linux/drivers/iio/magnetometer/als31300.c

495 lines
13 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for the Allegro MicroSystems ALS31300 3-D Linear Hall Effect Sensor
*
* Copyright (c) 2024 Linaro Limited
*/
#include <linux/bits.h>
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <linux/units.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
/*
* The Allegro MicroSystems ALS31300 has an EEPROM space to configure how
* the device works and how the interrupt line behaves.
* Only the default setup with external trigger is supported.
*
* While the bindings supports declaring an interrupt line, those
* events are not supported.
*
* It should be possible to adapt the driver to the current
* device EEPROM setup at runtime.
*/
#define ALS31300_EEPROM_CONFIG 0x02
#define ALS31300_EEPROM_INTERRUPT 0x03
#define ALS31300_EEPROM_CUSTOMER_1 0x0d
#define ALS31300_EEPROM_CUSTOMER_2 0x0e
#define ALS31300_EEPROM_CUSTOMER_3 0x0f
#define ALS31300_VOL_MODE 0x27
#define ALS31300_VOL_MODE_LPDCM GENMASK(6, 4)
#define ALS31300_LPDCM_INACTIVE_0_5_MS 0
#define ALS31300_LPDCM_INACTIVE_1_0_MS 1
#define ALS31300_LPDCM_INACTIVE_5_0_MS 2
#define ALS31300_LPDCM_INACTIVE_10_0_MS 3
#define ALS31300_LPDCM_INACTIVE_50_0_MS 4
#define ALS31300_LPDCM_INACTIVE_100_0_MS 5
#define ALS31300_LPDCM_INACTIVE_500_0_MS 6
#define ALS31300_LPDCM_INACTIVE_1000_0_MS 7
#define ALS31300_VOL_MODE_SLEEP GENMASK(1, 0)
#define ALS31300_VOL_MODE_ACTIVE_MODE 0
#define ALS31300_VOL_MODE_SLEEP_MODE 1
#define ALS31300_VOL_MODE_LPDCM_MODE 2
#define ALS31300_VOL_MSB 0x28
#define ALS31300_VOL_MSB_TEMPERATURE GENMASK(5, 0)
#define ALS31300_VOL_MSB_INTERRUPT BIT(6)
#define ALS31300_VOL_MSB_NEW_DATA BIT(7)
#define ALS31300_VOL_MSB_Z_AXIS GENMASK(15, 8)
#define ALS31300_VOL_MSB_Y_AXIS GENMASK(23, 16)
#define ALS31300_VOL_MSB_X_AXIS GENMASK(31, 24)
#define ALS31300_VOL_LSB 0x29
#define ALS31300_VOL_LSB_TEMPERATURE GENMASK(5, 0)
#define ALS31300_VOL_LSB_HALL_STATUS GENMASK(7, 7)
#define ALS31300_VOL_LSB_Z_AXIS GENMASK(11, 8)
#define ALS31300_VOL_LSB_Y_AXIS GENMASK(15, 12)
#define ALS31300_VOL_LSB_X_AXIS GENMASK(19, 16)
#define ALS31300_VOL_LSB_INTERRUPT_WRITE BIT(20)
#define ALS31300_CUSTOMER_ACCESS 0x35
#define ALS31300_DATA_X_GET(b) \
sign_extend32(FIELD_GET(ALS31300_VOL_MSB_X_AXIS, b[0]) << 4 | \
FIELD_GET(ALS31300_VOL_LSB_X_AXIS, b[1]), 11)
#define ALS31300_DATA_Y_GET(b) \
sign_extend32(FIELD_GET(ALS31300_VOL_MSB_Y_AXIS, b[0]) << 4 | \
FIELD_GET(ALS31300_VOL_LSB_Y_AXIS, b[1]), 11)
#define ALS31300_DATA_Z_GET(b) \
sign_extend32(FIELD_GET(ALS31300_VOL_MSB_Z_AXIS, b[0]) << 4 | \
FIELD_GET(ALS31300_VOL_LSB_Z_AXIS, b[1]), 11)
#define ALS31300_TEMPERATURE_GET(b) \
(FIELD_GET(ALS31300_VOL_MSB_TEMPERATURE, b[0]) << 6 | \
FIELD_GET(ALS31300_VOL_LSB_TEMPERATURE, b[1]))
enum als31300_channels {
TEMPERATURE = 0,
AXIS_X,
AXIS_Y,
AXIS_Z,
};
struct als31300_variant_info {
u8 sensitivity;
};
struct als31300_data {
struct device *dev;
/* protects power on/off the device and access HW */
struct mutex mutex;
const struct als31300_variant_info *variant_info;
struct regmap *map;
};
/* The whole measure is split into 2x32-bit registers, we need to read them both at once */
static int als31300_get_measure(struct als31300_data *data,
u16 *t, s16 *x, s16 *y, s16 *z)
{
u32 buf[2];
int ret, err;
guard(mutex)(&data->mutex);
ret = pm_runtime_resume_and_get(data->dev);
if (ret)
return ret;
/*
* Loop until data is valid, new data should have the
* ALS31300_VOL_MSB_NEW_DATA bit set to 1.
* Max update rate is 2KHz, wait up to 1ms.
*/
ret = read_poll_timeout(regmap_bulk_read, err,
err || FIELD_GET(ALS31300_VOL_MSB_NEW_DATA, buf[0]),
20, USEC_PER_MSEC, false,
data->map, ALS31300_VOL_MSB, buf, ARRAY_SIZE(buf));
/* Bail out on read_poll_timeout() error */
if (ret)
goto out;
/* Bail out on regmap_bulk_read() error */
if (err) {
dev_err(data->dev, "read data failed, error %d\n", ret);
ret = err;
goto out;
}
*t = ALS31300_TEMPERATURE_GET(buf);
*x = ALS31300_DATA_X_GET(buf);
*y = ALS31300_DATA_Y_GET(buf);
*z = ALS31300_DATA_Z_GET(buf);
out:
pm_runtime_mark_last_busy(data->dev);
pm_runtime_put_autosuspend(data->dev);
return ret;
}
static int als31300_read_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan, int *val,
int *val2, long mask)
{
struct als31300_data *data = iio_priv(indio_dev);
s16 x, y, z;
u16 t;
int ret;
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
case IIO_CHAN_INFO_RAW:
ret = als31300_get_measure(data, &t, &x, &y, &z);
if (ret)
return ret;
switch (chan->address) {
case TEMPERATURE:
*val = t;
return IIO_VAL_INT;
case AXIS_X:
*val = x;
return IIO_VAL_INT;
case AXIS_Y:
*val = y;
return IIO_VAL_INT;
case AXIS_Z:
*val = z;
return IIO_VAL_INT;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_TEMP:
/*
* Fractional part of:
* 1000 * 302 * (value - 1708)
* temp = ----------------------------
* 4096
* to convert temperature in millicelcius.
*/
*val = MILLI * 302;
*val2 = 4096;
return IIO_VAL_FRACTIONAL;
case IIO_MAGN:
/*
* Devices are configured in factory
* with different sensitivities:
* - 500 GAUSS <-> 4 LSB/Gauss
* - 1000 GAUSS <-> 2 LSB/Gauss
* - 2000 GAUSS <-> 1 LSB/Gauss
* with translates by a division of the returned
* value to get Gauss value.
* The sensitivity cannot be read at runtime
* so the value depends on the model compatible
* or device id.
*/
*val = 1;
*val2 = data->variant_info->sensitivity;
return IIO_VAL_FRACTIONAL;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
switch (chan->type) {
case IIO_TEMP:
*val = -1708;
return IIO_VAL_INT;
default:
return -EINVAL;
}
default:
return -EINVAL;
}
}
static irqreturn_t als31300_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct als31300_data *data = iio_priv(indio_dev);
struct {
u16 temperature;
s16 channels[3];
aligned_s64 timestamp;
} scan;
s16 x, y, z;
int ret;
u16 t;
ret = als31300_get_measure(data, &t, &x, &y, &z);
if (ret)
goto trigger_out;
scan.temperature = t;
scan.channels[0] = x;
scan.channels[1] = y;
scan.channels[2] = z;
iio_push_to_buffers_with_timestamp(indio_dev, &scan,
pf->timestamp);
trigger_out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
#define ALS31300_AXIS_CHANNEL(axis, index) \
{ \
.type = IIO_MAGN, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.address = index, \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = 12, \
.storagebits = 16, \
.endianness = IIO_CPU, \
}, \
}
static const struct iio_chan_spec als31300_channels[] = {
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.address = TEMPERATURE,
.scan_index = TEMPERATURE,
.scan_type = {
.sign = 'u',
.realbits = 16,
.storagebits = 16,
.endianness = IIO_CPU,
},
},
ALS31300_AXIS_CHANNEL(X, AXIS_X),
ALS31300_AXIS_CHANNEL(Y, AXIS_Y),
ALS31300_AXIS_CHANNEL(Z, AXIS_Z),
IIO_CHAN_SOFT_TIMESTAMP(4),
};
static const struct iio_info als31300_info = {
.read_raw = als31300_read_raw,
};
static int als31300_set_operating_mode(struct als31300_data *data,
unsigned int val)
{
int ret;
ret = regmap_update_bits(data->map, ALS31300_VOL_MODE,
ALS31300_VOL_MODE_SLEEP, val);
if (ret) {
dev_err(data->dev, "failed to set operating mode (%pe)\n", ERR_PTR(ret));
return ret;
}
/* The time it takes to exit sleep mode is equivalent to Power-On Delay Time */
if (val == ALS31300_VOL_MODE_ACTIVE_MODE)
fsleep(600);
return 0;
}
static void als31300_power_down(void *data)
{
als31300_set_operating_mode(data, ALS31300_VOL_MODE_SLEEP_MODE);
}
static const struct iio_buffer_setup_ops als31300_setup_ops = {};
static const unsigned long als31300_scan_masks[] = { GENMASK(3, 0), 0 };
static bool als31300_volatile_reg(struct device *dev, unsigned int reg)
{
return reg == ALS31300_VOL_MSB || reg == ALS31300_VOL_LSB;
}
static const struct regmap_config als31300_regmap_config = {
.reg_bits = 8,
.val_bits = 32,
.max_register = ALS31300_CUSTOMER_ACCESS,
.volatile_reg = als31300_volatile_reg,
};
static int als31300_probe(struct i2c_client *i2c)
{
struct device *dev = &i2c->dev;
struct als31300_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
data->dev = dev;
i2c_set_clientdata(i2c, indio_dev);
ret = devm_mutex_init(dev, &data->mutex);
if (ret)
return ret;
data->variant_info = i2c_get_match_data(i2c);
if (!data->variant_info)
return -EINVAL;
data->map = devm_regmap_init_i2c(i2c, &als31300_regmap_config);
if (IS_ERR(data->map))
return dev_err_probe(dev, PTR_ERR(data->map),
"failed to allocate register map\n");
ret = devm_regulator_get_enable(dev, "vcc");
if (ret)
return dev_err_probe(dev, ret, "failed to enable regulator\n");
ret = als31300_set_operating_mode(data, ALS31300_VOL_MODE_ACTIVE_MODE);
if (ret)
return dev_err_probe(dev, ret, "failed to power on device\n");
ret = devm_add_action_or_reset(dev, als31300_power_down, data);
if (ret)
return dev_err_probe(dev, ret, "failed to add powerdown action\n");
indio_dev->info = &als31300_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->name = i2c->name;
indio_dev->channels = als31300_channels;
indio_dev->num_channels = ARRAY_SIZE(als31300_channels);
indio_dev->available_scan_masks = als31300_scan_masks;
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
iio_pollfunc_store_time,
als31300_trigger_handler,
&als31300_setup_ops);
if (ret < 0)
return dev_err_probe(dev, ret, "iio triggered buffer setup failed\n");
ret = pm_runtime_set_active(dev);
if (ret < 0)
return ret;
ret = devm_pm_runtime_enable(dev);
if (ret)
return ret;
pm_runtime_get_noresume(dev);
pm_runtime_set_autosuspend_delay(dev, 200);
pm_runtime_use_autosuspend(dev);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return dev_err_probe(dev, ret, "device register failed\n");
return 0;
}
static int als31300_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct als31300_data *data = iio_priv(indio_dev);
return als31300_set_operating_mode(data, ALS31300_VOL_MODE_SLEEP_MODE);
}
static int als31300_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct als31300_data *data = iio_priv(indio_dev);
return als31300_set_operating_mode(data, ALS31300_VOL_MODE_ACTIVE_MODE);
}
static DEFINE_RUNTIME_DEV_PM_OPS(als31300_pm_ops,
als31300_runtime_suspend, als31300_runtime_resume,
NULL);
static const struct als31300_variant_info al31300_variant_500 = {
.sensitivity = 4,
};
static const struct als31300_variant_info al31300_variant_1000 = {
.sensitivity = 2,
};
static const struct als31300_variant_info al31300_variant_2000 = {
.sensitivity = 1,
};
static const struct i2c_device_id als31300_id[] = {
{
.name = "als31300-500",
.driver_data = (kernel_ulong_t)&al31300_variant_500,
},
{
.name = "als31300-1000",
.driver_data = (kernel_ulong_t)&al31300_variant_1000,
},
{
.name = "als31300-2000",
.driver_data = (kernel_ulong_t)&al31300_variant_2000,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(i2c, als31300_id);
static const struct of_device_id als31300_of_match[] = {
{
.compatible = "allegromicro,als31300-500",
.data = &al31300_variant_500,
},
{
.compatible = "allegromicro,als31300-1000",
.data = &al31300_variant_1000,
},
{
.compatible = "allegromicro,als31300-2000",
.data = &al31300_variant_2000,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, als31300_of_match);
static struct i2c_driver als31300_driver = {
.driver = {
.name = "als31300",
.of_match_table = als31300_of_match,
.pm = pm_ptr(&als31300_pm_ops),
},
.probe = als31300_probe,
.id_table = als31300_id,
};
module_i2c_driver(als31300_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("ALS31300 3-D Linear Hall Effect Driver");
MODULE_AUTHOR("Neil Armstrong <neil.armstrong@linaro.org>");