(count->id);
int ret;
ret = rz_mtu3_lock_if_counter_is_valid(counter, ch, priv, count->id);
if (ret)
return ret;
switch (count->id) {
case RZ_MTU3_16_BIT_MTU1_CH:
case RZ_MTU3_16_BIT_MTU2_CH:
*ceiling = priv->mtu_16bit_max[ch_id];
break;
case RZ_MTU3_32_BIT_CH:
*ceiling = priv->mtu_32bit_max;
break;
default:
/* should never reach this path */
mutex_unlock(&priv->lock);
return -EINVAL;
}
mutex_unlock(&priv->lock);
return 0;
}
static int rz_mtu3_count_ceiling_write(struct counter_device *counter,
struct counter_count *count,
u64 ceiling)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, count->id);
struct rz_mtu3_cnt *const priv = counter_priv(counter);
const size_t ch_id = rz_mtu3_get_hw_ch(count->id);
int ret;
ret = rz_mtu3_lock_if_counter_is_valid(counter, ch, priv, count->id);
if (ret)
return ret;
switch (count->id) {
case RZ_MTU3_16_BIT_MTU1_CH:
case RZ_MTU3_16_BIT_MTU2_CH:
if (ceiling > U16_MAX) {
mutex_unlock(&priv->lock);
return -ERANGE;
}
priv->mtu_16bit_max[ch_id] = ceiling;
break;
case RZ_MTU3_32_BIT_CH:
if (ceiling > U32_MAX) {
mutex_unlock(&priv->lock);
return -ERANGE;
}
priv->mtu_32bit_max = ceiling;
break;
default:
/* should never reach this path */
mutex_unlock(&priv->lock);
return -EINVAL;
}
pm_runtime_get_sync(ch->dev);
if (count->id == RZ_MTU3_32_BIT_CH)
rz_mtu3_32bit_ch_write(ch, RZ_MTU3_TGRALW, ceiling);
else
rz_mtu3_16bit_ch_write(ch, RZ_MTU3_TGRA, ceiling);
rz_mtu3_8bit_ch_write(ch, RZ_MTU3_TCR, RZ_MTU3_TCR_CCLR_TGRA);
pm_runtime_put(ch->dev);
mutex_unlock(&priv->lock);
return 0;
}
static void rz_mtu3_32bit_cnt_setting(struct counter_device *counter)
{
struct rz_mtu3_channel *const ch1 = rz_mtu3_get_ch(counter, 0);
struct rz_mtu3_channel *const ch2 = rz_mtu3_get_ch(counter, 1);
/* Phase counting mode 1 is used as default in initialization. */
rz_mtu3_8bit_ch_write(ch1, RZ_MTU3_TMDR1, RZ_MTU3_TMDR1_PH_CNT_MODE_1);
rz_mtu3_8bit_ch_write(ch1, RZ_MTU3_TCR, RZ_MTU3_TCR_CCLR_TGRA);
rz_mtu3_8bit_ch_write(ch1, RZ_MTU3_TIOR, RZ_MTU3_TIOR_IC_BOTH);
rz_mtu3_enable(ch1);
rz_mtu3_enable(ch2);
}
static void rz_mtu3_16bit_cnt_setting(struct counter_device *counter, int id)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, id);
/* Phase counting mode 1 is used as default in initialization. */
rz_mtu3_8bit_ch_write(ch, RZ_MTU3_TMDR1, RZ_MTU3_TMDR1_PH_CNT_MODE_1);
rz_mtu3_8bit_ch_write(ch, RZ_MTU3_TCR, RZ_MTU3_TCR_CCLR_TGRA);
rz_mtu3_8bit_ch_write(ch, RZ_MTU3_TIOR, RZ_MTU3_TIOR_NO_OUTPUT);
rz_mtu3_enable(ch);
}
static int rz_mtu3_initialize_counter(struct counter_device *counter, int id)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, id);
struct rz_mtu3_channel *const ch1 = rz_mtu3_get_ch(counter, 0);
struct rz_mtu3_channel *const ch2 = rz_mtu3_get_ch(counter, 1);
switch (id) {
case RZ_MTU3_16_BIT_MTU1_CH:
case RZ_MTU3_16_BIT_MTU2_CH:
if (!rz_mtu3_request_channel(ch))
return -EBUSY;
rz_mtu3_16bit_cnt_setting(counter, id);
return 0;
case RZ_MTU3_32_BIT_CH:
/*
* 32-bit phase counting need MTU1 and MTU2 to create 32-bit
* cascade counter.
*/
if (!rz_mtu3_request_channel(ch1))
return -EBUSY;
if (!rz_mtu3_request_channel(ch2)) {
rz_mtu3_release_channel(ch1);
return -EBUSY;
}
rz_mtu3_32bit_cnt_setting(counter);
return 0;
default:
/* should never reach this path */
return -EINVAL;
}
}
static void rz_mtu3_terminate_counter(struct counter_device *counter, int id)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, id);
struct rz_mtu3_channel *const ch1 = rz_mtu3_get_ch(counter, 0);
struct rz_mtu3_channel *const ch2 = rz_mtu3_get_ch(counter, 1);
if (id == RZ_MTU3_32_BIT_CH) {
rz_mtu3_release_channel(ch2);
rz_mtu3_release_channel(ch1);
rz_mtu3_disable(ch2);
rz_mtu3_disable(ch1);
} else {
rz_mtu3_release_channel(ch);
rz_mtu3_disable(ch);
}
}
static int rz_mtu3_count_enable_read(struct counter_device *counter,
struct counter_count *count, u8 *enable)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, count->id);
struct rz_mtu3_channel *const ch1 = rz_mtu3_get_ch(counter, 0);
struct rz_mtu3_channel *const ch2 = rz_mtu3_get_ch(counter, 1);
struct rz_mtu3_cnt *const priv = counter_priv(counter);
int ret;
ret = rz_mtu3_lock_if_count_is_enabled(ch, priv, count->id);
if (ret)
return ret;
if (count->id == RZ_MTU3_32_BIT_CH)
*enable = rz_mtu3_is_enabled(ch1) && rz_mtu3_is_enabled(ch2);
else
*enable = rz_mtu3_is_enabled(ch);
mutex_unlock(&priv->lock);
return 0;
}
static int rz_mtu3_count_enable_write(struct counter_device *counter,
struct counter_count *count, u8 enable)
{
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, count->id);
struct rz_mtu3_cnt *const priv = counter_priv(counter);
int ret = 0;
if (enable) {
pm_runtime_get_sync(ch->dev);
mutex_lock(&priv->lock);
ret = rz_mtu3_initialize_counter(counter, count->id);
if (ret == 0)
priv->count_is_enabled[count->id] = true;
mutex_unlock(&priv->lock);
} else {
mutex_lock(&priv->lock);
rz_mtu3_terminate_counter(counter, count->id);
priv->count_is_enabled[count->id] = false;
mutex_unlock(&priv->lock);
pm_runtime_put(ch->dev);
}
return ret;
}
static int rz_mtu3_lock_if_ch0_is_enabled(struct rz_mtu3_cnt *const priv)
{
mutex_lock(&priv->lock);
if (priv->ch->is_busy && !(priv->count_is_enabled[RZ_MTU3_16_BIT_MTU1_CH] ||
priv->count_is_enabled[RZ_MTU3_32_BIT_CH])) {
mutex_unlock(&priv->lock);
return -EINVAL;
}
return 0;
}
static int rz_mtu3_cascade_counts_enable_get(struct counter_device *counter,
u8 *cascade_enable)
{
struct rz_mtu3_cnt *const priv = counter_priv(counter);
unsigned long tmdr;
int ret;
ret = rz_mtu3_lock_if_ch0_is_enabled(priv);
if (ret)
return ret;
pm_runtime_get_sync(priv->ch->dev);
tmdr = rz_mtu3_shared_reg_read(priv->ch, RZ_MTU3_TMDR3);
pm_runtime_put(priv->ch->dev);
*cascade_enable = test_bit(RZ_MTU3_TMDR3_LWA, &tmdr);
mutex_unlock(&priv->lock);
return 0;
}
static int rz_mtu3_cascade_counts_enable_set(struct counter_device *counter,
u8 cascade_enable)
{
struct rz_mtu3_cnt *const priv = counter_priv(counter);
int ret;
ret = rz_mtu3_lock_if_ch0_is_enabled(priv);
if (ret)
return ret;
pm_runtime_get_sync(priv->ch->dev);
rz_mtu3_shared_reg_update_bit(priv->ch, RZ_MTU3_TMDR3,
RZ_MTU3_TMDR3_LWA, cascade_enable);
pm_runtime_put(priv->ch->dev);
mutex_unlock(&priv->lock);
return 0;
}
static int rz_mtu3_ext_input_phase_clock_select_get(struct counter_device *counter,
u32 *ext_input_phase_clock_select)
{
struct rz_mtu3_cnt *const priv = counter_priv(counter);
unsigned long tmdr;
int ret;
ret = rz_mtu3_lock_if_ch0_is_enabled(priv);
if (ret)
return ret;
pm_runtime_get_sync(priv->ch->dev);
tmdr = rz_mtu3_shared_reg_read(priv->ch, RZ_MTU3_TMDR3);
pm_runtime_put(priv->ch->dev);
*ext_input_phase_clock_select = test_bit(RZ_MTU3_TMDR3_PHCKSEL, &tmdr);
mutex_unlock(&priv->lock);
return 0;
}
static int rz_mtu3_ext_input_phase_clock_select_set(struct counter_device *counter,
u32 ext_input_phase_clock_select)
{
struct rz_mtu3_cnt *const priv = counter_priv(counter);
int ret;
ret = rz_mtu3_lock_if_ch0_is_enabled(priv);
if (ret)
return ret;
pm_runtime_get_sync(priv->ch->dev);
rz_mtu3_shared_reg_update_bit(priv->ch, RZ_MTU3_TMDR3,
RZ_MTU3_TMDR3_PHCKSEL,
ext_input_phase_clock_select);
pm_runtime_put(priv->ch->dev);
mutex_unlock(&priv->lock);
return 0;
}
static struct counter_comp rz_mtu3_count_ext[] = {
COUNTER_COMP_DIRECTION(rz_mtu3_count_direction_read),
COUNTER_COMP_ENABLE(rz_mtu3_count_enable_read,
rz_mtu3_count_enable_write),
COUNTER_COMP_CEILING(rz_mtu3_count_ceiling_read,
rz_mtu3_count_ceiling_write),
};
static const enum counter_synapse_action rz_mtu3_synapse_actions[] = {
COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
COUNTER_SYNAPSE_ACTION_RISING_EDGE,
COUNTER_SYNAPSE_ACTION_NONE,
};
static int rz_mtu3_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
const bool is_signal_ab = (synapse->signal->id == SIGNAL_A_ID) ||
(synapse->signal->id == SIGNAL_B_ID);
struct rz_mtu3_channel *const ch = rz_mtu3_get_ch(counter, count->id);
struct rz_mtu3_cnt *const priv = counter_priv(counter);
enum counter_function function;
bool mtclkc_mtclkd;
unsigned long tmdr;
int ret;
ret = rz_mtu3_lock_if_count_is_enabled(ch, priv, count->id);
if (ret)
return ret;
ret = rz_mtu3_count_function_read_helper(ch, priv, &function);
if (ret) {
mutex_unlock(&priv->lock);
return ret;
}
/* Default action mode */
*action = COUNTER_SYNAPSE_ACTION_NONE;
if (count->id != RZ_MTU3_16_BIT_MTU1_CH) {
tmdr = rz_mtu3_shared_reg_read(priv->ch, RZ_MTU3_TMDR3);
mtclkc_mtclkd = test_bit(RZ_MTU3_TMDR3_PHCKSEL, &tmdr);
if ((mtclkc_mtclkd && is_signal_ab) ||
(!mtclkc_mtclkd && !is_signal_ab)) {
mutex_unlock(&priv->lock);
return 0;
}
}
switch (function) {
case COUNTER_FUNCTION_PULSE_DIRECTION:
/*
* Rising edges on signal A (signal C) updates the respective
* count. The input level of signal B (signal D) determines
* direction.
*/
if (synapse->signal->id == SIGNAL_A_ID ||
synapse->signal->id == SIGNAL_C_ID)
*action = COUNTER_SYNAPSE_ACTION_RISING_EDGE;
break;
case COUNTER_FUNCTION_QUADRATURE_X2_B:
/*
* Any state transition on quadrature pair signal B (signal D)
* updates the respective count.
*/
if (synapse->signal->id == SIGNAL_B_ID ||
synapse->signal->id == SIGNAL_D_ID)
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
break;
case COUNTER_FUNCTION_QUADRATURE_X4:
/* counts up/down on both edges of A (C) and B (D) signal */
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
break;
default:
/* should never reach this path */
mutex_unlock(&priv->lock);
return -EINVAL;
}
mutex_unlock(&priv->lock);
return 0;
}
static const struct counter_ops rz_mtu3_cnt_ops = {
.count_read = rz_mtu3_count_read,
.count_write = rz_mtu3_count_write,
.function_read = rz_mtu3_count_function_read,
.function_write = rz_mtu3_count_function_write,
.action_read = rz_mtu3_action_read,
};
#define RZ_MTU3_PHASE_SIGNAL(_id, _name) { \
.id = (_id), \
.name = (_name), \
}
static struct counter_signal rz_mtu3_signals[] = {
RZ_MTU3_PHASE_SIGNAL(SIGNAL_A_ID, "MTU1 MTCLKA"),
RZ_MTU3_PHASE_SIGNAL(SIGNAL_B_ID, "MTU1 MTCLKB"),
RZ_MTU3_PHASE_SIGNAL(SIGNAL_C_ID, "MTU2 MTCLKC"),
RZ_MTU3_PHASE_SIGNAL(SIGNAL_D_ID, "MTU2 MTCLKD"),
};
static struct counter_synapse rz_mtu3_mtu1_count_synapses[] = {
{
.actions_list = rz_mtu3_synapse_actions,
.num_actions = ARRAY_SIZE(rz_mtu3_synapse_actions),
.signal = rz_mtu3_signals,
},
{
.actions_list = rz_mtu3_synapse_actions,
.num_actions = ARRAY_SIZE(rz_mtu3_synapse_actions),
.signal = rz_mtu3_signals + 1,
}
};
static struct counter_synapse rz_mtu3_mtu2_count_synapses[] = {
{
.actions_list = rz_mtu3_synapse_actions,
.num_actions = ARRAY_SIZE(rz_mtu3_synapse_actions),
.signal = rz_mtu3_signals,
},
{
.actions_list = rz_mtu3_synapse_actions,
.num_actions = ARRAY_SIZE(rz_mtu3_synapse_actions),
.signal = rz_mtu3_signals + 1,
},
{
.actions_list = rz_mtu3_synapse_actions,
.num_actions = ARRAY_SIZE(rz_mtu3_synapse_actions),
.signal = rz_mtu3_signals + 2,
},
{
.actions_list = rz_mtu3_synapse_actions,
.num_actions = ARRAY_SIZE(rz_mtu3_synapse_actions),
.signal = rz_mtu3_signals + 3,
}
};
static struct counter_count rz_mtu3_counts[] = {
{
.id = RZ_MTU3_16_BIT_MTU1_CH,
.name = "Channel 1 Count",
.functions_list = rz_mtu3_count_functions,
.num_functions = ARRAY_SIZE(rz_mtu3_count_functions),
.synapses = rz_mtu3_mtu1_count_synapses,
.num_synapses = ARRAY_SIZE(rz_mtu3_mtu1_count_synapses),
.ext = rz_mtu3_count_ext,
.num_ext = ARRAY_SIZE(rz_mtu3_count_ext),
},
{
.id = RZ_MTU3_16_BIT_MTU2_CH,
.name = "Channel 2 Count",
.functions_list = rz_mtu3_count_functions,
.num_functions = ARRAY_SIZE(rz_mtu3_count_functions),
.synapses = rz_mtu3_mtu2_count_synapses,
.num_synapses = ARRAY_SIZE(rz_mtu3_mtu2_count_synapses),
.ext = rz_mtu3_count_ext,
.num_ext = ARRAY_SIZE(rz_mtu3_count_ext),
},
{
.id = RZ_MTU3_32_BIT_CH,
.name = "Channel 1 and 2 (cascaded) Count",
.functions_list = rz_mtu3_count_functions,
.num_functions = ARRAY_SIZE(rz_mtu3_count_functions),
.synapses = rz_mtu3_mtu2_count_synapses,
.num_synapses = ARRAY_SIZE(rz_mtu3_mtu2_count_synapses),
.ext = rz_mtu3_count_ext,
.num_ext = ARRAY_SIZE(rz_mtu3_count_ext),
}
};
static const char *const rz_mtu3_ext_input_phase_clock_select[] = {
"MTCLKA-MTCLKB",
"MTCLKC-MTCLKD",
};
static DEFINE_COUNTER_ENUM(rz_mtu3_ext_input_phase_clock_select_enum,
rz_mtu3_ext_input_phase_clock_select);
static struct counter_comp rz_mtu3_device_ext[] = {
COUNTER_COMP_DEVICE_BOOL("cascade_counts_enable",
rz_mtu3_cascade_counts_enable_get,
rz_mtu3_cascade_counts_enable_set),
COUNTER_COMP_DEVICE_ENUM("external_input_phase_clock_select",
rz_mtu3_ext_input_phase_clock_select_get,
rz_mtu3_ext_input_phase_clock_select_set,
rz_mtu3_ext_input_phase_clock_select_enum),
};
static int rz_mtu3_cnt_pm_runtime_suspend(struct device *dev)
{
struct clk *const clk = dev_get_drvdata(dev);
clk_disable_unprepare(clk);
return 0;
}
static int rz_mtu3_cnt_pm_runtime_resume(struct device *dev)
{
struct clk *const clk = dev_get_drvdata(dev);
clk_prepare_enable(clk);
return 0;
}
static DEFINE_RUNTIME_DEV_PM_OPS(rz_mtu3_cnt_pm_ops,
rz_mtu3_cnt_pm_runtime_suspend,
rz_mtu3_cnt_pm_runtime_resume, NULL);
static void rz_mtu3_cnt_pm_disable(void *data)
{
struct device *dev = data;
pm_runtime_disable(dev);
pm_runtime_set_suspended(dev);
}
static int rz_mtu3_cnt_probe(struct platform_device *pdev)
{
struct rz_mtu3 *ddata = dev_get_drvdata(pdev->dev.parent);
struct device *dev = &pdev->dev;
struct counter_device *counter;
struct rz_mtu3_channel *ch;
struct rz_mtu3_cnt *priv;
unsigned int i;
int ret;
counter = devm_counter_alloc(dev, sizeof(*priv));
if (!counter)
return -ENOMEM;
priv = counter_priv(counter);
priv->clk = ddata->clk;
priv->mtu_32bit_max = U32_MAX;
priv->ch = &ddata->channels[RZ_MTU3_CHAN_1];
ch = &priv->ch[0];
for (i = 0; i < RZ_MTU3_MAX_HW_CNTR_CHANNELS; i++) {
ch->dev = dev;
priv->mtu_16bit_max[i] = U16_MAX;
ch++;
}
mutex_init(&priv->lock);
platform_set_drvdata(pdev, priv->clk);
clk_prepare_enable(priv->clk);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = devm_add_action_or_reset(&pdev->dev, rz_mtu3_cnt_pm_disable, dev);
if (ret < 0)
goto disable_clock;
counter->name = dev_name(dev);
counter->parent = dev;
counter->ops = &rz_mtu3_cnt_ops;
counter->counts = rz_mtu3_counts;
counter->num_counts = ARRAY_SIZE(rz_mtu3_counts);
counter->signals = rz_mtu3_signals;
counter->num_signals = ARRAY_SIZE(rz_mtu3_signals);
counter->ext = rz_mtu3_device_ext;
counter->num_ext = ARRAY_SIZE(rz_mtu3_device_ext);
/* Register Counter device */
ret = devm_counter_add(dev, counter);
if (ret < 0) {
dev_err_probe(dev, ret, "Failed to add counter\n");
goto disable_clock;
}
return 0;
disable_clock:
clk_disable_unprepare(priv->clk);
return ret;
}
static struct platform_driver rz_mtu3_cnt_driver = {
.probe = rz_mtu3_cnt_probe,
.driver = {
.name = "rz-mtu3-counter",
.pm = pm_ptr(&rz_mtu3_cnt_pm_ops),
},
};
module_platform_driver(rz_mtu3_cnt_driver);
MODULE_AUTHOR("Biju Das <biju.das.jz@bp.renesas.com>");
MODULE_ALIAS("platform:rz-mtu3-counter");
MODULE_DESCRIPTION("Renesas RZ/G2L MTU3a counter driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(COUNTER);