linux/drivers/pwm/pwm-stm32.c

931 lines
24 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2016
*
* Author: Gerald Baeza <gerald.baeza@st.com>
*
* Inspired by timer-stm32.c from Maxime Coquelin
* pwm-atmel.c from Bo Shen
*/
#include <linux/bitfield.h>
#include <linux/mfd/stm32-timers.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#define CCMR_CHANNEL_SHIFT 8
#define CCMR_CHANNEL_MASK 0xFF
#define MAX_BREAKINPUT 2
struct stm32_breakinput {
u32 index;
u32 level;
u32 filter;
};
struct stm32_pwm {
struct mutex lock; /* protect pwm config/enable */
struct clk *clk;
struct regmap *regmap;
u32 max_arr;
bool have_complementary_output;
struct stm32_breakinput breakinputs[MAX_BREAKINPUT];
unsigned int num_breakinputs;
u32 capture[4] ____cacheline_aligned; /* DMA'able buffer */
};
static inline struct stm32_pwm *to_stm32_pwm_dev(struct pwm_chip *chip)
{
return pwmchip_get_drvdata(chip);
}
static u32 active_channels(struct stm32_pwm *dev)
{
u32 ccer;
regmap_read(dev->regmap, TIM_CCER, &ccer);
return ccer & TIM_CCER_CCXE;
}
struct stm32_pwm_waveform {
u32 ccer;
u32 psc;
u32 arr;
u32 ccr;
};
static int stm32_pwm_round_waveform_tohw(struct pwm_chip *chip,
struct pwm_device *pwm,
const struct pwm_waveform *wf,
void *_wfhw)
{
struct stm32_pwm_waveform *wfhw = _wfhw;
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
unsigned int ch = pwm->hwpwm;
unsigned long rate;
u64 ccr, duty;
int ret;
if (wf->period_length_ns == 0) {
*wfhw = (struct stm32_pwm_waveform){
.ccer = 0,
};
return 0;
}
ret = clk_enable(priv->clk);
if (ret)
return ret;
wfhw->ccer = TIM_CCER_CCxE(ch + 1);
if (priv->have_complementary_output)
wfhw->ccer |= TIM_CCER_CCxNE(ch + 1);
rate = clk_get_rate(priv->clk);
if (active_channels(priv) & ~(1 << ch * 4)) {
u64 arr;
/*
* Other channels are already enabled, so the configured PSC and
* ARR must be used for this channel, too.
*/
ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc);
if (ret)
goto out;
ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr);
if (ret)
goto out;
/*
* calculate the best value for ARR for the given PSC, refuse if
* the resulting period gets bigger than the requested one.
*/
arr = mul_u64_u64_div_u64(wf->period_length_ns, rate,
(u64)NSEC_PER_SEC * (wfhw->psc + 1));
if (arr <= wfhw->arr) {
/*
* requested period is small than the currently
* configured and unchangable period, report back the smallest
* possible period, i.e. the current state; Initialize
* ccr to anything valid.
*/
wfhw->ccr = 0;
ret = 1;
goto out;
}
} else {
/*
* .probe() asserted that clk_get_rate() is not bigger than 1 GHz, so
* the calculations here won't overflow.
* First we need to find the minimal value for prescaler such that
*
* period_ns * clkrate
* ------------------------------ < max_arr + 1
* NSEC_PER_SEC * (prescaler + 1)
*
* This equation is equivalent to
*
* period_ns * clkrate
* ---------------------------- < prescaler + 1
* NSEC_PER_SEC * (max_arr + 1)
*
* Using integer division and knowing that the right hand side is
* integer, this is further equivalent to
*
* (period_ns * clkrate) // (NSEC_PER_SEC * (max_arr + 1)) ≤ prescaler
*/
u64 psc = mul_u64_u64_div_u64(wf->period_length_ns, rate,
(u64)NSEC_PER_SEC * ((u64)priv->max_arr + 1));
u64 arr;
wfhw->psc = min_t(u64, psc, MAX_TIM_PSC);
arr = mul_u64_u64_div_u64(wf->period_length_ns, rate,
(u64)NSEC_PER_SEC * (wfhw->psc + 1));
if (!arr) {
/*
* requested period is too small, report back the smallest
* possible period, i.e. ARR = 0. The only valid CCR
* value is then zero, too.
*/
wfhw->arr = 0;
wfhw->ccr = 0;
ret = 1;
goto out;
}
/*
* ARR is limited intentionally to values less than
* priv->max_arr to allow 100% duty cycle.
*/
wfhw->arr = min_t(u64, arr, priv->max_arr) - 1;
}
duty = mul_u64_u64_div_u64(wf->duty_length_ns, rate,
(u64)NSEC_PER_SEC * (wfhw->psc + 1));
duty = min_t(u64, duty, wfhw->arr + 1);
if (wf->duty_length_ns && wf->duty_offset_ns &&
wf->duty_length_ns + wf->duty_offset_ns >= wf->period_length_ns) {
wfhw->ccer |= TIM_CCER_CCxP(ch + 1);
if (priv->have_complementary_output)
wfhw->ccer |= TIM_CCER_CCxNP(ch + 1);
ccr = wfhw->arr + 1 - duty;
} else {
ccr = duty;
}
wfhw->ccr = min_t(u64, ccr, wfhw->arr + 1);
dev_dbg(&chip->dev, "pwm#%u: %lld/%lld [+%lld] @%lu -> CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x\n",
pwm->hwpwm, wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
rate, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr);
out:
clk_disable(priv->clk);
return ret;
}
/*
* This should be moved to lib/math/div64.c. Currently there are some changes
* pending to mul_u64_u64_div_u64. Uwe will care for that when the dust settles.
*/
static u64 stm32_pwm_mul_u64_u64_div_u64_roundup(u64 a, u64 b, u64 c)
{
u64 res = mul_u64_u64_div_u64(a, b, c);
/* Those multiplications might overflow but it doesn't matter */
u64 rem = a * b - c * res;
if (rem)
res += 1;
return res;
}
static int stm32_pwm_round_waveform_fromhw(struct pwm_chip *chip,
struct pwm_device *pwm,
const void *_wfhw,
struct pwm_waveform *wf)
{
const struct stm32_pwm_waveform *wfhw = _wfhw;
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
unsigned int ch = pwm->hwpwm;
if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
unsigned long rate = clk_get_rate(priv->clk);
u64 ccr_ns;
/* The result doesn't overflow for rate >= 15259 */
wf->period_length_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1),
NSEC_PER_SEC, rate);
ccr_ns = stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * wfhw->ccr,
NSEC_PER_SEC, rate);
if (wfhw->ccer & TIM_CCER_CCxP(ch + 1)) {
wf->duty_length_ns =
stm32_pwm_mul_u64_u64_div_u64_roundup(((u64)wfhw->psc + 1) * (wfhw->arr + 1 - wfhw->ccr),
NSEC_PER_SEC, rate);
wf->duty_offset_ns = ccr_ns;
} else {
wf->duty_length_ns = ccr_ns;
wf->duty_offset_ns = 0;
}
dev_dbg(&chip->dev, "pwm#%u: CCER: %08x, PSC: %08x, ARR: %08x, CCR: %08x @%lu -> %lld/%lld [+%lld]\n",
pwm->hwpwm, wfhw->ccer, wfhw->psc, wfhw->arr, wfhw->ccr, rate,
wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);
} else {
*wf = (struct pwm_waveform){
.period_length_ns = 0,
};
}
return 0;
}
static int stm32_pwm_read_waveform(struct pwm_chip *chip,
struct pwm_device *pwm,
void *_wfhw)
{
struct stm32_pwm_waveform *wfhw = _wfhw;
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
unsigned int ch = pwm->hwpwm;
int ret;
ret = clk_enable(priv->clk);
if (ret)
return ret;
ret = regmap_read(priv->regmap, TIM_CCER, &wfhw->ccer);
if (ret)
goto out;
if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
ret = regmap_read(priv->regmap, TIM_PSC, &wfhw->psc);
if (ret)
goto out;
ret = regmap_read(priv->regmap, TIM_ARR, &wfhw->arr);
if (ret)
goto out;
if (wfhw->arr == U32_MAX)
wfhw->arr -= 1;
ret = regmap_read(priv->regmap, TIM_CCRx(ch + 1), &wfhw->ccr);
if (ret)
goto out;
if (wfhw->ccr > wfhw->arr + 1)
wfhw->ccr = wfhw->arr + 1;
}
out:
clk_disable(priv->clk);
return ret;
}
static int stm32_pwm_write_waveform(struct pwm_chip *chip,
struct pwm_device *pwm,
const void *_wfhw)
{
const struct stm32_pwm_waveform *wfhw = _wfhw;
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
unsigned int ch = pwm->hwpwm;
int ret;
ret = clk_enable(priv->clk);
if (ret)
return ret;
if (wfhw->ccer & TIM_CCER_CCxE(ch + 1)) {
u32 ccer, mask;
unsigned int shift;
u32 ccmr;
ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
if (ret)
goto out;
/* If there are other channels enabled, don't update PSC and ARR */
if (ccer & ~TIM_CCER_CCxE(ch + 1) & TIM_CCER_CCXE) {
u32 psc, arr;
ret = regmap_read(priv->regmap, TIM_PSC, &psc);
if (ret)
goto out;
if (psc != wfhw->psc) {
ret = -EBUSY;
goto out;
}
ret = regmap_read(priv->regmap, TIM_ARR, &arr);
if (ret)
goto out;
if (arr != wfhw->arr) {
ret = -EBUSY;
goto out;
}
} else {
ret = regmap_write(priv->regmap, TIM_PSC, wfhw->psc);
if (ret)
goto out;
ret = regmap_write(priv->regmap, TIM_ARR, wfhw->arr);
if (ret)
goto out;
ret = regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE);
if (ret)
goto out;
}
/* set polarity */
mask = TIM_CCER_CCxP(ch + 1) | TIM_CCER_CCxNP(ch + 1);
ret = regmap_update_bits(priv->regmap, TIM_CCER, mask, wfhw->ccer);
if (ret)
goto out;
ret = regmap_write(priv->regmap, TIM_CCRx(ch + 1), wfhw->ccr);
if (ret)
goto out;
/* Configure output mode */
shift = (ch & 0x1) * CCMR_CHANNEL_SHIFT;
ccmr = (TIM_CCMR_PE | TIM_CCMR_M1) << shift;
mask = CCMR_CHANNEL_MASK << shift;
if (ch < 2)
ret = regmap_update_bits(priv->regmap, TIM_CCMR1, mask, ccmr);
else
ret = regmap_update_bits(priv->regmap, TIM_CCMR2, mask, ccmr);
if (ret)
goto out;
ret = regmap_set_bits(priv->regmap, TIM_BDTR, TIM_BDTR_MOE);
if (ret)
goto out;
if (!(ccer & TIM_CCER_CCxE(ch + 1))) {
mask = TIM_CCER_CCxE(ch + 1) | TIM_CCER_CCxNE(ch + 1);
ret = clk_enable(priv->clk);
if (ret)
goto out;
ccer = (ccer & ~mask) | (wfhw->ccer & mask);
regmap_write(priv->regmap, TIM_CCER, ccer);
/* Make sure that registers are updated */
regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
/* Enable controller */
regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
}
} else {
/* disable channel */
u32 mask, ccer;
mask = TIM_CCER_CCxE(ch + 1);
if (priv->have_complementary_output)
mask |= TIM_CCER_CCxNE(ch + 1);
ret = regmap_read(priv->regmap, TIM_CCER, &ccer);
if (ret)
goto out;
if (ccer & mask) {
ccer = ccer & ~mask;
ret = regmap_write(priv->regmap, TIM_CCER, ccer);
if (ret)
goto out;
if (!(ccer & TIM_CCER_CCXE)) {
/* When all channels are disabled, we can disable the controller */
ret = regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
if (ret)
goto out;
}
clk_disable(priv->clk);
}
}
out:
clk_disable(priv->clk);
return ret;
}
#define TIM_CCER_CC12P (TIM_CCER_CC1P | TIM_CCER_CC2P)
#define TIM_CCER_CC12E (TIM_CCER_CC1E | TIM_CCER_CC2E)
#define TIM_CCER_CC34P (TIM_CCER_CC3P | TIM_CCER_CC4P)
#define TIM_CCER_CC34E (TIM_CCER_CC3E | TIM_CCER_CC4E)
/*
* Capture using PWM input mode:
* ___ ___
* TI[1, 2, 3 or 4]: ........._| |________|
* ^0 ^1 ^2
* . . .
* . . XXXXX
* . . XXXXX |
* . XXXXX . |
* XXXXX . . |
* COUNTER: ______XXXXX . . . |_XXX
* start^ . . . ^stop
* . . . .
* v v . v
* v
* CCR1/CCR3: tx..........t0...........t2
* CCR2/CCR4: tx..............t1.........
*
* DMA burst transfer: | |
* v v
* DMA buffer: { t0, tx } { t2, t1 }
* DMA done: ^
*
* 0: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
* + DMA transfer CCR[1/3] & CCR[2/4] values (t0, tx: doesn't care)
* 1: IC2/4 snapchot on falling edge: counter value -> CCR2/CCR4
* 2: IC1/3 snapchot on rising edge: counter value -> CCR1/CCR3
* + DMA transfer CCR[1/3] & CCR[2/4] values (t2, t1)
*
* DMA done, compute:
* - Period = t2 - t0
* - Duty cycle = t1 - t0
*/
static int stm32_pwm_raw_capture(struct pwm_chip *chip, struct pwm_device *pwm,
unsigned long tmo_ms, u32 *raw_prd,
u32 *raw_dty)
{
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
struct device *parent = pwmchip_parent(chip)->parent;
enum stm32_timers_dmas dma_id;
u32 ccen, ccr;
int ret;
/* Ensure registers have been updated, enable counter and capture */
regmap_set_bits(priv->regmap, TIM_EGR, TIM_EGR_UG);
regmap_set_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
/* Use cc1 or cc3 DMA resp for PWM input channels 1 & 2 or 3 & 4 */
dma_id = pwm->hwpwm < 2 ? STM32_TIMERS_DMA_CH1 : STM32_TIMERS_DMA_CH3;
ccen = pwm->hwpwm < 2 ? TIM_CCER_CC12E : TIM_CCER_CC34E;
ccr = pwm->hwpwm < 2 ? TIM_CCR1 : TIM_CCR3;
regmap_set_bits(priv->regmap, TIM_CCER, ccen);
/*
* Timer DMA burst mode. Request 2 registers, 2 bursts, to get both
* CCR1 & CCR2 (or CCR3 & CCR4) on each capture event.
* We'll get two capture snapchots: { CCR1, CCR2 }, { CCR1, CCR2 }
* or { CCR3, CCR4 }, { CCR3, CCR4 }
*/
ret = stm32_timers_dma_burst_read(parent, priv->capture, dma_id, ccr, 2,
2, tmo_ms);
if (ret)
goto stop;
/* Period: t2 - t0 (take care of counter overflow) */
if (priv->capture[0] <= priv->capture[2])
*raw_prd = priv->capture[2] - priv->capture[0];
else
*raw_prd = priv->max_arr - priv->capture[0] + priv->capture[2];
/* Duty cycle capture requires at least two capture units */
if (pwm->chip->npwm < 2)
*raw_dty = 0;
else if (priv->capture[0] <= priv->capture[3])
*raw_dty = priv->capture[3] - priv->capture[0];
else
*raw_dty = priv->max_arr - priv->capture[0] + priv->capture[3];
if (*raw_dty > *raw_prd) {
/*
* Race beetween PWM input and DMA: it may happen
* falling edge triggers new capture on TI2/4 before DMA
* had a chance to read CCR2/4. It means capture[1]
* contains period + duty_cycle. So, subtract period.
*/
*raw_dty -= *raw_prd;
}
stop:
regmap_clear_bits(priv->regmap, TIM_CCER, ccen);
regmap_clear_bits(priv->regmap, TIM_CR1, TIM_CR1_CEN);
return ret;
}
static int stm32_pwm_capture(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_capture *result, unsigned long tmo_ms)
{
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
unsigned long long prd, div, dty;
unsigned long rate;
unsigned int psc = 0, icpsc, scale;
u32 raw_prd = 0, raw_dty = 0;
int ret = 0;
mutex_lock(&priv->lock);
if (active_channels(priv)) {
ret = -EBUSY;
goto unlock;
}
ret = clk_enable(priv->clk);
if (ret) {
dev_err(pwmchip_parent(chip), "failed to enable counter clock\n");
goto unlock;
}
rate = clk_get_rate(priv->clk);
if (!rate) {
ret = -EINVAL;
goto clk_dis;
}
/* prescaler: fit timeout window provided by upper layer */
div = (unsigned long long)rate * (unsigned long long)tmo_ms;
do_div(div, MSEC_PER_SEC);
prd = div;
while ((div > priv->max_arr) && (psc < MAX_TIM_PSC)) {
psc++;
div = prd;
do_div(div, psc + 1);
}
regmap_write(priv->regmap, TIM_ARR, priv->max_arr);
regmap_write(priv->regmap, TIM_PSC, psc);
/* Reset input selector to its default input and disable slave mode */
regmap_write(priv->regmap, TIM_TISEL, 0x0);
regmap_write(priv->regmap, TIM_SMCR, 0x0);
/* Map TI1 or TI2 PWM input to IC1 & IC2 (or TI3/4 to IC3 & IC4) */
regmap_update_bits(priv->regmap,
pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
TIM_CCMR_CC1S | TIM_CCMR_CC2S, pwm->hwpwm & 0x1 ?
TIM_CCMR_CC1S_TI2 | TIM_CCMR_CC2S_TI2 :
TIM_CCMR_CC1S_TI1 | TIM_CCMR_CC2S_TI1);
/* Capture period on IC1/3 rising edge, duty cycle on IC2/4 falling. */
regmap_update_bits(priv->regmap, TIM_CCER, pwm->hwpwm < 2 ?
TIM_CCER_CC12P : TIM_CCER_CC34P, pwm->hwpwm < 2 ?
TIM_CCER_CC2P : TIM_CCER_CC4P);
ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
if (ret)
goto stop;
/*
* Got a capture. Try to improve accuracy at high rates:
* - decrease counter clock prescaler, scale up to max rate.
* - use input prescaler, capture once every /2 /4 or /8 edges.
*/
if (raw_prd) {
u32 max_arr = priv->max_arr - 0x1000; /* arbitrary margin */
scale = max_arr / min(max_arr, raw_prd);
} else {
scale = priv->max_arr; /* below resolution, use max scale */
}
if (psc && scale > 1) {
/* 2nd measure with new scale */
psc /= scale;
regmap_write(priv->regmap, TIM_PSC, psc);
ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd,
&raw_dty);
if (ret)
goto stop;
}
/* Compute intermediate period not to exceed timeout at low rates */
prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
do_div(prd, rate);
for (icpsc = 0; icpsc < MAX_TIM_ICPSC ; icpsc++) {
/* input prescaler: also keep arbitrary margin */
if (raw_prd >= (priv->max_arr - 0x1000) >> (icpsc + 1))
break;
if (prd >= (tmo_ms * NSEC_PER_MSEC) >> (icpsc + 2))
break;
}
if (!icpsc)
goto done;
/* Last chance to improve period accuracy, using input prescaler */
regmap_update_bits(priv->regmap,
pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2,
TIM_CCMR_IC1PSC | TIM_CCMR_IC2PSC,
FIELD_PREP(TIM_CCMR_IC1PSC, icpsc) |
FIELD_PREP(TIM_CCMR_IC2PSC, icpsc));
ret = stm32_pwm_raw_capture(chip, pwm, tmo_ms, &raw_prd, &raw_dty);
if (ret)
goto stop;
if (raw_dty >= (raw_prd >> icpsc)) {
/*
* We may fall here using input prescaler, when input
* capture starts on high side (before falling edge).
* Example with icpsc to capture on each 4 events:
*
* start 1st capture 2nd capture
* v v v
* ___ _____ _____ _____ _____ ____
* TI1..4 |__| |__| |__| |__| |__|
* v v . . . . . v v
* icpsc1/3: . 0 . 1 . 2 . 3 . 0
* icpsc2/4: 0 1 2 3 0
* v v v v
* CCR1/3 ......t0..............................t2
* CCR2/4 ..t1..............................t1'...
* . . .
* Capture0: .<----------------------------->.
* Capture1: .<-------------------------->. .
* . . .
* Period: .<------> . .
* Low side: .<>.
*
* Result:
* - Period = Capture0 / icpsc
* - Duty = Period - Low side = Period - (Capture0 - Capture1)
*/
raw_dty = (raw_prd >> icpsc) - (raw_prd - raw_dty);
}
done:
prd = (unsigned long long)raw_prd * (psc + 1) * NSEC_PER_SEC;
result->period = DIV_ROUND_UP_ULL(prd, rate << icpsc);
dty = (unsigned long long)raw_dty * (psc + 1) * NSEC_PER_SEC;
result->duty_cycle = DIV_ROUND_UP_ULL(dty, rate);
stop:
regmap_write(priv->regmap, TIM_CCER, 0);
regmap_write(priv->regmap, pwm->hwpwm < 2 ? TIM_CCMR1 : TIM_CCMR2, 0);
regmap_write(priv->regmap, TIM_PSC, 0);
clk_dis:
clk_disable(priv->clk);
unlock:
mutex_unlock(&priv->lock);
return ret;
}
static const struct pwm_ops stm32pwm_ops = {
.sizeof_wfhw = sizeof(struct stm32_pwm_waveform),
.round_waveform_tohw = stm32_pwm_round_waveform_tohw,
.round_waveform_fromhw = stm32_pwm_round_waveform_fromhw,
.read_waveform = stm32_pwm_read_waveform,
.write_waveform = stm32_pwm_write_waveform,
.capture = IS_ENABLED(CONFIG_DMA_ENGINE) ? stm32_pwm_capture : NULL,
};
static int stm32_pwm_set_breakinput(struct stm32_pwm *priv,
const struct stm32_breakinput *bi)
{
u32 shift = TIM_BDTR_BKF_SHIFT(bi->index);
u32 bke = TIM_BDTR_BKE(bi->index);
u32 bkp = TIM_BDTR_BKP(bi->index);
u32 bkf = TIM_BDTR_BKF(bi->index);
u32 mask = bkf | bkp | bke;
u32 bdtr;
bdtr = (bi->filter & TIM_BDTR_BKF_MASK) << shift | bke;
if (bi->level)
bdtr |= bkp;
regmap_update_bits(priv->regmap, TIM_BDTR, mask, bdtr);
regmap_read(priv->regmap, TIM_BDTR, &bdtr);
return (bdtr & bke) ? 0 : -EINVAL;
}
static int stm32_pwm_apply_breakinputs(struct stm32_pwm *priv)
{
unsigned int i;
int ret;
for (i = 0; i < priv->num_breakinputs; i++) {
ret = stm32_pwm_set_breakinput(priv, &priv->breakinputs[i]);
if (ret < 0)
return ret;
}
return 0;
}
static int stm32_pwm_probe_breakinputs(struct stm32_pwm *priv,
struct device_node *np)
{
int nb, ret, array_size;
unsigned int i;
nb = of_property_count_elems_of_size(np, "st,breakinput",
sizeof(struct stm32_breakinput));
/*
* Because "st,breakinput" parameter is optional do not make probe
* failed if it doesn't exist.
*/
if (nb <= 0)
return 0;
if (nb > MAX_BREAKINPUT)
return -EINVAL;
priv->num_breakinputs = nb;
array_size = nb * sizeof(struct stm32_breakinput) / sizeof(u32);
ret = of_property_read_u32_array(np, "st,breakinput",
(u32 *)priv->breakinputs, array_size);
if (ret)
return ret;
for (i = 0; i < priv->num_breakinputs; i++) {
if (priv->breakinputs[i].index > 1 ||
priv->breakinputs[i].level > 1 ||
priv->breakinputs[i].filter > 15)
return -EINVAL;
}
return stm32_pwm_apply_breakinputs(priv);
}
static void stm32_pwm_detect_complementary(struct stm32_pwm *priv)
{
u32 ccer;
/*
* If complementary bit doesn't exist writing 1 will have no
* effect so we can detect it.
*/
regmap_set_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
regmap_read(priv->regmap, TIM_CCER, &ccer);
regmap_clear_bits(priv->regmap, TIM_CCER, TIM_CCER_CC1NE);
priv->have_complementary_output = (ccer != 0);
}
static unsigned int stm32_pwm_detect_channels(struct regmap *regmap,
unsigned int *num_enabled)
{
u32 ccer, ccer_backup;
/*
* If channels enable bits don't exist writing 1 will have no
* effect so we can detect and count them.
*/
regmap_read(regmap, TIM_CCER, &ccer_backup);
regmap_set_bits(regmap, TIM_CCER, TIM_CCER_CCXE);
regmap_read(regmap, TIM_CCER, &ccer);
regmap_write(regmap, TIM_CCER, ccer_backup);
*num_enabled = hweight32(ccer_backup & TIM_CCER_CCXE);
return hweight32(ccer & TIM_CCER_CCXE);
}
static int stm32_pwm_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct stm32_timers *ddata = dev_get_drvdata(pdev->dev.parent);
struct pwm_chip *chip;
struct stm32_pwm *priv;
unsigned int npwm, num_enabled;
unsigned int i;
int ret;
npwm = stm32_pwm_detect_channels(ddata->regmap, &num_enabled);
chip = devm_pwmchip_alloc(dev, npwm, sizeof(*priv));
if (IS_ERR(chip))
return PTR_ERR(chip);
priv = to_stm32_pwm_dev(chip);
mutex_init(&priv->lock);
priv->regmap = ddata->regmap;
priv->clk = ddata->clk;
priv->max_arr = ddata->max_arr;
if (!priv->regmap || !priv->clk)
return dev_err_probe(dev, -EINVAL, "Failed to get %s\n",
priv->regmap ? "clk" : "regmap");
ret = stm32_pwm_probe_breakinputs(priv, np);
if (ret)
return dev_err_probe(dev, ret,
"Failed to configure breakinputs\n");
stm32_pwm_detect_complementary(priv);
ret = devm_clk_rate_exclusive_get(dev, priv->clk);
if (ret)
return dev_err_probe(dev, ret, "Failed to lock clock\n");
/*
* With the clk running with not more than 1 GHz the calculations in
* .apply() won't overflow.
*/
if (clk_get_rate(priv->clk) > 1000000000)
return dev_err_probe(dev, -EINVAL, "Clock freq too high (%lu)\n",
clk_get_rate(priv->clk));
chip->ops = &stm32pwm_ops;
/* Initialize clock refcount to number of enabled PWM channels. */
for (i = 0; i < num_enabled; i++)
clk_enable(priv->clk);
ret = devm_pwmchip_add(dev, chip);
if (ret < 0)
return dev_err_probe(dev, ret,
"Failed to register pwmchip\n");
platform_set_drvdata(pdev, chip);
return 0;
}
static int stm32_pwm_suspend(struct device *dev)
{
struct pwm_chip *chip = dev_get_drvdata(dev);
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
unsigned int i;
u32 ccer, mask;
/* Look for active channels */
ccer = active_channels(priv);
for (i = 0; i < chip->npwm; i++) {
mask = TIM_CCER_CCxE(i + 1);
if (ccer & mask) {
dev_err(dev, "PWM %u still in use by consumer %s\n",
i, chip->pwms[i].label);
return -EBUSY;
}
}
return pinctrl_pm_select_sleep_state(dev);
}
static int stm32_pwm_resume(struct device *dev)
{
struct pwm_chip *chip = dev_get_drvdata(dev);
struct stm32_pwm *priv = to_stm32_pwm_dev(chip);
int ret;
ret = pinctrl_pm_select_default_state(dev);
if (ret)
return ret;
/* restore breakinput registers that may have been lost in low power */
return stm32_pwm_apply_breakinputs(priv);
}
static DEFINE_SIMPLE_DEV_PM_OPS(stm32_pwm_pm_ops, stm32_pwm_suspend, stm32_pwm_resume);
static const struct of_device_id stm32_pwm_of_match[] = {
{ .compatible = "st,stm32-pwm", },
{ /* end node */ },
};
MODULE_DEVICE_TABLE(of, stm32_pwm_of_match);
static struct platform_driver stm32_pwm_driver = {
.probe = stm32_pwm_probe,
.driver = {
.name = "stm32-pwm",
.of_match_table = stm32_pwm_of_match,
.pm = pm_ptr(&stm32_pwm_pm_ops),
},
};
module_platform_driver(stm32_pwm_driver);
MODULE_ALIAS("platform:stm32-pwm");
MODULE_DESCRIPTION("STMicroelectronics STM32 PWM driver");
MODULE_LICENSE("GPL v2");