License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
|
|
|
# SPDX-License-Identifier: GPL-2.0
|
2005-04-16 15:20:36 -07:00
|
|
|
#
|
|
|
|
# Makefile for the linux kernel.
|
|
|
|
#
|
|
|
|
|
kbuild: allow archs to select link dead code/data elimination
Introduce LD_DEAD_CODE_DATA_ELIMINATION option for architectures to
select to build with -ffunction-sections, -fdata-sections, and link
with --gc-sections. It requires some work (documented) to ensure all
unreferenced entrypoints are live, and requires toolchain and build
verification, so it is made a per-arch option for now.
On a random powerpc64le build, this yelds a significant size saving,
it boots and runs fine, but there is a lot I haven't tested as yet, so
these savings may be reduced if there are bugs in the link.
text data bss dec filename
11169741 1180744 1923176 14273661 vmlinux
10445269 1004127 1919707 13369103 vmlinux.dce
~700K text, ~170K data, 6% removed from kernel image size.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michal Marek <mmarek@suse.com>
2016-08-24 22:29:20 +10:00
|
|
|
ccflags-y := -fno-function-sections -fno-data-sections
|
|
|
|
|
2007-02-10 01:44:43 -08:00
|
|
|
obj-y := main.o version.o mounts.o
|
|
|
|
ifneq ($(CONFIG_BLK_DEV_INITRD),y)
|
|
|
|
obj-y += noinitramfs.o
|
|
|
|
else
|
|
|
|
obj-$(CONFIG_BLK_DEV_INITRD) += initramfs.o
|
|
|
|
endif
|
2005-04-16 15:20:36 -07:00
|
|
|
obj-$(CONFIG_GENERIC_CALIBRATE_DELAY) += calibrate.o
|
2012-05-03 09:03:02 +00:00
|
|
|
|
|
|
|
obj-y += init_task.o
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
mounts-y := do_mounts.o
|
|
|
|
mounts-$(CONFIG_BLK_DEV_RAM) += do_mounts_rd.o
|
|
|
|
mounts-$(CONFIG_BLK_DEV_INITRD) += do_mounts_initrd.o
|
|
|
|
|
kbuild: build init/built-in.a just once
Kbuild builds init/built-in.a twice; first during the ordinary
directory descending, second from scripts/link-vmlinux.sh.
We do this because UTS_VERSION contains the build version and the
timestamp. We cannot update it during the normal directory traversal
since we do not yet know if we need to update vmlinux. UTS_VERSION is
temporarily calculated, but omitted from the update check. Otherwise,
vmlinux would be rebuilt every time.
When Kbuild results in running link-vmlinux.sh, it increments the
version number in the .version file and takes the timestamp at that
time to really fix UTS_VERSION.
However, updating the same file twice is a footgun. To avoid nasty
timestamp issues, all build artifacts that depend on init/built-in.a
are atomically generated in link-vmlinux.sh, where some of them do not
need rebuilding.
To fix this issue, this commit changes as follows:
[1] Split UTS_VERSION out to include/generated/utsversion.h from
include/generated/compile.h
include/generated/utsversion.h is generated just before the
vmlinux link. It is generated under include/generated/ because
some decompressors (s390, x86) use UTS_VERSION.
[2] Split init_uts_ns and linux_banner out to init/version-timestamp.c
from init/version.c
init_uts_ns and linux_banner contain UTS_VERSION. During the ordinary
directory descending, they are compiled with __weak and used to
determine if vmlinux needs relinking. Just before the vmlinux link,
they are compiled without __weak to embed the real version and
timestamp.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2022-08-28 11:39:53 +09:00
|
|
|
#
|
|
|
|
# UTS_VERSION
|
|
|
|
#
|
|
|
|
|
|
|
|
smp-flag-$(CONFIG_SMP) := SMP
|
|
|
|
preempt-flag-$(CONFIG_PREEMPT_BUILD) := PREEMPT
|
|
|
|
preempt-flag-$(CONFIG_PREEMPT_DYNAMIC) := PREEMPT_DYNAMIC
|
|
|
|
preempt-flag-$(CONFIG_PREEMPT_RT) := PREEMPT_RT
|
|
|
|
|
|
|
|
build-version = $(or $(KBUILD_BUILD_VERSION), $(build-version-auto))
|
|
|
|
build-timestamp = $(or $(KBUILD_BUILD_TIMESTAMP), $(build-timestamp-auto))
|
|
|
|
|
|
|
|
# Maximum length of UTS_VERSION is 64 chars
|
|
|
|
filechk_uts_version = \
|
|
|
|
utsver=$$(echo '$(pound)'"$(build-version)" $(smp-flag-y) $(preempt-flag-y) "$(build-timestamp)" | cut -b -64); \
|
|
|
|
echo '$(pound)'define UTS_VERSION \""$${utsver}"\"
|
|
|
|
|
|
|
|
#
|
|
|
|
# Build version.c with temporary UTS_VERSION
|
|
|
|
#
|
2005-04-16 15:20:36 -07:00
|
|
|
|
kbuild: build init/built-in.a just once
Kbuild builds init/built-in.a twice; first during the ordinary
directory descending, second from scripts/link-vmlinux.sh.
We do this because UTS_VERSION contains the build version and the
timestamp. We cannot update it during the normal directory traversal
since we do not yet know if we need to update vmlinux. UTS_VERSION is
temporarily calculated, but omitted from the update check. Otherwise,
vmlinux would be rebuilt every time.
When Kbuild results in running link-vmlinux.sh, it increments the
version number in the .version file and takes the timestamp at that
time to really fix UTS_VERSION.
However, updating the same file twice is a footgun. To avoid nasty
timestamp issues, all build artifacts that depend on init/built-in.a
are atomically generated in link-vmlinux.sh, where some of them do not
need rebuilding.
To fix this issue, this commit changes as follows:
[1] Split UTS_VERSION out to include/generated/utsversion.h from
include/generated/compile.h
include/generated/utsversion.h is generated just before the
vmlinux link. It is generated under include/generated/ because
some decompressors (s390, x86) use UTS_VERSION.
[2] Split init_uts_ns and linux_banner out to init/version-timestamp.c
from init/version.c
init_uts_ns and linux_banner contain UTS_VERSION. During the ordinary
directory descending, they are compiled with __weak and used to
determine if vmlinux needs relinking. Just before the vmlinux link,
they are compiled without __weak to embed the real version and
timestamp.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2022-08-28 11:39:53 +09:00
|
|
|
$(obj)/utsversion-tmp.h: FORCE
|
|
|
|
$(call filechk,uts_version)
|
2007-01-10 14:45:28 +01:00
|
|
|
|
kbuild: build init/built-in.a just once
Kbuild builds init/built-in.a twice; first during the ordinary
directory descending, second from scripts/link-vmlinux.sh.
We do this because UTS_VERSION contains the build version and the
timestamp. We cannot update it during the normal directory traversal
since we do not yet know if we need to update vmlinux. UTS_VERSION is
temporarily calculated, but omitted from the update check. Otherwise,
vmlinux would be rebuilt every time.
When Kbuild results in running link-vmlinux.sh, it increments the
version number in the .version file and takes the timestamp at that
time to really fix UTS_VERSION.
However, updating the same file twice is a footgun. To avoid nasty
timestamp issues, all build artifacts that depend on init/built-in.a
are atomically generated in link-vmlinux.sh, where some of them do not
need rebuilding.
To fix this issue, this commit changes as follows:
[1] Split UTS_VERSION out to include/generated/utsversion.h from
include/generated/compile.h
include/generated/utsversion.h is generated just before the
vmlinux link. It is generated under include/generated/ because
some decompressors (s390, x86) use UTS_VERSION.
[2] Split init_uts_ns and linux_banner out to init/version-timestamp.c
from init/version.c
init_uts_ns and linux_banner contain UTS_VERSION. During the ordinary
directory descending, they are compiled with __weak and used to
determine if vmlinux needs relinking. Just before the vmlinux link,
they are compiled without __weak to embed the real version and
timestamp.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2022-08-28 11:39:53 +09:00
|
|
|
clean-files += utsversion-tmp.h
|
|
|
|
|
2022-08-28 11:39:54 +09:00
|
|
|
$(obj)/version.o: $(obj)/utsversion-tmp.h
|
kbuild: build init/built-in.a just once
Kbuild builds init/built-in.a twice; first during the ordinary
directory descending, second from scripts/link-vmlinux.sh.
We do this because UTS_VERSION contains the build version and the
timestamp. We cannot update it during the normal directory traversal
since we do not yet know if we need to update vmlinux. UTS_VERSION is
temporarily calculated, but omitted from the update check. Otherwise,
vmlinux would be rebuilt every time.
When Kbuild results in running link-vmlinux.sh, it increments the
version number in the .version file and takes the timestamp at that
time to really fix UTS_VERSION.
However, updating the same file twice is a footgun. To avoid nasty
timestamp issues, all build artifacts that depend on init/built-in.a
are atomically generated in link-vmlinux.sh, where some of them do not
need rebuilding.
To fix this issue, this commit changes as follows:
[1] Split UTS_VERSION out to include/generated/utsversion.h from
include/generated/compile.h
include/generated/utsversion.h is generated just before the
vmlinux link. It is generated under include/generated/ because
some decompressors (s390, x86) use UTS_VERSION.
[2] Split init_uts_ns and linux_banner out to init/version-timestamp.c
from init/version.c
init_uts_ns and linux_banner contain UTS_VERSION. During the ordinary
directory descending, they are compiled with __weak and used to
determine if vmlinux needs relinking. Just before the vmlinux link,
they are compiled without __weak to embed the real version and
timestamp.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2022-08-28 11:39:53 +09:00
|
|
|
CFLAGS_version.o := -include $(obj)/utsversion-tmp.h
|
|
|
|
|
|
|
|
#
|
|
|
|
# Build version-timestamp.c with final UTS_VERSION
|
|
|
|
#
|
|
|
|
|
2024-06-12 03:24:47 +09:00
|
|
|
include/generated/utsversion.h: build-version-auto = $(shell $(srctree)/scripts/build-version)
|
kbuild: build init/built-in.a just once
Kbuild builds init/built-in.a twice; first during the ordinary
directory descending, second from scripts/link-vmlinux.sh.
We do this because UTS_VERSION contains the build version and the
timestamp. We cannot update it during the normal directory traversal
since we do not yet know if we need to update vmlinux. UTS_VERSION is
temporarily calculated, but omitted from the update check. Otherwise,
vmlinux would be rebuilt every time.
When Kbuild results in running link-vmlinux.sh, it increments the
version number in the .version file and takes the timestamp at that
time to really fix UTS_VERSION.
However, updating the same file twice is a footgun. To avoid nasty
timestamp issues, all build artifacts that depend on init/built-in.a
are atomically generated in link-vmlinux.sh, where some of them do not
need rebuilding.
To fix this issue, this commit changes as follows:
[1] Split UTS_VERSION out to include/generated/utsversion.h from
include/generated/compile.h
include/generated/utsversion.h is generated just before the
vmlinux link. It is generated under include/generated/ because
some decompressors (s390, x86) use UTS_VERSION.
[2] Split init_uts_ns and linux_banner out to init/version-timestamp.c
from init/version.c
init_uts_ns and linux_banner contain UTS_VERSION. During the ordinary
directory descending, they are compiled with __weak and used to
determine if vmlinux needs relinking. Just before the vmlinux link,
they are compiled without __weak to embed the real version and
timestamp.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
2022-08-28 11:39:53 +09:00
|
|
|
include/generated/utsversion.h: build-timestamp-auto = $(shell LC_ALL=C date)
|
|
|
|
include/generated/utsversion.h: FORCE
|
|
|
|
$(call filechk,uts_version)
|
|
|
|
|
|
|
|
$(obj)/version-timestamp.o: include/generated/utsversion.h
|
|
|
|
CFLAGS_version-timestamp.o := -include include/generated/utsversion.h
|