linux/drivers/thermal/thermal_of.c

501 lines
12 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* of-thermal.c - Generic Thermal Management device tree support.
*
* Copyright (C) 2013 Texas Instruments
* Copyright (C) 2013 Eduardo Valentin <eduardo.valentin@ti.com>
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/err.h>
#include <linux/export.h>
#include <linux/of.h>
#include <linux/slab.h>
#include <linux/thermal.h>
#include <linux/types.h>
#include <linux/string.h>
#include "thermal_core.h"
/*** functions parsing device tree nodes ***/
/*
* It maps 'enum thermal_trip_type' found in include/linux/thermal.h
* into the device tree binding of 'trip', property type.
*/
static const char * const trip_types[] = {
[THERMAL_TRIP_ACTIVE] = "active",
[THERMAL_TRIP_PASSIVE] = "passive",
[THERMAL_TRIP_HOT] = "hot",
[THERMAL_TRIP_CRITICAL] = "critical",
};
/**
* thermal_of_get_trip_type - Get phy mode for given device_node
* @np: Pointer to the given device_node
* @type: Pointer to resulting trip type
*
* The function gets trip type string from property 'type',
* and store its index in trip_types table in @type,
*
* Return: 0 on success, or errno in error case.
*/
static int thermal_of_get_trip_type(struct device_node *np,
enum thermal_trip_type *type)
{
const char *t;
int err, i;
err = of_property_read_string(np, "type", &t);
if (err < 0)
return err;
for (i = 0; i < ARRAY_SIZE(trip_types); i++)
if (!strcasecmp(t, trip_types[i])) {
*type = i;
return 0;
}
return -ENODEV;
}
static int thermal_of_populate_trip(struct device_node *np,
struct thermal_trip *trip)
{
int prop;
int ret;
ret = of_property_read_u32(np, "temperature", &prop);
if (ret < 0) {
pr_err("missing temperature property\n");
return ret;
}
trip->temperature = prop;
ret = of_property_read_u32(np, "hysteresis", &prop);
if (ret < 0) {
pr_err("missing hysteresis property\n");
return ret;
}
trip->hysteresis = prop;
ret = thermal_of_get_trip_type(np, &trip->type);
if (ret < 0) {
pr_err("wrong trip type property\n");
return ret;
}
trip->flags = THERMAL_TRIP_FLAG_RW_TEMP;
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
trip->priv = np;
return 0;
}
static struct thermal_trip *thermal_of_trips_init(struct device_node *np, int *ntrips)
{
int ret, count;
*ntrips = 0;
struct device_node *trips __free(device_node) = of_get_child_by_name(np, "trips");
if (!trips)
return NULL;
count = of_get_child_count(trips);
if (!count)
return NULL;
struct thermal_trip *tt __free(kfree) = kzalloc(sizeof(*tt) * count, GFP_KERNEL);
if (!tt)
return ERR_PTR(-ENOMEM);
count = 0;
for_each_child_of_node_scoped(trips, trip) {
ret = thermal_of_populate_trip(trip, &tt[count++]);
if (ret)
return ERR_PTR(ret);
}
*ntrips = count;
return no_free_ptr(tt);
}
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
static struct device_node *of_thermal_zone_find(struct device_node *sensor, int id)
{
struct of_phandle_args sensor_specs;
struct device_node *np __free(device_node) = of_find_node_by_name(NULL, "thermal-zones");
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
if (!np) {
pr_debug("No thermal zones description\n");
return ERR_PTR(-ENODEV);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
/*
* Search for each thermal zone, a defined sensor
* corresponding to the one passed as parameter
*/
for_each_available_child_of_node_scoped(np, child) {
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
int count, i;
count = of_count_phandle_with_args(child, "thermal-sensors",
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
"#thermal-sensor-cells");
if (count <= 0) {
pr_err("%pOFn: missing thermal sensor\n", child);
return ERR_PTR(-EINVAL);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
for (i = 0; i < count; i++) {
int ret;
ret = of_parse_phandle_with_args(child, "thermal-sensors",
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
"#thermal-sensor-cells",
i, &sensor_specs);
if (ret < 0) {
pr_err("%pOFn: Failed to read thermal-sensors cells: %d\n", child, ret);
return ERR_PTR(ret);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
if ((sensor == sensor_specs.np) && id == (sensor_specs.args_count ?
sensor_specs.args[0] : 0)) {
pr_debug("sensor %pOFn id=%d belongs to %pOFn\n", sensor, id, child);
return no_free_ptr(child);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
}
}
return ERR_PTR(-ENODEV);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
static int thermal_of_monitor_init(struct device_node *np, int *delay, int *pdelay)
{
int ret;
ret = of_property_read_u32(np, "polling-delay-passive", pdelay);
if (ret == -EINVAL) {
*pdelay = 0;
} else if (ret < 0) {
pr_err("%pOFn: Couldn't get polling-delay-passive: %d\n", np, ret);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
return ret;
}
ret = of_property_read_u32(np, "polling-delay", delay);
if (ret == -EINVAL) {
*delay = 0;
} else if (ret < 0) {
pr_err("%pOFn: Couldn't get polling-delay: %d\n", np, ret);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
return ret;
}
return 0;
}
static void thermal_of_parameters_init(struct device_node *np,
struct thermal_zone_params *tzp)
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
{
int coef[2];
int ncoef = ARRAY_SIZE(coef);
int prop, ret;
tzp->no_hwmon = true;
if (!of_property_read_u32(np, "sustainable-power", &prop))
tzp->sustainable_power = prop;
/*
* For now, the thermal framework supports only one sensor per
* thermal zone. Thus, we are considering only the first two
* values as slope and offset.
*/
ret = of_property_read_u32_array(np, "coefficients", coef, ncoef);
if (ret) {
coef[0] = 1;
coef[1] = 0;
}
tzp->slope = coef[0];
tzp->offset = coef[1];
}
static struct device_node *thermal_of_zone_get_by_name(struct thermal_zone_device *tz)
{
struct device_node *np, *tz_np;
np = of_find_node_by_name(NULL, "thermal-zones");
if (!np)
return ERR_PTR(-ENODEV);
tz_np = of_get_child_by_name(np, tz->type);
of_node_put(np);
if (!tz_np)
return ERR_PTR(-ENODEV);
return tz_np;
}
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
static bool thermal_of_get_cooling_spec(struct device_node *map_np, int index,
struct thermal_cooling_device *cdev,
struct cooling_spec *c)
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
{
struct of_phandle_args cooling_spec;
int ret, weight = THERMAL_WEIGHT_DEFAULT;
of_property_read_u32(map_np, "contribution", &weight);
ret = of_parse_phandle_with_args(map_np, "cooling-device", "#cooling-cells",
index, &cooling_spec);
if (ret < 0) {
pr_err("Invalid cooling-device entry\n");
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
return false;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
of_node_put(cooling_spec.np);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
if (cooling_spec.args_count < 2) {
pr_err("wrong reference to cooling device, missing limits\n");
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
return false;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
if (cooling_spec.np != cdev->np)
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
return false;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
c->lower = cooling_spec.args[0];
c->upper = cooling_spec.args[1];
c->weight = weight;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
return true;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
static bool thermal_of_should_bind(struct thermal_zone_device *tz,
const struct thermal_trip *trip,
struct thermal_cooling_device *cdev,
struct cooling_spec *c)
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
{
struct device_node *tz_np, *cm_np;
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
bool result = false;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
tz_np = thermal_of_zone_get_by_name(tz);
if (IS_ERR(tz_np)) {
pr_err("Failed to get node tz by name\n");
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
return false;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
cm_np = of_get_child_by_name(tz_np, "cooling-maps");
if (!cm_np)
goto out;
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
/* Look up the trip and the cdev in the cooling maps. */
for_each_child_of_node_scoped(cm_np, child) {
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
struct device_node *tr_np;
int count, i;
tr_np = of_parse_phandle(child, "trip", 0);
if (tr_np != trip->priv)
continue;
/* The trip has been found, look up the cdev. */
count = of_count_phandle_with_args(child, "cooling-device", "#cooling-cells");
if (count <= 0)
pr_err("Add a cooling_device property with at least one device\n");
for (i = 0; i < count; i++) {
result = thermal_of_get_cooling_spec(child, i, cdev, c);
if (result)
break;
}
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
break;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
of_node_put(cm_np);
out:
of_node_put(tz_np);
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
return result;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
/**
* thermal_of_zone_unregister - Cleanup the specific allocated ressources
*
* This function disables the thermal zone and frees the different
* ressources allocated specific to the thermal OF.
*
* @tz: a pointer to the thermal zone structure
*/
static void thermal_of_zone_unregister(struct thermal_zone_device *tz)
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
{
thermal_zone_device_disable(tz);
thermal_zone_device_unregister(tz);
}
/**
* thermal_of_zone_register - Register a thermal zone with device node
* sensor
*
* The thermal_of_zone_register() parses a device tree given a device
* node sensor and identifier. It searches for the thermal zone
* associated to the couple sensor/id and retrieves all the thermal
* zone properties and registers new thermal zone with those
* properties.
*
* @sensor: A device node pointer corresponding to the sensor in the device tree
* @id: An integer as sensor identifier
* @data: A private data to be stored in the thermal zone dedicated private area
* @ops: A set of thermal sensor ops
*
* Return: a valid thermal zone structure pointer on success.
* - EINVAL: if the device tree thermal description is malformed
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
* - ENOMEM: if one structure can not be allocated
* - Other negative errors are returned by the underlying called functions
*/
static struct thermal_zone_device *thermal_of_zone_register(struct device_node *sensor, int id, void *data,
const struct thermal_zone_device_ops *ops)
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
{
struct thermal_zone_device_ops of_ops = *ops;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
struct thermal_zone_device *tz;
struct thermal_trip *trips;
struct thermal_zone_params tzp = {};
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
struct device_node *np;
const char *action;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
int delay, pdelay;
int ntrips;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
int ret;
np = of_thermal_zone_find(sensor, id);
if (IS_ERR(np)) {
if (PTR_ERR(np) != -ENODEV)
pr_err("Failed to find thermal zone for %pOFn id=%d\n", sensor, id);
return ERR_CAST(np);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
trips = thermal_of_trips_init(np, &ntrips);
if (IS_ERR(trips)) {
pr_err("Failed to parse trip points for %pOFn id=%d\n", sensor, id);
ret = PTR_ERR(trips);
goto out_of_node_put;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
if (!trips)
pr_info("No trip points found for %pOFn id=%d\n", sensor, id);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
ret = thermal_of_monitor_init(np, &delay, &pdelay);
if (ret) {
pr_err("Failed to initialize monitoring delays from %pOFn\n", np);
goto out_kfree_trips;
}
thermal_of_parameters_init(np, &tzp);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
thermal/of: Use the .should_bind() thermal zone callback Make the thermal_of driver use the .should_bind() thermal zone callback to provide the thermal core with the information on whether or not to bind the given cooling device to the given trip point in the given thermal zone. If it returns 'true', the thermal core will bind the cooling device to the trip and the corresponding unbinding will be taken care of automatically by the core on the removal of the involved thermal zone or cooling device. This replaces the .bind() and .unbind() thermal zone callbacks which assumed the same trip points ordering in the driver and in the thermal core (that may not be true any more in the future). The .bind() callback would walk the given thermal zone's cooling maps to find all of the valid trip point combinations with the given cooling device and it would call thermal_zone_bind_cooling_device() for all of them using trip point indices reflecting the ordering of the trips in the DT. The .should_bind() callback still walks the thermal zone's cooling maps, but it can use the trip object passed to it by the thermal core to find the trip in question in the first place and then it uses the corresponding 'cooling-device' entries to look up the given cooling device. To be able to match the trip object provided by the thermal core to a specific device node, the driver sets the 'priv' field of each trip to the corresponding device node pointer during initialization. Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Daniel Lezcano <daniel.lezcano@linaro.org> Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org> # rk3399-rock960 Link: https://patch.msgid.link/2236794.NgBsaNRSFp@rjwysocki.net [ rjw: Removed excessive of_node_put() ] Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2024-08-23 13:35:01 +00:00
of_ops.should_bind = thermal_of_should_bind;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
ret = of_property_read_string(np, "critical-action", &action);
if (!ret)
if (!of_ops.critical && !strcasecmp(action, "reboot"))
of_ops.critical = thermal_zone_device_critical_reboot;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
tz = thermal_zone_device_register_with_trips(np->name, trips, ntrips,
data, &of_ops, &tzp,
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
pdelay, delay);
if (IS_ERR(tz)) {
ret = PTR_ERR(tz);
pr_err("Failed to register thermal zone %pOFn: %d\n", np, ret);
goto out_kfree_trips;
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
}
of_node_put(np);
kfree(trips);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
ret = thermal_zone_device_enable(tz);
if (ret) {
pr_err("Failed to enabled thermal zone '%s', id=%d: %d\n",
tz->type, tz->id, ret);
thermal_of_zone_unregister(tz);
return ERR_PTR(ret);
}
return tz;
out_kfree_trips:
kfree(trips);
out_of_node_put:
of_node_put(np);
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
return ERR_PTR(ret);
}
static void devm_thermal_of_zone_release(struct device *dev, void *res)
{
thermal_of_zone_unregister(*(struct thermal_zone_device **)res);
}
static int devm_thermal_of_zone_match(struct device *dev, void *res,
void *data)
{
struct thermal_zone_device **r = res;
if (WARN_ON(!r || !*r))
return 0;
return *r == data;
}
/**
* devm_thermal_of_zone_register - register a thermal tied with the sensor life cycle
*
* This function is the device version of the thermal_of_zone_register() function.
*
* @dev: a device structure pointer to sensor to be tied with the thermal zone OF life cycle
* @sensor_id: the sensor identifier
* @data: a pointer to a private data to be stored in the thermal zone 'devdata' field
* @ops: a pointer to the ops structure associated with the sensor
*/
struct thermal_zone_device *devm_thermal_of_zone_register(struct device *dev, int sensor_id, void *data,
const struct thermal_zone_device_ops *ops)
{
struct thermal_zone_device **ptr, *tzd;
ptr = devres_alloc(devm_thermal_of_zone_release, sizeof(*ptr),
GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
tzd = thermal_of_zone_register(dev->of_node, sensor_id, data, ops);
if (IS_ERR(tzd)) {
devres_free(ptr);
return tzd;
}
*ptr = tzd;
devres_add(dev, ptr);
return tzd;
}
EXPORT_SYMBOL_GPL(devm_thermal_of_zone_register);
/**
* devm_thermal_of_zone_unregister - Resource managed version of
* thermal_of_zone_unregister().
* @dev: Device for which which resource was allocated.
* @tz: a pointer to struct thermal_zone where the sensor is registered.
*
* This function removes the sensor callbacks and private data from the
* thermal zone device registered with devm_thermal_zone_of_sensor_register()
* API. It will also silent the zone by remove the .get_temp() and .get_trend()
* thermal zone device callbacks.
* Normally this function will not need to be called and the resource
* management code will ensure that the resource is freed.
*/
void devm_thermal_of_zone_unregister(struct device *dev, struct thermal_zone_device *tz)
{
WARN_ON(devres_release(dev, devm_thermal_of_zone_release,
thermal/of: Rework the thermal device tree initialization The following changes are reworking entirely the thermal device tree initialization. The old version is kept until the different drivers using it are converted to the new API. The old approach creates the different actors independently. This approach is the source of the code duplication in the thermal OF because a thermal zone is created but a sensor is registered after. The thermal zones are created unconditionnaly with a fake sensor at init time, thus forcing to provide fake ops and store all the thermal zone related information in duplicated structures. Then the sensor is initialized and the code looks up the thermal zone name using the device tree. Then the sensor is associated to the thermal zone, and the sensor specific ops are called with a second level of indirection from the thermal zone ops. When a sensor is removed (with a module unload), the thermal zone stays there with the fake sensor. The cooling device associated with a thermal zone and a trip point is stored in a list, again duplicating information, using the node name of the device tree to match afterwards the cooling devices. The new approach is simpler, it creates a thermal zone when the sensor is registered and destroys it when the sensor is removed. All the matching between the cooling device, trip points and thermal zones are done using the device tree, as well as bindings. The ops are no longer specific but uses the generic ones provided by the thermal framework. When the old code won't have any users, it can be removed and the remaining thermal OF code will be much simpler. Signed-off-by: Daniel Lezcano <daniel.lezcano@linexp.org> Link: https://lore.kernel.org/r/20220804224349.1926752-2-daniel.lezcano@linexp.org Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2022-08-04 22:43:17 +00:00
devm_thermal_of_zone_match, tz));
}
EXPORT_SYMBOL_GPL(devm_thermal_of_zone_unregister);