linux/drivers/iio/light/Makefile

72 lines
2.6 KiB
Makefile
Raw Permalink Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for IIO Light sensors
#
# When adding new entries keep the list in alphabetical order
obj-$(CONFIG_ACPI_ALS) += acpi-als.o
obj-$(CONFIG_ADJD_S311) += adjd_s311.o
obj-$(CONFIG_ADUX1020) += adux1020.o
obj-$(CONFIG_AL3010) += al3010.o
obj-$(CONFIG_AL3320A) += al3320a.o
obj-$(CONFIG_APDS9300) += apds9300.o
obj-$(CONFIG_APDS9306) += apds9306.o
obj-$(CONFIG_APDS9960) += apds9960.o
obj-$(CONFIG_AS73211) += as73211.o
obj-$(CONFIG_BH1745) += bh1745.o
obj-$(CONFIG_BH1750) += bh1750.o
obj-$(CONFIG_BH1780) += bh1780.o
obj-$(CONFIG_CM32181) += cm32181.o
obj-$(CONFIG_CM3232) += cm3232.o
obj-$(CONFIG_CM3323) += cm3323.o
iio: light: add driver for Capella CM3605 This adds a driver for the Capella Microsystems CM3605 Ambient Light Sensor and proximity sensor. This is a pretty simple entirely analog device that is interfaced with the target system using the POUT (proximity out) and AOUT (ambient light out) signals. The POUT signal is a simple high/low signal that indicates whether an object is in proximity, most typically used to detect a face in front of a mobile device. The signal requires that an infrared LED is mounted next to the device, making IR light reflect off the object in proximity and triggering the POUT signal. We grab a GPIO pin to handle the POUT signal as an interrupt line and register this as an event channel for the sensor. Since the proximity sensor requires an IR LED, we add a LED trigger named "cm3605" so that the infrared LED can just associate with this trigger to be sure it is always on when the proximity sensor needs it. The AOUT is an analog voltage between 0 and 1550 mV that indicate the LUX value in the ambient light: this is orthogonal to the proximity sensor functionality. Since this analog voltage needs to be converted into a digital value, the driver grabs an IIO channel named "aout" associated with the device. This patch created a combined ALS and proximity sensor driver. The former supports raw reads of the LUX value and the latter will generate proximity events. To integrate this properly with Linux we also add a supply regulator for the VDD pin (driving both functions) and add device tree bindings to define the RSET resistor that in turn configures the luminosity range of the ALS sensor. Since the sensor needs to be on more or less constantly, we restrict the power management to system suspend/resume: we disable the IR LED and disable the regulator for VDD on suspend and take them back up on resume. Tests: cd /sys/bus/iio/devices/iio:device1 cat in_illuminance_raw 304 (hold hand over sensor) cat in_illuminance_raw 17 iio_event_monitor cm3605 Found IIO device with name cm3605 with device number 1 (hold hand over sensor) Event: time: 2444842301447, type: proximity, channel: 0, evtype: thresh, direction: falling (remove hand over sensor) Event: time: 2445583440706, type: proximity, channel: 0, evtype: thresh, direction: rising Cc: Capella Microsystems <capellamicro@gmail.com> Cc: Kevin Tsai <ktsai@capellamicro.com> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Jonathan Cameron <jic23@kernel.org>
2016-12-18 21:56:05 +00:00
obj-$(CONFIG_CM3605) += cm3605.o
obj-$(CONFIG_CM36651) += cm36651.o
obj-$(CONFIG_IIO_CROS_EC_LIGHT_PROX) += cros_ec_light_prox.o
iio: light: Add a driver for Sharp GP2AP002x00F This driver handles two different Sharp sensors that have been proposed for merging to the mainline kernel over the years, and already has a limited proximity-only driver in the input subsystem. These components are completely different from the confusingly similarly named Sharp GP2AP020A00F, for which we have a driver in drivers/iio/light/gp2ap020a00f.c The two components GP2AP002A00F and GP2AP002S00F are distinctively different but similar: they share the same set of registers but differ slightly in the I2C protocol. Instead of the approach by the previous input driver, we create a combined IIO proximity and light sensor driver. The plan is to merge this driver and delete the input driver. The pieces for the driver are picked all over the place after researching and grepping through a few different vendor trees and driver submissions. We merge it under the light sensors because: - It has similarities with the Capella CM3605 light sensor and proximity driver which is there. - It is related to the GP2AP020A00F driver which is also there. This driver was tested with the Samsung GT-S7710 mobile phone which has the GP2AP002S00F proximity sensor mounted. The suspend/resume cycle will disable the interrupt from the sensor. If someone would desire to use this interrupt for wakeup, the driver will need modifications. Cc: Stephan Gerhold <stephan@gerhold.net> Cc: Minkyu Kang <mk7.kang@samsung.com> Cc: Paweł Chmiel <pawel.mikolaj.chmiel@gmail.com> Cc: Jonathan Bakker <xc-racer2@live.ca> Cc: Oskar Andero <oskar.andero@gmail.com> Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com> Tested-by: Jonathan Bakker <xc-racer2@live.ca> Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
2020-01-26 15:05:48 +00:00
obj-$(CONFIG_GP2AP002) += gp2ap002.o
obj-$(CONFIG_GP2AP020A00F) += gp2ap020a00f.o
obj-$(CONFIG_HID_SENSOR_ALS) += hid-sensor-als.o
obj-$(CONFIG_HID_SENSOR_PROX) += hid-sensor-prox.o
obj-$(CONFIG_IQS621_ALS) += iqs621-als.o
obj-$(CONFIG_SENSORS_ISL29018) += isl29018.o
obj-$(CONFIG_SENSORS_ISL29028) += isl29028.o
obj-$(CONFIG_ISL29125) += isl29125.o
obj-$(CONFIG_ISL76682) += isl76682.o
obj-$(CONFIG_JSA1212) += jsa1212.o
obj-$(CONFIG_SENSORS_LM3533) += lm3533-als.o
obj-$(CONFIG_LTR390) += ltr390.o
obj-$(CONFIG_LTR501) += ltr501.o
obj-$(CONFIG_LTRF216A) += ltrf216a.o
obj-$(CONFIG_LV0104CS) += lv0104cs.o
obj-$(CONFIG_MAX44000) += max44000.o
obj-$(CONFIG_MAX44009) += max44009.o
obj-$(CONFIG_NOA1305) += noa1305.o
obj-$(CONFIG_OPT3001) += opt3001.o
obj-$(CONFIG_OPT4001) += opt4001.o
obj-$(CONFIG_PA12203001) += pa12203001.o
obj-$(CONFIG_ROHM_BU27008) += rohm-bu27008.o
2023-03-31 12:41:58 +00:00
obj-$(CONFIG_ROHM_BU27034) += rohm-bu27034.o
obj-$(CONFIG_RPR0521) += rpr0521.o
obj-$(CONFIG_SI1133) += si1133.o
obj-$(CONFIG_SI1145) += si1145.o
obj-$(CONFIG_STK3310) += stk3310.o
obj-$(CONFIG_ST_UVIS25) += st_uvis25_core.o
obj-$(CONFIG_ST_UVIS25_I2C) += st_uvis25_i2c.o
obj-$(CONFIG_ST_UVIS25_SPI) += st_uvis25_spi.o
obj-$(CONFIG_TCS3414) += tcs3414.o
obj-$(CONFIG_TCS3472) += tcs3472.o
obj-$(CONFIG_SENSORS_TSL2563) += tsl2563.o
obj-$(CONFIG_TSL2583) += tsl2583.o
obj-$(CONFIG_TSL2591) += tsl2591.o
obj-$(CONFIG_TSL2772) += tsl2772.o
obj-$(CONFIG_TSL4531) += tsl4531.o
obj-$(CONFIG_US5182D) += us5182d.o
obj-$(CONFIG_VCNL4000) += vcnl4000.o
obj-$(CONFIG_VCNL4035) += vcnl4035.o
obj-$(CONFIG_VEML3235) += veml3235.o
obj-$(CONFIG_VEML6030) += veml6030.o
obj-$(CONFIG_VEML6040) += veml6040.o
obj-$(CONFIG_VEML6070) += veml6070.o
obj-$(CONFIG_VEML6075) += veml6075.o
obj-$(CONFIG_VL6180) += vl6180.o
obj-$(CONFIG_ZOPT2201) += zopt2201.o