linux-stable/scripts/kconfig/expr.c
Masahiro Yamada 77a92660d8 kconfig: remove wrong expr_trans_bool()
expr_trans_bool() performs an incorrect transformation.

[Test Code]

    config MODULES
            def_bool y
            modules

    config A
            def_bool y
            select C if B != n

    config B
            def_tristate m

    config C
            tristate

[Result]

    CONFIG_MODULES=y
    CONFIG_A=y
    CONFIG_B=m
    CONFIG_C=m

This output is incorrect because CONFIG_C=y is expected.

Documentation/kbuild/kconfig-language.rst clearly explains the function
of the '!=' operator:

    If the values of both symbols are equal, it returns 'n',
    otherwise 'y'.

Therefore, the statement:

    select C if B != n

should be equivalent to:

    select C if y

Or, more simply:

    select C

Hence, the symbol C should be selected by the value of A, which is 'y'.

However, expr_trans_bool() wrongly transforms it to:

    select C if B

Therefore, the symbol C is selected by (A && B), which is 'm'.

The comment block of expr_trans_bool() correctly explains its intention:

  * bool FOO!=n => FOO
    ^^^^

If FOO is bool, FOO!=n can be simplified into FOO. This is correct.

However, the actual code performs this transformation when FOO is
tristate:

    if (e->left.sym->type == S_TRISTATE) {
                             ^^^^^^^^^^

While it can be fixed to S_BOOLEAN, there is no point in doing so
because expr_tranform() already transforms FOO!=n to FOO when FOO is
bool. (see the "case E_UNEQUAL" part)

expr_trans_bool() is wrong and unnecessary.

Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
2024-06-06 20:09:10 +09:00

1274 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2002 Roman Zippel <zippel@linux-m68k.org>
*/
#include <ctype.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "lkc.h"
#define DEBUG_EXPR 0
static struct expr *expr_eliminate_yn(struct expr *e);
struct expr *expr_alloc_symbol(struct symbol *sym)
{
struct expr *e = xcalloc(1, sizeof(*e));
e->type = E_SYMBOL;
e->left.sym = sym;
return e;
}
struct expr *expr_alloc_one(enum expr_type type, struct expr *ce)
{
struct expr *e = xcalloc(1, sizeof(*e));
e->type = type;
e->left.expr = ce;
return e;
}
struct expr *expr_alloc_two(enum expr_type type, struct expr *e1, struct expr *e2)
{
struct expr *e = xcalloc(1, sizeof(*e));
e->type = type;
e->left.expr = e1;
e->right.expr = e2;
return e;
}
struct expr *expr_alloc_comp(enum expr_type type, struct symbol *s1, struct symbol *s2)
{
struct expr *e = xcalloc(1, sizeof(*e));
e->type = type;
e->left.sym = s1;
e->right.sym = s2;
return e;
}
struct expr *expr_alloc_and(struct expr *e1, struct expr *e2)
{
if (!e1)
return e2;
return e2 ? expr_alloc_two(E_AND, e1, e2) : e1;
}
struct expr *expr_alloc_or(struct expr *e1, struct expr *e2)
{
if (!e1)
return e2;
return e2 ? expr_alloc_two(E_OR, e1, e2) : e1;
}
struct expr *expr_copy(const struct expr *org)
{
struct expr *e;
if (!org)
return NULL;
e = xmalloc(sizeof(*org));
memcpy(e, org, sizeof(*org));
switch (org->type) {
case E_SYMBOL:
e->left = org->left;
break;
case E_NOT:
e->left.expr = expr_copy(org->left.expr);
break;
case E_EQUAL:
case E_GEQ:
case E_GTH:
case E_LEQ:
case E_LTH:
case E_UNEQUAL:
e->left.sym = org->left.sym;
e->right.sym = org->right.sym;
break;
case E_AND:
case E_OR:
case E_LIST:
e->left.expr = expr_copy(org->left.expr);
e->right.expr = expr_copy(org->right.expr);
break;
default:
fprintf(stderr, "can't copy type %d\n", e->type);
free(e);
e = NULL;
break;
}
return e;
}
void expr_free(struct expr *e)
{
if (!e)
return;
switch (e->type) {
case E_SYMBOL:
break;
case E_NOT:
expr_free(e->left.expr);
break;
case E_EQUAL:
case E_GEQ:
case E_GTH:
case E_LEQ:
case E_LTH:
case E_UNEQUAL:
break;
case E_OR:
case E_AND:
expr_free(e->left.expr);
expr_free(e->right.expr);
break;
default:
fprintf(stderr, "how to free type %d?\n", e->type);
break;
}
free(e);
}
static int trans_count;
#define e1 (*ep1)
#define e2 (*ep2)
/*
* expr_eliminate_eq() helper.
*
* Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does
* not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared
* against all other leaves. Two equal leaves are both replaced with either 'y'
* or 'n' as appropriate for 'type', to be eliminated later.
*/
static void __expr_eliminate_eq(enum expr_type type, struct expr **ep1, struct expr **ep2)
{
/* Recurse down to leaves */
if (e1->type == type) {
__expr_eliminate_eq(type, &e1->left.expr, &e2);
__expr_eliminate_eq(type, &e1->right.expr, &e2);
return;
}
if (e2->type == type) {
__expr_eliminate_eq(type, &e1, &e2->left.expr);
__expr_eliminate_eq(type, &e1, &e2->right.expr);
return;
}
/* e1 and e2 are leaves. Compare them. */
if (e1->type == E_SYMBOL && e2->type == E_SYMBOL &&
e1->left.sym == e2->left.sym &&
(e1->left.sym == &symbol_yes || e1->left.sym == &symbol_no))
return;
if (!expr_eq(e1, e2))
return;
/* e1 and e2 are equal leaves. Prepare them for elimination. */
trans_count++;
expr_free(e1); expr_free(e2);
switch (type) {
case E_OR:
e1 = expr_alloc_symbol(&symbol_no);
e2 = expr_alloc_symbol(&symbol_no);
break;
case E_AND:
e1 = expr_alloc_symbol(&symbol_yes);
e2 = expr_alloc_symbol(&symbol_yes);
break;
default:
;
}
}
/*
* Rewrites the expressions 'ep1' and 'ep2' to remove operands common to both.
* Example reductions:
*
* ep1: A && B -> ep1: y
* ep2: A && B && C -> ep2: C
*
* ep1: A || B -> ep1: n
* ep2: A || B || C -> ep2: C
*
* ep1: A && (B && FOO) -> ep1: FOO
* ep2: (BAR && B) && A -> ep2: BAR
*
* ep1: A && (B || C) -> ep1: y
* ep2: (C || B) && A -> ep2: y
*
* Comparisons are done between all operands at the same "level" of && or ||.
* For example, in the expression 'e1 && (e2 || e3) && (e4 || e5)', the
* following operands will be compared:
*
* - 'e1', 'e2 || e3', and 'e4 || e5', against each other
* - e2 against e3
* - e4 against e5
*
* Parentheses are irrelevant within a single level. 'e1 && (e2 && e3)' and
* '(e1 && e2) && e3' are both a single level.
*
* See __expr_eliminate_eq() as well.
*/
void expr_eliminate_eq(struct expr **ep1, struct expr **ep2)
{
if (!e1 || !e2)
return;
switch (e1->type) {
case E_OR:
case E_AND:
__expr_eliminate_eq(e1->type, ep1, ep2);
default:
;
}
if (e1->type != e2->type) switch (e2->type) {
case E_OR:
case E_AND:
__expr_eliminate_eq(e2->type, ep1, ep2);
default:
;
}
e1 = expr_eliminate_yn(e1);
e2 = expr_eliminate_yn(e2);
}
#undef e1
#undef e2
/*
* Returns true if 'e1' and 'e2' are equal, after minor simplification. Two
* &&/|| expressions are considered equal if every operand in one expression
* equals some operand in the other (operands do not need to appear in the same
* order), recursively.
*/
int expr_eq(struct expr *e1, struct expr *e2)
{
int res, old_count;
/*
* A NULL expr is taken to be yes, but there's also a different way to
* represent yes. expr_is_yes() checks for either representation.
*/
if (!e1 || !e2)
return expr_is_yes(e1) && expr_is_yes(e2);
if (e1->type != e2->type)
return 0;
switch (e1->type) {
case E_EQUAL:
case E_GEQ:
case E_GTH:
case E_LEQ:
case E_LTH:
case E_UNEQUAL:
return e1->left.sym == e2->left.sym && e1->right.sym == e2->right.sym;
case E_SYMBOL:
return e1->left.sym == e2->left.sym;
case E_NOT:
return expr_eq(e1->left.expr, e2->left.expr);
case E_AND:
case E_OR:
e1 = expr_copy(e1);
e2 = expr_copy(e2);
old_count = trans_count;
expr_eliminate_eq(&e1, &e2);
res = (e1->type == E_SYMBOL && e2->type == E_SYMBOL &&
e1->left.sym == e2->left.sym);
expr_free(e1);
expr_free(e2);
trans_count = old_count;
return res;
case E_LIST:
case E_RANGE:
case E_NONE:
/* panic */;
}
if (DEBUG_EXPR) {
expr_fprint(e1, stdout);
printf(" = ");
expr_fprint(e2, stdout);
printf(" ?\n");
}
return 0;
}
/*
* Recursively performs the following simplifications in-place (as well as the
* corresponding simplifications with swapped operands):
*
* expr && n -> n
* expr && y -> expr
* expr || n -> expr
* expr || y -> y
*
* Returns the optimized expression.
*/
static struct expr *expr_eliminate_yn(struct expr *e)
{
struct expr *tmp;
if (e) switch (e->type) {
case E_AND:
e->left.expr = expr_eliminate_yn(e->left.expr);
e->right.expr = expr_eliminate_yn(e->right.expr);
if (e->left.expr->type == E_SYMBOL) {
if (e->left.expr->left.sym == &symbol_no) {
expr_free(e->left.expr);
expr_free(e->right.expr);
e->type = E_SYMBOL;
e->left.sym = &symbol_no;
e->right.expr = NULL;
return e;
} else if (e->left.expr->left.sym == &symbol_yes) {
free(e->left.expr);
tmp = e->right.expr;
*e = *(e->right.expr);
free(tmp);
return e;
}
}
if (e->right.expr->type == E_SYMBOL) {
if (e->right.expr->left.sym == &symbol_no) {
expr_free(e->left.expr);
expr_free(e->right.expr);
e->type = E_SYMBOL;
e->left.sym = &symbol_no;
e->right.expr = NULL;
return e;
} else if (e->right.expr->left.sym == &symbol_yes) {
free(e->right.expr);
tmp = e->left.expr;
*e = *(e->left.expr);
free(tmp);
return e;
}
}
break;
case E_OR:
e->left.expr = expr_eliminate_yn(e->left.expr);
e->right.expr = expr_eliminate_yn(e->right.expr);
if (e->left.expr->type == E_SYMBOL) {
if (e->left.expr->left.sym == &symbol_no) {
free(e->left.expr);
tmp = e->right.expr;
*e = *(e->right.expr);
free(tmp);
return e;
} else if (e->left.expr->left.sym == &symbol_yes) {
expr_free(e->left.expr);
expr_free(e->right.expr);
e->type = E_SYMBOL;
e->left.sym = &symbol_yes;
e->right.expr = NULL;
return e;
}
}
if (e->right.expr->type == E_SYMBOL) {
if (e->right.expr->left.sym == &symbol_no) {
free(e->right.expr);
tmp = e->left.expr;
*e = *(e->left.expr);
free(tmp);
return e;
} else if (e->right.expr->left.sym == &symbol_yes) {
expr_free(e->left.expr);
expr_free(e->right.expr);
e->type = E_SYMBOL;
e->left.sym = &symbol_yes;
e->right.expr = NULL;
return e;
}
}
break;
default:
;
}
return e;
}
/*
* e1 || e2 -> ?
*/
static struct expr *expr_join_or(struct expr *e1, struct expr *e2)
{
struct expr *tmp;
struct symbol *sym1, *sym2;
if (expr_eq(e1, e2))
return expr_copy(e1);
if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT)
return NULL;
if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT)
return NULL;
if (e1->type == E_NOT) {
tmp = e1->left.expr;
if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL)
return NULL;
sym1 = tmp->left.sym;
} else
sym1 = e1->left.sym;
if (e2->type == E_NOT) {
if (e2->left.expr->type != E_SYMBOL)
return NULL;
sym2 = e2->left.expr->left.sym;
} else
sym2 = e2->left.sym;
if (sym1 != sym2)
return NULL;
if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE)
return NULL;
if (sym1->type == S_TRISTATE) {
if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) ||
(e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes))) {
// (a='y') || (a='m') -> (a!='n')
return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_no);
}
if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) ||
(e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes))) {
// (a='y') || (a='n') -> (a!='m')
return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_mod);
}
if (e1->type == E_EQUAL && e2->type == E_EQUAL &&
((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) ||
(e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod))) {
// (a='m') || (a='n') -> (a!='y')
return expr_alloc_comp(E_UNEQUAL, sym1, &symbol_yes);
}
}
if (sym1->type == S_BOOLEAN) {
if ((e1->type == E_NOT && e1->left.expr->type == E_SYMBOL && e2->type == E_SYMBOL) ||
(e2->type == E_NOT && e2->left.expr->type == E_SYMBOL && e1->type == E_SYMBOL))
return expr_alloc_symbol(&symbol_yes);
}
if (DEBUG_EXPR) {
printf("optimize (");
expr_fprint(e1, stdout);
printf(") || (");
expr_fprint(e2, stdout);
printf(")?\n");
}
return NULL;
}
static struct expr *expr_join_and(struct expr *e1, struct expr *e2)
{
struct expr *tmp;
struct symbol *sym1, *sym2;
if (expr_eq(e1, e2))
return expr_copy(e1);
if (e1->type != E_EQUAL && e1->type != E_UNEQUAL && e1->type != E_SYMBOL && e1->type != E_NOT)
return NULL;
if (e2->type != E_EQUAL && e2->type != E_UNEQUAL && e2->type != E_SYMBOL && e2->type != E_NOT)
return NULL;
if (e1->type == E_NOT) {
tmp = e1->left.expr;
if (tmp->type != E_EQUAL && tmp->type != E_UNEQUAL && tmp->type != E_SYMBOL)
return NULL;
sym1 = tmp->left.sym;
} else
sym1 = e1->left.sym;
if (e2->type == E_NOT) {
if (e2->left.expr->type != E_SYMBOL)
return NULL;
sym2 = e2->left.expr->left.sym;
} else
sym2 = e2->left.sym;
if (sym1 != sym2)
return NULL;
if (sym1->type != S_BOOLEAN && sym1->type != S_TRISTATE)
return NULL;
if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_yes) ||
(e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_yes))
// (a) && (a='y') -> (a='y')
return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);
if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_no) ||
(e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_no))
// (a) && (a!='n') -> (a)
return expr_alloc_symbol(sym1);
if ((e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_mod) ||
(e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_mod))
// (a) && (a!='m') -> (a='y')
return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);
if (sym1->type == S_TRISTATE) {
if (e1->type == E_EQUAL && e2->type == E_UNEQUAL) {
// (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b'
sym2 = e1->right.sym;
if ((e2->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST))
return sym2 != e2->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2)
: expr_alloc_symbol(&symbol_no);
}
if (e1->type == E_UNEQUAL && e2->type == E_EQUAL) {
// (a='b') && (a!='c') -> 'b'='c' ? 'n' : a='b'
sym2 = e2->right.sym;
if ((e1->right.sym->flags & SYMBOL_CONST) && (sym2->flags & SYMBOL_CONST))
return sym2 != e1->right.sym ? expr_alloc_comp(E_EQUAL, sym1, sym2)
: expr_alloc_symbol(&symbol_no);
}
if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_no) ||
(e1->right.sym == &symbol_no && e2->right.sym == &symbol_yes)))
// (a!='y') && (a!='n') -> (a='m')
return expr_alloc_comp(E_EQUAL, sym1, &symbol_mod);
if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
((e1->right.sym == &symbol_yes && e2->right.sym == &symbol_mod) ||
(e1->right.sym == &symbol_mod && e2->right.sym == &symbol_yes)))
// (a!='y') && (a!='m') -> (a='n')
return expr_alloc_comp(E_EQUAL, sym1, &symbol_no);
if (e1->type == E_UNEQUAL && e2->type == E_UNEQUAL &&
((e1->right.sym == &symbol_mod && e2->right.sym == &symbol_no) ||
(e1->right.sym == &symbol_no && e2->right.sym == &symbol_mod)))
// (a!='m') && (a!='n') -> (a='m')
return expr_alloc_comp(E_EQUAL, sym1, &symbol_yes);
if ((e1->type == E_SYMBOL && e2->type == E_EQUAL && e2->right.sym == &symbol_mod) ||
(e2->type == E_SYMBOL && e1->type == E_EQUAL && e1->right.sym == &symbol_mod) ||
(e1->type == E_SYMBOL && e2->type == E_UNEQUAL && e2->right.sym == &symbol_yes) ||
(e2->type == E_SYMBOL && e1->type == E_UNEQUAL && e1->right.sym == &symbol_yes))
return NULL;
}
if (DEBUG_EXPR) {
printf("optimize (");
expr_fprint(e1, stdout);
printf(") && (");
expr_fprint(e2, stdout);
printf(")?\n");
}
return NULL;
}
/*
* expr_eliminate_dups() helper.
*
* Walks the two expression trees given in 'ep1' and 'ep2'. Any node that does
* not have type 'type' (E_OR/E_AND) is considered a leaf, and is compared
* against all other leaves to look for simplifications.
*/
static void expr_eliminate_dups1(enum expr_type type, struct expr **ep1, struct expr **ep2)
{
#define e1 (*ep1)
#define e2 (*ep2)
struct expr *tmp;
/* Recurse down to leaves */
if (e1->type == type) {
expr_eliminate_dups1(type, &e1->left.expr, &e2);
expr_eliminate_dups1(type, &e1->right.expr, &e2);
return;
}
if (e2->type == type) {
expr_eliminate_dups1(type, &e1, &e2->left.expr);
expr_eliminate_dups1(type, &e1, &e2->right.expr);
return;
}
/* e1 and e2 are leaves. Compare and process them. */
if (e1 == e2)
return;
switch (e1->type) {
case E_OR: case E_AND:
expr_eliminate_dups1(e1->type, &e1, &e1);
default:
;
}
switch (type) {
case E_OR:
tmp = expr_join_or(e1, e2);
if (tmp) {
expr_free(e1); expr_free(e2);
e1 = expr_alloc_symbol(&symbol_no);
e2 = tmp;
trans_count++;
}
break;
case E_AND:
tmp = expr_join_and(e1, e2);
if (tmp) {
expr_free(e1); expr_free(e2);
e1 = expr_alloc_symbol(&symbol_yes);
e2 = tmp;
trans_count++;
}
break;
default:
;
}
#undef e1
#undef e2
}
/*
* Rewrites 'e' in-place to remove ("join") duplicate and other redundant
* operands.
*
* Example simplifications:
*
* A || B || A -> A || B
* A && B && A=y -> A=y && B
*
* Returns the deduplicated expression.
*/
struct expr *expr_eliminate_dups(struct expr *e)
{
int oldcount;
if (!e)
return e;
oldcount = trans_count;
while (1) {
trans_count = 0;
switch (e->type) {
case E_OR: case E_AND:
expr_eliminate_dups1(e->type, &e, &e);
default:
;
}
if (!trans_count)
/* No simplifications done in this pass. We're done */
break;
e = expr_eliminate_yn(e);
}
trans_count = oldcount;
return e;
}
/*
* Performs various simplifications involving logical operators and
* comparisons.
*
* Allocates and returns a new expression.
*/
struct expr *expr_transform(struct expr *e)
{
struct expr *tmp;
if (!e)
return NULL;
switch (e->type) {
case E_EQUAL:
case E_GEQ:
case E_GTH:
case E_LEQ:
case E_LTH:
case E_UNEQUAL:
case E_SYMBOL:
case E_LIST:
break;
default:
e->left.expr = expr_transform(e->left.expr);
e->right.expr = expr_transform(e->right.expr);
}
switch (e->type) {
case E_EQUAL:
if (e->left.sym->type != S_BOOLEAN)
break;
if (e->right.sym == &symbol_no) {
e->type = E_NOT;
e->left.expr = expr_alloc_symbol(e->left.sym);
e->right.sym = NULL;
break;
}
if (e->right.sym == &symbol_mod) {
printf("boolean symbol %s tested for 'm'? test forced to 'n'\n", e->left.sym->name);
e->type = E_SYMBOL;
e->left.sym = &symbol_no;
e->right.sym = NULL;
break;
}
if (e->right.sym == &symbol_yes) {
e->type = E_SYMBOL;
e->right.sym = NULL;
break;
}
break;
case E_UNEQUAL:
if (e->left.sym->type != S_BOOLEAN)
break;
if (e->right.sym == &symbol_no) {
e->type = E_SYMBOL;
e->right.sym = NULL;
break;
}
if (e->right.sym == &symbol_mod) {
printf("boolean symbol %s tested for 'm'? test forced to 'y'\n", e->left.sym->name);
e->type = E_SYMBOL;
e->left.sym = &symbol_yes;
e->right.sym = NULL;
break;
}
if (e->right.sym == &symbol_yes) {
e->type = E_NOT;
e->left.expr = expr_alloc_symbol(e->left.sym);
e->right.sym = NULL;
break;
}
break;
case E_NOT:
switch (e->left.expr->type) {
case E_NOT:
// !!a -> a
tmp = e->left.expr->left.expr;
free(e->left.expr);
free(e);
e = tmp;
e = expr_transform(e);
break;
case E_EQUAL:
case E_UNEQUAL:
// !a='x' -> a!='x'
tmp = e->left.expr;
free(e);
e = tmp;
e->type = e->type == E_EQUAL ? E_UNEQUAL : E_EQUAL;
break;
case E_LEQ:
case E_GEQ:
// !a<='x' -> a>'x'
tmp = e->left.expr;
free(e);
e = tmp;
e->type = e->type == E_LEQ ? E_GTH : E_LTH;
break;
case E_LTH:
case E_GTH:
// !a<'x' -> a>='x'
tmp = e->left.expr;
free(e);
e = tmp;
e->type = e->type == E_LTH ? E_GEQ : E_LEQ;
break;
case E_OR:
// !(a || b) -> !a && !b
tmp = e->left.expr;
e->type = E_AND;
e->right.expr = expr_alloc_one(E_NOT, tmp->right.expr);
tmp->type = E_NOT;
tmp->right.expr = NULL;
e = expr_transform(e);
break;
case E_AND:
// !(a && b) -> !a || !b
tmp = e->left.expr;
e->type = E_OR;
e->right.expr = expr_alloc_one(E_NOT, tmp->right.expr);
tmp->type = E_NOT;
tmp->right.expr = NULL;
e = expr_transform(e);
break;
case E_SYMBOL:
if (e->left.expr->left.sym == &symbol_yes) {
// !'y' -> 'n'
tmp = e->left.expr;
free(e);
e = tmp;
e->type = E_SYMBOL;
e->left.sym = &symbol_no;
break;
}
if (e->left.expr->left.sym == &symbol_mod) {
// !'m' -> 'm'
tmp = e->left.expr;
free(e);
e = tmp;
e->type = E_SYMBOL;
e->left.sym = &symbol_mod;
break;
}
if (e->left.expr->left.sym == &symbol_no) {
// !'n' -> 'y'
tmp = e->left.expr;
free(e);
e = tmp;
e->type = E_SYMBOL;
e->left.sym = &symbol_yes;
break;
}
break;
default:
;
}
break;
default:
;
}
return e;
}
int expr_contains_symbol(struct expr *dep, struct symbol *sym)
{
if (!dep)
return 0;
switch (dep->type) {
case E_AND:
case E_OR:
return expr_contains_symbol(dep->left.expr, sym) ||
expr_contains_symbol(dep->right.expr, sym);
case E_SYMBOL:
return dep->left.sym == sym;
case E_EQUAL:
case E_GEQ:
case E_GTH:
case E_LEQ:
case E_LTH:
case E_UNEQUAL:
return dep->left.sym == sym ||
dep->right.sym == sym;
case E_NOT:
return expr_contains_symbol(dep->left.expr, sym);
default:
;
}
return 0;
}
bool expr_depends_symbol(struct expr *dep, struct symbol *sym)
{
if (!dep)
return false;
switch (dep->type) {
case E_AND:
return expr_depends_symbol(dep->left.expr, sym) ||
expr_depends_symbol(dep->right.expr, sym);
case E_SYMBOL:
return dep->left.sym == sym;
case E_EQUAL:
if (dep->left.sym == sym) {
if (dep->right.sym == &symbol_yes || dep->right.sym == &symbol_mod)
return true;
}
break;
case E_UNEQUAL:
if (dep->left.sym == sym) {
if (dep->right.sym == &symbol_no)
return true;
}
break;
default:
;
}
return false;
}
/*
* Inserts explicit comparisons of type 'type' to symbol 'sym' into the
* expression 'e'.
*
* Examples transformations for type == E_UNEQUAL, sym == &symbol_no:
*
* A -> A!=n
* !A -> A=n
* A && B -> !(A=n || B=n)
* A || B -> !(A=n && B=n)
* A && (B || C) -> !(A=n || (B=n && C=n))
*
* Allocates and returns a new expression.
*/
struct expr *expr_trans_compare(struct expr *e, enum expr_type type, struct symbol *sym)
{
struct expr *e1, *e2;
if (!e) {
e = expr_alloc_symbol(sym);
if (type == E_UNEQUAL)
e = expr_alloc_one(E_NOT, e);
return e;
}
switch (e->type) {
case E_AND:
e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym);
e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym);
if (sym == &symbol_yes)
e = expr_alloc_two(E_AND, e1, e2);
if (sym == &symbol_no)
e = expr_alloc_two(E_OR, e1, e2);
if (type == E_UNEQUAL)
e = expr_alloc_one(E_NOT, e);
return e;
case E_OR:
e1 = expr_trans_compare(e->left.expr, E_EQUAL, sym);
e2 = expr_trans_compare(e->right.expr, E_EQUAL, sym);
if (sym == &symbol_yes)
e = expr_alloc_two(E_OR, e1, e2);
if (sym == &symbol_no)
e = expr_alloc_two(E_AND, e1, e2);
if (type == E_UNEQUAL)
e = expr_alloc_one(E_NOT, e);
return e;
case E_NOT:
return expr_trans_compare(e->left.expr, type == E_EQUAL ? E_UNEQUAL : E_EQUAL, sym);
case E_UNEQUAL:
case E_LTH:
case E_LEQ:
case E_GTH:
case E_GEQ:
case E_EQUAL:
if (type == E_EQUAL) {
if (sym == &symbol_yes)
return expr_copy(e);
if (sym == &symbol_mod)
return expr_alloc_symbol(&symbol_no);
if (sym == &symbol_no)
return expr_alloc_one(E_NOT, expr_copy(e));
} else {
if (sym == &symbol_yes)
return expr_alloc_one(E_NOT, expr_copy(e));
if (sym == &symbol_mod)
return expr_alloc_symbol(&symbol_yes);
if (sym == &symbol_no)
return expr_copy(e);
}
break;
case E_SYMBOL:
return expr_alloc_comp(type, e->left.sym, sym);
case E_LIST:
case E_RANGE:
case E_NONE:
/* panic */;
}
return NULL;
}
enum string_value_kind {
k_string,
k_signed,
k_unsigned,
};
union string_value {
unsigned long long u;
signed long long s;
};
static enum string_value_kind expr_parse_string(const char *str,
enum symbol_type type,
union string_value *val)
{
char *tail;
enum string_value_kind kind;
errno = 0;
switch (type) {
case S_BOOLEAN:
case S_TRISTATE:
val->s = !strcmp(str, "n") ? 0 :
!strcmp(str, "m") ? 1 :
!strcmp(str, "y") ? 2 : -1;
return k_signed;
case S_INT:
val->s = strtoll(str, &tail, 10);
kind = k_signed;
break;
case S_HEX:
val->u = strtoull(str, &tail, 16);
kind = k_unsigned;
break;
default:
val->s = strtoll(str, &tail, 0);
kind = k_signed;
break;
}
return !errno && !*tail && tail > str && isxdigit(tail[-1])
? kind : k_string;
}
tristate expr_calc_value(struct expr *e)
{
tristate val1, val2;
const char *str1, *str2;
enum string_value_kind k1 = k_string, k2 = k_string;
union string_value lval = {}, rval = {};
int res;
if (!e)
return yes;
switch (e->type) {
case E_SYMBOL:
sym_calc_value(e->left.sym);
return e->left.sym->curr.tri;
case E_AND:
val1 = expr_calc_value(e->left.expr);
val2 = expr_calc_value(e->right.expr);
return EXPR_AND(val1, val2);
case E_OR:
val1 = expr_calc_value(e->left.expr);
val2 = expr_calc_value(e->right.expr);
return EXPR_OR(val1, val2);
case E_NOT:
val1 = expr_calc_value(e->left.expr);
return EXPR_NOT(val1);
case E_EQUAL:
case E_GEQ:
case E_GTH:
case E_LEQ:
case E_LTH:
case E_UNEQUAL:
break;
default:
printf("expr_calc_value: %d?\n", e->type);
return no;
}
sym_calc_value(e->left.sym);
sym_calc_value(e->right.sym);
str1 = sym_get_string_value(e->left.sym);
str2 = sym_get_string_value(e->right.sym);
if (e->left.sym->type != S_STRING || e->right.sym->type != S_STRING) {
k1 = expr_parse_string(str1, e->left.sym->type, &lval);
k2 = expr_parse_string(str2, e->right.sym->type, &rval);
}
if (k1 == k_string || k2 == k_string)
res = strcmp(str1, str2);
else if (k1 == k_unsigned || k2 == k_unsigned)
res = (lval.u > rval.u) - (lval.u < rval.u);
else /* if (k1 == k_signed && k2 == k_signed) */
res = (lval.s > rval.s) - (lval.s < rval.s);
switch(e->type) {
case E_EQUAL:
return res ? no : yes;
case E_GEQ:
return res >= 0 ? yes : no;
case E_GTH:
return res > 0 ? yes : no;
case E_LEQ:
return res <= 0 ? yes : no;
case E_LTH:
return res < 0 ? yes : no;
case E_UNEQUAL:
return res ? yes : no;
default:
printf("expr_calc_value: relation %d?\n", e->type);
return no;
}
}
static int expr_compare_type(enum expr_type t1, enum expr_type t2)
{
if (t1 == t2)
return 0;
switch (t1) {
case E_LEQ:
case E_LTH:
case E_GEQ:
case E_GTH:
if (t2 == E_EQUAL || t2 == E_UNEQUAL)
return 1;
case E_EQUAL:
case E_UNEQUAL:
if (t2 == E_NOT)
return 1;
case E_NOT:
if (t2 == E_AND)
return 1;
case E_AND:
if (t2 == E_OR)
return 1;
case E_OR:
if (t2 == E_LIST)
return 1;
case E_LIST:
if (t2 == 0)
return 1;
default:
return -1;
}
return 0;
}
void expr_print(struct expr *e,
void (*fn)(void *, struct symbol *, const char *),
void *data, int prevtoken)
{
if (!e) {
fn(data, NULL, "y");
return;
}
if (expr_compare_type(prevtoken, e->type) > 0)
fn(data, NULL, "(");
switch (e->type) {
case E_SYMBOL:
if (e->left.sym->name)
fn(data, e->left.sym, e->left.sym->name);
else
fn(data, NULL, "<choice>");
break;
case E_NOT:
fn(data, NULL, "!");
expr_print(e->left.expr, fn, data, E_NOT);
break;
case E_EQUAL:
if (e->left.sym->name)
fn(data, e->left.sym, e->left.sym->name);
else
fn(data, NULL, "<choice>");
fn(data, NULL, "=");
fn(data, e->right.sym, e->right.sym->name);
break;
case E_LEQ:
case E_LTH:
if (e->left.sym->name)
fn(data, e->left.sym, e->left.sym->name);
else
fn(data, NULL, "<choice>");
fn(data, NULL, e->type == E_LEQ ? "<=" : "<");
fn(data, e->right.sym, e->right.sym->name);
break;
case E_GEQ:
case E_GTH:
if (e->left.sym->name)
fn(data, e->left.sym, e->left.sym->name);
else
fn(data, NULL, "<choice>");
fn(data, NULL, e->type == E_GEQ ? ">=" : ">");
fn(data, e->right.sym, e->right.sym->name);
break;
case E_UNEQUAL:
if (e->left.sym->name)
fn(data, e->left.sym, e->left.sym->name);
else
fn(data, NULL, "<choice>");
fn(data, NULL, "!=");
fn(data, e->right.sym, e->right.sym->name);
break;
case E_OR:
expr_print(e->left.expr, fn, data, E_OR);
fn(data, NULL, " || ");
expr_print(e->right.expr, fn, data, E_OR);
break;
case E_AND:
expr_print(e->left.expr, fn, data, E_AND);
fn(data, NULL, " && ");
expr_print(e->right.expr, fn, data, E_AND);
break;
case E_LIST:
fn(data, e->right.sym, e->right.sym->name);
if (e->left.expr) {
fn(data, NULL, " ^ ");
expr_print(e->left.expr, fn, data, E_LIST);
}
break;
case E_RANGE:
fn(data, NULL, "[");
fn(data, e->left.sym, e->left.sym->name);
fn(data, NULL, " ");
fn(data, e->right.sym, e->right.sym->name);
fn(data, NULL, "]");
break;
default:
{
char buf[32];
sprintf(buf, "<unknown type %d>", e->type);
fn(data, NULL, buf);
break;
}
}
if (expr_compare_type(prevtoken, e->type) > 0)
fn(data, NULL, ")");
}
static void expr_print_file_helper(void *data, struct symbol *sym, const char *str)
{
xfwrite(str, strlen(str), 1, data);
}
void expr_fprint(struct expr *e, FILE *out)
{
expr_print(e, expr_print_file_helper, out, E_NONE);
}
static void expr_print_gstr_helper(void *data, struct symbol *sym, const char *str)
{
struct gstr *gs = (struct gstr*)data;
const char *sym_str = NULL;
if (sym)
sym_str = sym_get_string_value(sym);
if (gs->max_width) {
unsigned extra_length = strlen(str);
const char *last_cr = strrchr(gs->s, '\n');
unsigned last_line_length;
if (sym_str)
extra_length += 4 + strlen(sym_str);
if (!last_cr)
last_cr = gs->s;
last_line_length = strlen(gs->s) - (last_cr - gs->s);
if ((last_line_length + extra_length) > gs->max_width)
str_append(gs, "\\\n");
}
str_append(gs, str);
if (sym && sym->type != S_UNKNOWN)
str_printf(gs, " [=%s]", sym_str);
}
void expr_gstr_print(struct expr *e, struct gstr *gs)
{
expr_print(e, expr_print_gstr_helper, gs, E_NONE);
}
/*
* Transform the top level "||" tokens into newlines and prepend each
* line with a minus. This makes expressions much easier to read.
* Suitable for reverse dependency expressions.
*/
static void expr_print_revdep(struct expr *e,
void (*fn)(void *, struct symbol *, const char *),
void *data, tristate pr_type, const char **title)
{
if (e->type == E_OR) {
expr_print_revdep(e->left.expr, fn, data, pr_type, title);
expr_print_revdep(e->right.expr, fn, data, pr_type, title);
} else if (expr_calc_value(e) == pr_type) {
if (*title) {
fn(data, NULL, *title);
*title = NULL;
}
fn(data, NULL, " - ");
expr_print(e, fn, data, E_NONE);
fn(data, NULL, "\n");
}
}
void expr_gstr_print_revdep(struct expr *e, struct gstr *gs,
tristate pr_type, const char *title)
{
expr_print_revdep(e, expr_print_gstr_helper, gs, pr_type, &title);
}