linux/io_uring/net.c

1823 lines
45 KiB
C
Raw Permalink Normal View History

// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/net.h>
#include <linux/compat.h>
#include <net/compat.h>
#include <linux/io_uring.h>
#include <uapi/linux/io_uring.h>
#include "io_uring.h"
#include "kbuf.h"
#include "alloc_cache.h"
#include "net.h"
#include "notif.h"
#include "rsrc.h"
#if defined(CONFIG_NET)
struct io_shutdown {
struct file *file;
int how;
};
struct io_accept {
struct file *file;
struct sockaddr __user *addr;
int __user *addr_len;
int flags;
int iou_flags;
u32 file_slot;
unsigned long nofile;
};
struct io_socket {
struct file *file;
int domain;
int type;
int protocol;
int flags;
u32 file_slot;
unsigned long nofile;
};
struct io_connect {
struct file *file;
struct sockaddr __user *addr;
int addr_len;
bool in_progress;
bool seen_econnaborted;
};
struct io_bind {
struct file *file;
int addr_len;
};
struct io_listen {
struct file *file;
int backlog;
};
struct io_sr_msg {
struct file *file;
union {
struct compat_msghdr __user *umsg_compat;
struct user_msghdr __user *umsg;
void __user *buf;
};
int len;
unsigned done_io;
unsigned msg_flags;
unsigned nr_multishot_loops;
u16 flags;
/* initialised and used only by !msg send variants */
u16 buf_group;
u16 buf_index;
void __user *msg_control;
/* used only for send zerocopy */
struct io_kiocb *notif;
};
/*
* Number of times we'll try and do receives if there's more data. If we
* exceed this limit, then add us to the back of the queue and retry from
* there. This helps fairness between flooding clients.
*/
#define MULTISHOT_MAX_RETRY 32
int io_shutdown_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_shutdown *shutdown = io_kiocb_to_cmd(req, struct io_shutdown);
if (unlikely(sqe->off || sqe->addr || sqe->rw_flags ||
sqe->buf_index || sqe->splice_fd_in))
return -EINVAL;
shutdown->how = READ_ONCE(sqe->len);
req->flags |= REQ_F_FORCE_ASYNC;
return 0;
}
int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_shutdown *shutdown = io_kiocb_to_cmd(req, struct io_shutdown);
struct socket *sock;
int ret;
WARN_ON_ONCE(issue_flags & IO_URING_F_NONBLOCK);
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
ret = __sys_shutdown_sock(sock, shutdown->how);
io_req_set_res(req, ret, 0);
return IOU_OK;
}
static bool io_net_retry(struct socket *sock, int flags)
{
if (!(flags & MSG_WAITALL))
return false;
return sock->type == SOCK_STREAM || sock->type == SOCK_SEQPACKET;
}
static void io_netmsg_iovec_free(struct io_async_msghdr *kmsg)
{
if (kmsg->free_iov) {
kfree(kmsg->free_iov);
kmsg->free_iov_nr = 0;
kmsg->free_iov = NULL;
}
}
static void io_netmsg_recycle(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_async_msghdr *hdr = req->async_data;
struct iovec *iov;
/* can't recycle, ensure we free the iovec if we have one */
if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) {
io_netmsg_iovec_free(hdr);
return;
}
/* Let normal cleanup path reap it if we fail adding to the cache */
iov = hdr->free_iov;
if (io_alloc_cache_put(&req->ctx->netmsg_cache, hdr)) {
if (iov)
kasan_mempool_poison_object(iov);
req->async_data = NULL;
req->flags &= ~REQ_F_ASYNC_DATA;
}
}
static struct io_async_msghdr *io_msg_alloc_async(struct io_kiocb *req)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_async_msghdr *hdr;
hdr = io_alloc_cache_get(&ctx->netmsg_cache);
if (hdr) {
if (hdr->free_iov) {
kasan_mempool_unpoison_object(hdr->free_iov,
hdr->free_iov_nr * sizeof(struct iovec));
req->flags |= REQ_F_NEED_CLEANUP;
}
req->flags |= REQ_F_ASYNC_DATA;
req->async_data = hdr;
return hdr;
}
if (!io_alloc_async_data(req)) {
hdr = req->async_data;
hdr->free_iov_nr = 0;
hdr->free_iov = NULL;
return hdr;
}
return NULL;
}
/* assign new iovec to kmsg, if we need to */
static int io_net_vec_assign(struct io_kiocb *req, struct io_async_msghdr *kmsg,
struct iovec *iov)
{
if (iov) {
req->flags |= REQ_F_NEED_CLEANUP;
kmsg->free_iov_nr = kmsg->msg.msg_iter.nr_segs;
if (kmsg->free_iov)
kfree(kmsg->free_iov);
kmsg->free_iov = iov;
}
return 0;
}
static inline void io_mshot_prep_retry(struct io_kiocb *req,
struct io_async_msghdr *kmsg)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
req->flags &= ~REQ_F_BL_EMPTY;
sr->done_io = 0;
sr->len = 0; /* get from the provided buffer */
req->buf_index = sr->buf_group;
}
#ifdef CONFIG_COMPAT
static int io_compat_msg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg,
struct compat_msghdr *msg, int ddir)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct compat_iovec __user *uiov;
struct iovec *iov;
int ret, nr_segs;
if (iomsg->free_iov) {
nr_segs = iomsg->free_iov_nr;
iov = iomsg->free_iov;
} else {
iov = &iomsg->fast_iov;
nr_segs = 1;
}
if (copy_from_user(msg, sr->umsg_compat, sizeof(*msg)))
return -EFAULT;
uiov = compat_ptr(msg->msg_iov);
if (req->flags & REQ_F_BUFFER_SELECT) {
compat_ssize_t clen;
if (msg->msg_iovlen == 0) {
sr->len = iov->iov_len = 0;
iov->iov_base = NULL;
} else if (msg->msg_iovlen > 1) {
return -EINVAL;
} else {
if (!access_ok(uiov, sizeof(*uiov)))
return -EFAULT;
if (__get_user(clen, &uiov->iov_len))
return -EFAULT;
if (clen < 0)
return -EINVAL;
sr->len = clen;
}
return 0;
}
ret = __import_iovec(ddir, (struct iovec __user *)uiov, msg->msg_iovlen,
nr_segs, &iov, &iomsg->msg.msg_iter, true);
if (unlikely(ret < 0))
return ret;
return io_net_vec_assign(req, iomsg, iov);
}
#endif
static int io_msg_copy_hdr(struct io_kiocb *req, struct io_async_msghdr *iomsg,
struct user_msghdr *msg, int ddir)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct user_msghdr __user *umsg = sr->umsg;
struct iovec *iov;
int ret, nr_segs;
if (iomsg->free_iov) {
nr_segs = iomsg->free_iov_nr;
iov = iomsg->free_iov;
} else {
iov = &iomsg->fast_iov;
nr_segs = 1;
}
if (!user_access_begin(umsg, sizeof(*umsg)))
return -EFAULT;
ret = -EFAULT;
unsafe_get_user(msg->msg_name, &umsg->msg_name, ua_end);
unsafe_get_user(msg->msg_namelen, &umsg->msg_namelen, ua_end);
unsafe_get_user(msg->msg_iov, &umsg->msg_iov, ua_end);
unsafe_get_user(msg->msg_iovlen, &umsg->msg_iovlen, ua_end);
unsafe_get_user(msg->msg_control, &umsg->msg_control, ua_end);
unsafe_get_user(msg->msg_controllen, &umsg->msg_controllen, ua_end);
msg->msg_flags = 0;
if (req->flags & REQ_F_BUFFER_SELECT) {
if (msg->msg_iovlen == 0) {
sr->len = iov->iov_len = 0;
iov->iov_base = NULL;
} else if (msg->msg_iovlen > 1) {
ret = -EINVAL;
goto ua_end;
} else {
/* we only need the length for provided buffers */
if (!access_ok(&msg->msg_iov[0].iov_len, sizeof(__kernel_size_t)))
goto ua_end;
unsafe_get_user(iov->iov_len, &msg->msg_iov[0].iov_len,
ua_end);
sr->len = iov->iov_len;
}
ret = 0;
ua_end:
user_access_end();
return ret;
}
user_access_end();
ret = __import_iovec(ddir, msg->msg_iov, msg->msg_iovlen, nr_segs,
&iov, &iomsg->msg.msg_iter, false);
if (unlikely(ret < 0))
return ret;
return io_net_vec_assign(req, iomsg, iov);
}
static int io_sendmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct user_msghdr msg;
int ret;
iomsg->msg.msg_name = &iomsg->addr;
iomsg->msg.msg_iter.nr_segs = 0;
#ifdef CONFIG_COMPAT
if (unlikely(req->ctx->compat)) {
struct compat_msghdr cmsg;
ret = io_compat_msg_copy_hdr(req, iomsg, &cmsg, ITER_SOURCE);
if (unlikely(ret))
return ret;
return __get_compat_msghdr(&iomsg->msg, &cmsg, NULL);
}
#endif
ret = io_msg_copy_hdr(req, iomsg, &msg, ITER_SOURCE);
if (unlikely(ret))
return ret;
ret = __copy_msghdr(&iomsg->msg, &msg, NULL);
/* save msg_control as sys_sendmsg() overwrites it */
sr->msg_control = iomsg->msg.msg_control_user;
return ret;
}
void io_sendmsg_recvmsg_cleanup(struct io_kiocb *req)
{
struct io_async_msghdr *io = req->async_data;
io_netmsg_iovec_free(io);
}
static int io_send_setup(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *kmsg = req->async_data;
void __user *addr;
u16 addr_len;
int ret;
sr->buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
if (READ_ONCE(sqe->__pad3[0]))
return -EINVAL;
kmsg->msg.msg_name = NULL;
kmsg->msg.msg_namelen = 0;
kmsg->msg.msg_control = NULL;
kmsg->msg.msg_controllen = 0;
kmsg->msg.msg_ubuf = NULL;
addr = u64_to_user_ptr(READ_ONCE(sqe->addr2));
addr_len = READ_ONCE(sqe->addr_len);
if (addr) {
ret = move_addr_to_kernel(addr, addr_len, &kmsg->addr);
if (unlikely(ret < 0))
return ret;
kmsg->msg.msg_name = &kmsg->addr;
kmsg->msg.msg_namelen = addr_len;
}
io_uring/net: add provided buffer support for IORING_OP_SEND It's pretty trivial to wire up provided buffer support for the send side, just like how it's done the receive side. This enables setting up a buffer ring that an application can use to push pending sends to, and then have a send pick a buffer from that ring. One of the challenges with async IO and networking sends is that you can get into reordering conditions if you have more than one inflight at the same time. Consider the following scenario where everything is fine: 1) App queues sendA for socket1 2) App queues sendB for socket1 3) App does io_uring_submit() 4) sendA is issued, completes successfully, posts CQE 5) sendB is issued, completes successfully, posts CQE All is fine. Requests are always issued in-order, and both complete inline as most sends do. However, if we're flooding socket1 with sends, the following could also result from the same sequence: 1) App queues sendA for socket1 2) App queues sendB for socket1 3) App does io_uring_submit() 4) sendA is issued, socket1 is full, poll is armed for retry 5) Space frees up in socket1, this triggers sendA retry via task_work 6) sendB is issued, completes successfully, posts CQE 7) sendA is retried, completes successfully, posts CQE Now we've sent sendB before sendA, which can make things unhappy. If both sendA and sendB had been using provided buffers, then it would look as follows instead: 1) App queues dataA for sendA, queues sendA for socket1 2) App queues dataB for sendB queues sendB for socket1 3) App does io_uring_submit() 4) sendA is issued, socket1 is full, poll is armed for retry 5) Space frees up in socket1, this triggers sendA retry via task_work 6) sendB is issued, picks first buffer (dataA), completes successfully, posts CQE (which says "I sent dataA") 7) sendA is retried, picks first buffer (dataB), completes successfully, posts CQE (which says "I sent dataB") Now we've sent the data in order, and everybody is happy. It's worth noting that this also opens the door for supporting multishot sends, as provided buffers would be a prerequisite for that. Those can trigger either when new buffers are added to the outgoing ring, or (if stalled due to lack of space) when space frees up in the socket. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-02-19 10:46:44 -07:00
if (!io_do_buffer_select(req)) {
ret = import_ubuf(ITER_SOURCE, sr->buf, sr->len,
&kmsg->msg.msg_iter);
if (unlikely(ret < 0))
return ret;
}
return 0;
}
static int io_sendmsg_setup(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *kmsg = req->async_data;
int ret;
sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
ret = io_sendmsg_copy_hdr(req, kmsg);
if (!ret)
req->flags |= REQ_F_NEED_CLEANUP;
return ret;
}
#define SENDMSG_FLAGS (IORING_RECVSEND_POLL_FIRST | IORING_RECVSEND_BUNDLE)
int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
sr->done_io = 0;
if (req->opcode != IORING_OP_SEND) {
if (sqe->addr2 || sqe->file_index)
return -EINVAL;
}
sr->len = READ_ONCE(sqe->len);
sr->flags = READ_ONCE(sqe->ioprio);
if (sr->flags & ~SENDMSG_FLAGS)
return -EINVAL;
sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
if (sr->msg_flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
if (sr->flags & IORING_RECVSEND_BUNDLE) {
if (req->opcode == IORING_OP_SENDMSG)
return -EINVAL;
if (!(req->flags & REQ_F_BUFFER_SELECT))
return -EINVAL;
sr->msg_flags |= MSG_WAITALL;
sr->buf_group = req->buf_index;
req->buf_list = NULL;
}
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
sr->msg_flags |= MSG_CMSG_COMPAT;
#endif
if (unlikely(!io_msg_alloc_async(req)))
return -ENOMEM;
if (req->opcode != IORING_OP_SENDMSG)
return io_send_setup(req, sqe);
return io_sendmsg_setup(req, sqe);
}
static void io_req_msg_cleanup(struct io_kiocb *req,
unsigned int issue_flags)
{
req->flags &= ~REQ_F_NEED_CLEANUP;
io_netmsg_recycle(req, issue_flags);
}
/*
* For bundle completions, we need to figure out how many segments we consumed.
* A bundle could be using a single ITER_UBUF if that's all we mapped, or it
* could be using an ITER_IOVEC. If the latter, then if we consumed all of
* the segments, then it's a trivial questiont o answer. If we have residual
* data in the iter, then loop the segments to figure out how much we
* transferred.
*/
static int io_bundle_nbufs(struct io_async_msghdr *kmsg, int ret)
{
struct iovec *iov;
int nbufs;
/* no data is always zero segments, and a ubuf is always 1 segment */
if (ret <= 0)
return 0;
if (iter_is_ubuf(&kmsg->msg.msg_iter))
return 1;
iov = kmsg->free_iov;
if (!iov)
iov = &kmsg->fast_iov;
/* if all data was transferred, it's basic pointer math */
if (!iov_iter_count(&kmsg->msg.msg_iter))
return iter_iov(&kmsg->msg.msg_iter) - iov;
/* short transfer, count segments */
nbufs = 0;
do {
int this_len = min_t(int, iov[nbufs].iov_len, ret);
nbufs++;
ret -= this_len;
} while (ret);
return nbufs;
}
static inline bool io_send_finish(struct io_kiocb *req, int *ret,
struct io_async_msghdr *kmsg,
unsigned issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
bool bundle_finished = *ret <= 0;
unsigned int cflags;
if (!(sr->flags & IORING_RECVSEND_BUNDLE)) {
cflags = io_put_kbuf(req, *ret, issue_flags);
goto finish;
}
cflags = io_put_kbufs(req, *ret, io_bundle_nbufs(kmsg, *ret), issue_flags);
if (bundle_finished || req->flags & REQ_F_BL_EMPTY)
goto finish;
/*
* Fill CQE for this receive and see if we should keep trying to
* receive from this socket.
*/
if (io_req_post_cqe(req, *ret, cflags | IORING_CQE_F_MORE)) {
io_mshot_prep_retry(req, kmsg);
return false;
}
/* Otherwise stop bundle and use the current result. */
finish:
io_req_set_res(req, *ret, cflags);
*ret = IOU_OK;
return true;
}
int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *kmsg = req->async_data;
struct socket *sock;
unsigned flags;
int min_ret = 0;
int ret;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return -EAGAIN;
flags = sr->msg_flags;
if (issue_flags & IO_URING_F_NONBLOCK)
flags |= MSG_DONTWAIT;
if (flags & MSG_WAITALL)
min_ret = iov_iter_count(&kmsg->msg.msg_iter);
kmsg->msg.msg_control_user = sr->msg_control;
ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
if (ret < min_ret) {
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return -EAGAIN;
if (ret > 0 && io_net_retry(sock, flags)) {
kmsg->msg.msg_controllen = 0;
kmsg->msg.msg_control = NULL;
sr->done_io += ret;
req->flags |= REQ_F_BL_NO_RECYCLE;
return -EAGAIN;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
}
io_req_msg_cleanup(req, issue_flags);
if (ret >= 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
io_req_set_res(req, ret, 0);
return IOU_OK;
}
int io_send(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *kmsg = req->async_data;
struct socket *sock;
unsigned flags;
int min_ret = 0;
int ret;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return -EAGAIN;
flags = sr->msg_flags;
if (issue_flags & IO_URING_F_NONBLOCK)
flags |= MSG_DONTWAIT;
retry_bundle:
if (io_do_buffer_select(req)) {
struct buf_sel_arg arg = {
.iovs = &kmsg->fast_iov,
.max_len = min_not_zero(sr->len, INT_MAX),
.nr_iovs = 1,
};
if (kmsg->free_iov) {
arg.nr_iovs = kmsg->free_iov_nr;
arg.iovs = kmsg->free_iov;
arg.mode = KBUF_MODE_FREE;
}
if (!(sr->flags & IORING_RECVSEND_BUNDLE))
arg.nr_iovs = 1;
else
arg.mode |= KBUF_MODE_EXPAND;
ret = io_buffers_select(req, &arg, issue_flags);
if (unlikely(ret < 0))
return ret;
if (arg.iovs != &kmsg->fast_iov && arg.iovs != kmsg->free_iov) {
kmsg->free_iov_nr = ret;
kmsg->free_iov = arg.iovs;
req->flags |= REQ_F_NEED_CLEANUP;
}
sr->len = arg.out_len;
if (ret == 1) {
sr->buf = arg.iovs[0].iov_base;
ret = import_ubuf(ITER_SOURCE, sr->buf, sr->len,
&kmsg->msg.msg_iter);
if (unlikely(ret))
return ret;
} else {
iov_iter_init(&kmsg->msg.msg_iter, ITER_SOURCE,
arg.iovs, ret, arg.out_len);
}
}
/*
* If MSG_WAITALL is set, or this is a bundle send, then we need
* the full amount. If just bundle is set, if we do a short send
* then we complete the bundle sequence rather than continue on.
*/
if (flags & MSG_WAITALL || sr->flags & IORING_RECVSEND_BUNDLE)
min_ret = iov_iter_count(&kmsg->msg.msg_iter);
flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
kmsg->msg.msg_flags = flags;
ret = sock_sendmsg(sock, &kmsg->msg);
if (ret < min_ret) {
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return -EAGAIN;
if (ret > 0 && io_net_retry(sock, flags)) {
sr->len -= ret;
sr->buf += ret;
sr->done_io += ret;
req->flags |= REQ_F_BL_NO_RECYCLE;
return -EAGAIN;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
}
if (ret >= 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
if (!io_send_finish(req, &ret, kmsg, issue_flags))
goto retry_bundle;
io_req_msg_cleanup(req, issue_flags);
return ret;
}
static int io_recvmsg_mshot_prep(struct io_kiocb *req,
struct io_async_msghdr *iomsg,
int namelen, size_t controllen)
{
if ((req->flags & (REQ_F_APOLL_MULTISHOT|REQ_F_BUFFER_SELECT)) ==
(REQ_F_APOLL_MULTISHOT|REQ_F_BUFFER_SELECT)) {
int hdr;
if (unlikely(namelen < 0))
return -EOVERFLOW;
if (check_add_overflow(sizeof(struct io_uring_recvmsg_out),
namelen, &hdr))
return -EOVERFLOW;
if (check_add_overflow(hdr, controllen, &hdr))
return -EOVERFLOW;
iomsg->namelen = namelen;
iomsg->controllen = controllen;
return 0;
}
return 0;
}
static int io_recvmsg_copy_hdr(struct io_kiocb *req,
struct io_async_msghdr *iomsg)
{
struct user_msghdr msg;
int ret;
iomsg->msg.msg_name = &iomsg->addr;
iomsg->msg.msg_iter.nr_segs = 0;
#ifdef CONFIG_COMPAT
if (unlikely(req->ctx->compat)) {
struct compat_msghdr cmsg;
ret = io_compat_msg_copy_hdr(req, iomsg, &cmsg, ITER_DEST);
if (unlikely(ret))
return ret;
ret = __get_compat_msghdr(&iomsg->msg, &cmsg, &iomsg->uaddr);
if (unlikely(ret))
return ret;
return io_recvmsg_mshot_prep(req, iomsg, cmsg.msg_namelen,
cmsg.msg_controllen);
}
#endif
ret = io_msg_copy_hdr(req, iomsg, &msg, ITER_DEST);
if (unlikely(ret))
return ret;
ret = __copy_msghdr(&iomsg->msg, &msg, &iomsg->uaddr);
if (unlikely(ret))
return ret;
return io_recvmsg_mshot_prep(req, iomsg, msg.msg_namelen,
msg.msg_controllen);
}
static int io_recvmsg_prep_setup(struct io_kiocb *req)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *kmsg;
int ret;
kmsg = io_msg_alloc_async(req);
if (unlikely(!kmsg))
return -ENOMEM;
if (req->opcode == IORING_OP_RECV) {
kmsg->msg.msg_name = NULL;
kmsg->msg.msg_namelen = 0;
io_uring/net: always initialize kmsg->msg.msg_inq upfront syzbot reports that ->msg_inq may get used uinitialized from the following path: BUG: KMSAN: uninit-value in io_recv_buf_select io_uring/net.c:1094 [inline] BUG: KMSAN: uninit-value in io_recv+0x930/0x1f90 io_uring/net.c:1158 io_recv_buf_select io_uring/net.c:1094 [inline] io_recv+0x930/0x1f90 io_uring/net.c:1158 io_issue_sqe+0x420/0x2130 io_uring/io_uring.c:1740 io_queue_sqe io_uring/io_uring.c:1950 [inline] io_req_task_submit+0xfa/0x1d0 io_uring/io_uring.c:1374 io_handle_tw_list+0x55f/0x5c0 io_uring/io_uring.c:1057 tctx_task_work_run+0x109/0x3e0 io_uring/io_uring.c:1121 tctx_task_work+0x6d/0xc0 io_uring/io_uring.c:1139 task_work_run+0x268/0x310 kernel/task_work.c:239 io_run_task_work+0x43a/0x4a0 io_uring/io_uring.h:343 io_cqring_wait io_uring/io_uring.c:2527 [inline] __do_sys_io_uring_enter io_uring/io_uring.c:3439 [inline] __se_sys_io_uring_enter+0x204f/0x4ce0 io_uring/io_uring.c:3330 __x64_sys_io_uring_enter+0x11f/0x1a0 io_uring/io_uring.c:3330 x64_sys_call+0xce5/0x3c30 arch/x86/include/generated/asm/syscalls_64.h:427 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f and it is correct, as it's never initialized upfront. Hence the first submission can end up using it uninitialized, if the recv wasn't successful and the networking stack didn't honor ->msg_get_inq being set and filling in the output value of ->msg_inq as requested. Set it to 0 upfront when it's allocated, just to silence this KMSAN warning. There's no side effect of using it uninitialized, it'll just potentially cause the next receive to use a recv value hint that's not accurate. Fixes: c6f32c7d9e09 ("io_uring/net: get rid of ->prep_async() for receive side") Reported-by: syzbot+068ff190354d2f74892f@syzkaller.appspotmail.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
2025-01-02 16:32:51 -07:00
kmsg->msg.msg_inq = 0;
kmsg->msg.msg_control = NULL;
kmsg->msg.msg_get_inq = 1;
kmsg->msg.msg_controllen = 0;
kmsg->msg.msg_iocb = NULL;
kmsg->msg.msg_ubuf = NULL;
if (!io_do_buffer_select(req)) {
ret = import_ubuf(ITER_DEST, sr->buf, sr->len,
&kmsg->msg.msg_iter);
if (unlikely(ret))
return ret;
}
return 0;
}
ret = io_recvmsg_copy_hdr(req, kmsg);
if (!ret)
req->flags |= REQ_F_NEED_CLEANUP;
return ret;
}
#define RECVMSG_FLAGS (IORING_RECVSEND_POLL_FIRST | IORING_RECV_MULTISHOT | \
IORING_RECVSEND_BUNDLE)
int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
sr->done_io = 0;
if (unlikely(sqe->file_index || sqe->addr2))
return -EINVAL;
sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
sr->len = READ_ONCE(sqe->len);
sr->flags = READ_ONCE(sqe->ioprio);
if (sr->flags & ~RECVMSG_FLAGS)
return -EINVAL;
sr->msg_flags = READ_ONCE(sqe->msg_flags);
if (sr->msg_flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
if (sr->msg_flags & MSG_ERRQUEUE)
req->flags |= REQ_F_CLEAR_POLLIN;
if (req->flags & REQ_F_BUFFER_SELECT) {
/*
* Store the buffer group for this multishot receive separately,
* as if we end up doing an io-wq based issue that selects a
* buffer, it has to be committed immediately and that will
* clear ->buf_list. This means we lose the link to the buffer
* list, and the eventual buffer put on completion then cannot
* restore it.
*/
sr->buf_group = req->buf_index;
req->buf_list = NULL;
}
if (sr->flags & IORING_RECV_MULTISHOT) {
if (!(req->flags & REQ_F_BUFFER_SELECT))
return -EINVAL;
if (sr->msg_flags & MSG_WAITALL)
return -EINVAL;
if (req->opcode == IORING_OP_RECV && sr->len)
return -EINVAL;
req->flags |= REQ_F_APOLL_MULTISHOT;
}
if (sr->flags & IORING_RECVSEND_BUNDLE) {
if (req->opcode == IORING_OP_RECVMSG)
return -EINVAL;
}
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
sr->msg_flags |= MSG_CMSG_COMPAT;
#endif
sr->nr_multishot_loops = 0;
return io_recvmsg_prep_setup(req);
}
/*
* Finishes io_recv and io_recvmsg.
*
* Returns true if it is actually finished, or false if it should run
* again (for multishot).
*/
static inline bool io_recv_finish(struct io_kiocb *req, int *ret,
struct io_async_msghdr *kmsg,
bool mshot_finished, unsigned issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
unsigned int cflags = 0;
if (kmsg->msg.msg_inq > 0)
cflags |= IORING_CQE_F_SOCK_NONEMPTY;
if (sr->flags & IORING_RECVSEND_BUNDLE) {
cflags |= io_put_kbufs(req, *ret, io_bundle_nbufs(kmsg, *ret),
issue_flags);
/* bundle with no more immediate buffers, we're done */
if (req->flags & REQ_F_BL_EMPTY)
goto finish;
} else {
cflags |= io_put_kbuf(req, *ret, issue_flags);
}
/*
* Fill CQE for this receive and see if we should keep trying to
* receive from this socket.
*/
if ((req->flags & REQ_F_APOLL_MULTISHOT) && !mshot_finished &&
io_req_post_cqe(req, *ret, cflags | IORING_CQE_F_MORE)) {
int mshot_retry_ret = IOU_ISSUE_SKIP_COMPLETE;
io_mshot_prep_retry(req, kmsg);
/* Known not-empty or unknown state, retry */
if (cflags & IORING_CQE_F_SOCK_NONEMPTY || kmsg->msg.msg_inq < 0) {
if (sr->nr_multishot_loops++ < MULTISHOT_MAX_RETRY)
return false;
/* mshot retries exceeded, force a requeue */
sr->nr_multishot_loops = 0;
mshot_retry_ret = IOU_REQUEUE;
}
if (issue_flags & IO_URING_F_MULTISHOT)
*ret = mshot_retry_ret;
else
*ret = -EAGAIN;
return true;
}
/* Finish the request / stop multishot. */
finish:
io_req_set_res(req, *ret, cflags);
if (issue_flags & IO_URING_F_MULTISHOT)
*ret = IOU_STOP_MULTISHOT;
else
*ret = IOU_OK;
io_req_msg_cleanup(req, issue_flags);
return true;
}
static int io_recvmsg_prep_multishot(struct io_async_msghdr *kmsg,
struct io_sr_msg *sr, void __user **buf,
size_t *len)
{
unsigned long ubuf = (unsigned long) *buf;
unsigned long hdr;
hdr = sizeof(struct io_uring_recvmsg_out) + kmsg->namelen +
kmsg->controllen;
if (*len < hdr)
return -EFAULT;
if (kmsg->controllen) {
unsigned long control = ubuf + hdr - kmsg->controllen;
kmsg->msg.msg_control_user = (void __user *) control;
kmsg->msg.msg_controllen = kmsg->controllen;
}
sr->buf = *buf; /* stash for later copy */
*buf = (void __user *) (ubuf + hdr);
kmsg->payloadlen = *len = *len - hdr;
return 0;
}
struct io_recvmsg_multishot_hdr {
struct io_uring_recvmsg_out msg;
struct sockaddr_storage addr;
};
static int io_recvmsg_multishot(struct socket *sock, struct io_sr_msg *io,
struct io_async_msghdr *kmsg,
unsigned int flags, bool *finished)
{
int err;
int copy_len;
struct io_recvmsg_multishot_hdr hdr;
if (kmsg->namelen)
kmsg->msg.msg_name = &hdr.addr;
kmsg->msg.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
kmsg->msg.msg_namelen = 0;
if (sock->file->f_flags & O_NONBLOCK)
flags |= MSG_DONTWAIT;
err = sock_recvmsg(sock, &kmsg->msg, flags);
*finished = err <= 0;
if (err < 0)
return err;
hdr.msg = (struct io_uring_recvmsg_out) {
.controllen = kmsg->controllen - kmsg->msg.msg_controllen,
.flags = kmsg->msg.msg_flags & ~MSG_CMSG_COMPAT
};
hdr.msg.payloadlen = err;
if (err > kmsg->payloadlen)
err = kmsg->payloadlen;
copy_len = sizeof(struct io_uring_recvmsg_out);
if (kmsg->msg.msg_namelen > kmsg->namelen)
copy_len += kmsg->namelen;
else
copy_len += kmsg->msg.msg_namelen;
/*
* "fromlen shall refer to the value before truncation.."
* 1003.1g
*/
hdr.msg.namelen = kmsg->msg.msg_namelen;
/* ensure that there is no gap between hdr and sockaddr_storage */
BUILD_BUG_ON(offsetof(struct io_recvmsg_multishot_hdr, addr) !=
sizeof(struct io_uring_recvmsg_out));
if (copy_to_user(io->buf, &hdr, copy_len)) {
*finished = true;
return -EFAULT;
}
return sizeof(struct io_uring_recvmsg_out) + kmsg->namelen +
kmsg->controllen + err;
}
int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *kmsg = req->async_data;
struct socket *sock;
unsigned flags;
int ret, min_ret = 0;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
bool mshot_finished = true;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return -EAGAIN;
flags = sr->msg_flags;
if (force_nonblock)
flags |= MSG_DONTWAIT;
retry_multishot:
if (io_do_buffer_select(req)) {
void __user *buf;
size_t len = sr->len;
buf = io_buffer_select(req, &len, issue_flags);
if (!buf)
return -ENOBUFS;
if (req->flags & REQ_F_APOLL_MULTISHOT) {
ret = io_recvmsg_prep_multishot(kmsg, sr, &buf, &len);
if (ret) {
io_kbuf_recycle(req, issue_flags);
return ret;
}
}
iov_iter_ubuf(&kmsg->msg.msg_iter, ITER_DEST, buf, len);
}
kmsg->msg.msg_get_inq = 1;
kmsg->msg.msg_inq = -1;
if (req->flags & REQ_F_APOLL_MULTISHOT) {
ret = io_recvmsg_multishot(sock, sr, kmsg, flags,
&mshot_finished);
} else {
/* disable partial retry for recvmsg with cmsg attached */
if (flags & MSG_WAITALL && !kmsg->msg.msg_controllen)
min_ret = iov_iter_count(&kmsg->msg.msg_iter);
ret = __sys_recvmsg_sock(sock, &kmsg->msg, sr->umsg,
kmsg->uaddr, flags);
}
if (ret < min_ret) {
if (ret == -EAGAIN && force_nonblock) {
if (issue_flags & IO_URING_F_MULTISHOT) {
io_kbuf_recycle(req, issue_flags);
return IOU_ISSUE_SKIP_COMPLETE;
}
return -EAGAIN;
}
if (ret > 0 && io_net_retry(sock, flags)) {
sr->done_io += ret;
req->flags |= REQ_F_BL_NO_RECYCLE;
return -EAGAIN;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
} else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
req_set_fail(req);
}
if (ret > 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
else
io_kbuf_recycle(req, issue_flags);
if (!io_recv_finish(req, &ret, kmsg, mshot_finished, issue_flags))
goto retry_multishot;
return ret;
}
static int io_recv_buf_select(struct io_kiocb *req, struct io_async_msghdr *kmsg,
size_t *len, unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
int ret;
/*
* If the ring isn't locked, then don't use the peek interface
* to grab multiple buffers as we will lock/unlock between
* this selection and posting the buffers.
*/
if (!(issue_flags & IO_URING_F_UNLOCKED) &&
sr->flags & IORING_RECVSEND_BUNDLE) {
struct buf_sel_arg arg = {
.iovs = &kmsg->fast_iov,
.nr_iovs = 1,
.mode = KBUF_MODE_EXPAND,
};
if (kmsg->free_iov) {
arg.nr_iovs = kmsg->free_iov_nr;
arg.iovs = kmsg->free_iov;
arg.mode |= KBUF_MODE_FREE;
}
if (kmsg->msg.msg_inq > 0)
arg.max_len = min_not_zero(sr->len, kmsg->msg.msg_inq);
ret = io_buffers_peek(req, &arg);
if (unlikely(ret < 0))
return ret;
/* special case 1 vec, can be a fast path */
if (ret == 1) {
sr->buf = arg.iovs[0].iov_base;
sr->len = arg.iovs[0].iov_len;
goto map_ubuf;
}
iov_iter_init(&kmsg->msg.msg_iter, ITER_DEST, arg.iovs, ret,
arg.out_len);
if (arg.iovs != &kmsg->fast_iov && arg.iovs != kmsg->free_iov) {
kmsg->free_iov_nr = ret;
kmsg->free_iov = arg.iovs;
req->flags |= REQ_F_NEED_CLEANUP;
}
} else {
void __user *buf;
*len = sr->len;
buf = io_buffer_select(req, len, issue_flags);
if (!buf)
return -ENOBUFS;
sr->buf = buf;
sr->len = *len;
map_ubuf:
ret = import_ubuf(ITER_DEST, sr->buf, sr->len,
&kmsg->msg.msg_iter);
if (unlikely(ret))
return ret;
}
return 0;
}
int io_recv(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *kmsg = req->async_data;
struct socket *sock;
unsigned flags;
int ret, min_ret = 0;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
size_t len = sr->len;
bool mshot_finished;
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return -EAGAIN;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
flags = sr->msg_flags;
if (force_nonblock)
flags |= MSG_DONTWAIT;
retry_multishot:
if (io_do_buffer_select(req)) {
ret = io_recv_buf_select(req, kmsg, &len, issue_flags);
if (unlikely(ret)) {
kmsg->msg.msg_inq = -1;
goto out_free;
}
sr->buf = NULL;
}
kmsg->msg.msg_flags = 0;
kmsg->msg.msg_inq = -1;
if (flags & MSG_WAITALL)
min_ret = iov_iter_count(&kmsg->msg.msg_iter);
ret = sock_recvmsg(sock, &kmsg->msg, flags);
if (ret < min_ret) {
if (ret == -EAGAIN && force_nonblock) {
if (issue_flags & IO_URING_F_MULTISHOT) {
io_kbuf_recycle(req, issue_flags);
return IOU_ISSUE_SKIP_COMPLETE;
}
return -EAGAIN;
}
if (ret > 0 && io_net_retry(sock, flags)) {
sr->len -= ret;
sr->buf += ret;
sr->done_io += ret;
req->flags |= REQ_F_BL_NO_RECYCLE;
return -EAGAIN;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
} else if ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))) {
out_free:
req_set_fail(req);
}
mshot_finished = ret <= 0;
if (ret > 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
else
io_kbuf_recycle(req, issue_flags);
if (!io_recv_finish(req, &ret, kmsg, mshot_finished, issue_flags))
goto retry_multishot;
return ret;
}
void io_send_zc_cleanup(struct io_kiocb *req)
{
struct io_sr_msg *zc = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *io = req->async_data;
if (req_has_async_data(req))
io_netmsg_iovec_free(io);
io_uring/net: fix UAF in io_sendrecv_fail() We should not assume anything about ->free_iov just from REQ_F_ASYNC_DATA but rather rely on REQ_F_NEED_CLEANUP, as we may allocate ->async_data but failed init would leave the field in not consistent state. The easiest solution is to remove removing REQ_F_NEED_CLEANUP and so ->async_data dealloc from io_sendrecv_fail() and let io_send_zc_cleanup() do the job. The catch here is that we also need to prevent double notif flushing, just test it for NULL and zero where it's needed. BUG: KASAN: use-after-free in io_sendrecv_fail+0x3b0/0x3e0 io_uring/net.c:1221 Write of size 8 at addr ffff8880771b4080 by task syz-executor.3/30199 CPU: 1 PID: 30199 Comm: syz-executor.3 Not tainted 6.0.0-rc6-next-20220923-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:284 [inline] print_report+0x15e/0x45d mm/kasan/report.c:395 kasan_report+0xbb/0x1f0 mm/kasan/report.c:495 io_sendrecv_fail+0x3b0/0x3e0 io_uring/net.c:1221 io_req_complete_failed+0x155/0x1b0 io_uring/io_uring.c:873 io_drain_req io_uring/io_uring.c:1648 [inline] io_queue_sqe_fallback.cold+0x29f/0x788 io_uring/io_uring.c:1931 io_submit_sqe io_uring/io_uring.c:2160 [inline] io_submit_sqes+0x1180/0x1df0 io_uring/io_uring.c:2276 __do_sys_io_uring_enter+0xac6/0x2410 io_uring/io_uring.c:3216 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Fixes: c4c0009e0b56e ("io_uring/net: combine fail handlers") Reported-by: syzbot+4c597a574a3f5a251bda@syzkaller.appspotmail.com Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Link: https://lore.kernel.org/r/23ab8346e407ea50b1198a172c8a97e1cf22915b.1663945875.git.asml.silence@gmail.com Signed-off-by: Jens Axboe <axboe@kernel.dk>
2022-09-23 16:23:34 +01:00
if (zc->notif) {
io_notif_flush(zc->notif);
zc->notif = NULL;
}
}
#define IO_ZC_FLAGS_COMMON (IORING_RECVSEND_POLL_FIRST | IORING_RECVSEND_FIXED_BUF)
#define IO_ZC_FLAGS_VALID (IO_ZC_FLAGS_COMMON | IORING_SEND_ZC_REPORT_USAGE)
int io_send_zc_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_sr_msg *zc = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_ring_ctx *ctx = req->ctx;
struct io_kiocb *notif;
zc->done_io = 0;
req->flags |= REQ_F_POLL_NO_LAZY;
if (unlikely(READ_ONCE(sqe->__pad2[0]) || READ_ONCE(sqe->addr3)))
return -EINVAL;
/* we don't support IOSQE_CQE_SKIP_SUCCESS just yet */
if (req->flags & REQ_F_CQE_SKIP)
return -EINVAL;
notif = zc->notif = io_alloc_notif(ctx);
if (!notif)
return -ENOMEM;
notif->cqe.user_data = req->cqe.user_data;
notif->cqe.res = 0;
notif->cqe.flags = IORING_CQE_F_NOTIF;
req->flags |= REQ_F_NEED_CLEANUP;
zc->flags = READ_ONCE(sqe->ioprio);
if (unlikely(zc->flags & ~IO_ZC_FLAGS_COMMON)) {
if (zc->flags & ~IO_ZC_FLAGS_VALID)
return -EINVAL;
if (zc->flags & IORING_SEND_ZC_REPORT_USAGE) {
struct io_notif_data *nd = io_notif_to_data(notif);
nd->zc_report = true;
nd->zc_used = false;
nd->zc_copied = false;
}
}
if (req->opcode != IORING_OP_SEND_ZC) {
if (unlikely(sqe->addr2 || sqe->file_index))
return -EINVAL;
if (unlikely(zc->flags & IORING_RECVSEND_FIXED_BUF))
return -EINVAL;
}
zc->len = READ_ONCE(sqe->len);
zc->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL | MSG_ZEROCOPY;
zc->buf_index = READ_ONCE(sqe->buf_index);
if (zc->msg_flags & MSG_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
#ifdef CONFIG_COMPAT
if (req->ctx->compat)
zc->msg_flags |= MSG_CMSG_COMPAT;
#endif
if (unlikely(!io_msg_alloc_async(req)))
return -ENOMEM;
if (req->opcode != IORING_OP_SENDMSG_ZC)
return io_send_setup(req, sqe);
return io_sendmsg_setup(req, sqe);
}
static int io_sg_from_iter_iovec(struct sk_buff *skb,
struct iov_iter *from, size_t length)
{
skb_zcopy_downgrade_managed(skb);
return zerocopy_fill_skb_from_iter(skb, from, length);
}
static int io_sg_from_iter(struct sk_buff *skb,
struct iov_iter *from, size_t length)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
int frag = shinfo->nr_frags;
int ret = 0;
struct bvec_iter bi;
ssize_t copied = 0;
unsigned long truesize = 0;
if (!frag)
shinfo->flags |= SKBFL_MANAGED_FRAG_REFS;
else if (unlikely(!skb_zcopy_managed(skb)))
return zerocopy_fill_skb_from_iter(skb, from, length);
bi.bi_size = min(from->count, length);
bi.bi_bvec_done = from->iov_offset;
bi.bi_idx = 0;
while (bi.bi_size && frag < MAX_SKB_FRAGS) {
struct bio_vec v = mp_bvec_iter_bvec(from->bvec, bi);
copied += v.bv_len;
truesize += PAGE_ALIGN(v.bv_len + v.bv_offset);
__skb_fill_page_desc_noacc(shinfo, frag++, v.bv_page,
v.bv_offset, v.bv_len);
bvec_iter_advance_single(from->bvec, &bi, v.bv_len);
}
if (bi.bi_size)
ret = -EMSGSIZE;
shinfo->nr_frags = frag;
from->bvec += bi.bi_idx;
from->nr_segs -= bi.bi_idx;
from->count -= copied;
from->iov_offset = bi.bi_bvec_done;
skb->data_len += copied;
skb->len += copied;
skb->truesize += truesize;
return ret;
}
static int io_send_zc_import(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *kmsg = req->async_data;
int ret;
if (sr->flags & IORING_RECVSEND_FIXED_BUF) {
struct io_ring_ctx *ctx = req->ctx;
io_uring/rsrc: get rid of per-ring io_rsrc_node list Work in progress, but get rid of the per-ring serialization of resource nodes, like registered buffers and files. Main issue here is that one node can otherwise hold up a bunch of other nodes from getting freed, which is especially a problem for file resource nodes and networked workloads where some descriptors may not see activity in a long time. As an example, instantiate an io_uring ring fd and create a sparse registered file table. Even 2 will do. Then create a socket and register it as fixed file 0, F0. The number of open files in the app is now 5, with 0/1/2 being the usual stdin/out/err, 3 being the ring fd, and 4 being the socket. Register this socket (eg "the listener") in slot 0 of the registered file table. Now add an operation on the socket that uses slot 0. Finally, loop N times, where each loop creates a new socket, registers said socket as a file, then unregisters the socket, and finally closes the socket. This is roughly similar to what a basic accept loop would look like. At the end of this loop, it's not unreasonable to expect that there would still be 5 open files. Each socket created and registered in the loop is also unregistered and closed. But since the listener socket registered first still has references to its resource node due to still being active, each subsequent socket unregistration is stuck behind it for reclaim. Hence 5 + N files are still open at that point, where N is awaiting the final put held up by the listener socket. Rewrite the io_rsrc_node handling to NOT rely on serialization. Struct io_kiocb now gets explicit resource nodes assigned, with each holding a reference to the parent node. A parent node is either of type FILE or BUFFER, which are the two types of nodes that exist. A request can have two nodes assigned, if it's using both registered files and buffers. Since request issue and task_work completion is both under the ring private lock, no atomics are needed to handle these references. It's a simple unlocked inc/dec. As before, the registered buffer or file table each hold a reference as well to the registered nodes. Final put of the node will remove the node and free the underlying resource, eg unmap the buffer or put the file. Outside of removing the stall in resource reclaim described above, it has the following advantages: 1) It's a lot simpler than the previous scheme, and easier to follow. No need to specific quiesce handling anymore. 2) There are no resource node allocations in the fast path, all of that happens at resource registration time. 3) The structs related to resource handling can all get simplified quite a bit, like io_rsrc_node and io_rsrc_data. io_rsrc_put can go away completely. 4) Handling of resource tags is much simpler, and doesn't require persistent storage as it can simply get assigned up front at registration time. Just copy them in one-by-one at registration time and assign to the resource node. The only real downside is that a request is now explicitly limited to pinning 2 resources, one file and one buffer, where before just assigning a resource node to a request would pin all of them. The upside is that it's easier to follow now, as an individual resource is explicitly referenced and assigned to the request. With this in place, the above mentioned example will be using exactly 5 files at the end of the loop, not N. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-25 19:27:39 -06:00
struct io_rsrc_node *node;
ret = -EFAULT;
io_ring_submit_lock(ctx, issue_flags);
node = io_rsrc_node_lookup(&ctx->buf_table, sr->buf_index);
if (node) {
io_req_assign_buf_node(sr->notif, node);
ret = 0;
}
io_ring_submit_unlock(ctx, issue_flags);
if (unlikely(ret))
return ret;
io_uring/rsrc: get rid of per-ring io_rsrc_node list Work in progress, but get rid of the per-ring serialization of resource nodes, like registered buffers and files. Main issue here is that one node can otherwise hold up a bunch of other nodes from getting freed, which is especially a problem for file resource nodes and networked workloads where some descriptors may not see activity in a long time. As an example, instantiate an io_uring ring fd and create a sparse registered file table. Even 2 will do. Then create a socket and register it as fixed file 0, F0. The number of open files in the app is now 5, with 0/1/2 being the usual stdin/out/err, 3 being the ring fd, and 4 being the socket. Register this socket (eg "the listener") in slot 0 of the registered file table. Now add an operation on the socket that uses slot 0. Finally, loop N times, where each loop creates a new socket, registers said socket as a file, then unregisters the socket, and finally closes the socket. This is roughly similar to what a basic accept loop would look like. At the end of this loop, it's not unreasonable to expect that there would still be 5 open files. Each socket created and registered in the loop is also unregistered and closed. But since the listener socket registered first still has references to its resource node due to still being active, each subsequent socket unregistration is stuck behind it for reclaim. Hence 5 + N files are still open at that point, where N is awaiting the final put held up by the listener socket. Rewrite the io_rsrc_node handling to NOT rely on serialization. Struct io_kiocb now gets explicit resource nodes assigned, with each holding a reference to the parent node. A parent node is either of type FILE or BUFFER, which are the two types of nodes that exist. A request can have two nodes assigned, if it's using both registered files and buffers. Since request issue and task_work completion is both under the ring private lock, no atomics are needed to handle these references. It's a simple unlocked inc/dec. As before, the registered buffer or file table each hold a reference as well to the registered nodes. Final put of the node will remove the node and free the underlying resource, eg unmap the buffer or put the file. Outside of removing the stall in resource reclaim described above, it has the following advantages: 1) It's a lot simpler than the previous scheme, and easier to follow. No need to specific quiesce handling anymore. 2) There are no resource node allocations in the fast path, all of that happens at resource registration time. 3) The structs related to resource handling can all get simplified quite a bit, like io_rsrc_node and io_rsrc_data. io_rsrc_put can go away completely. 4) Handling of resource tags is much simpler, and doesn't require persistent storage as it can simply get assigned up front at registration time. Just copy them in one-by-one at registration time and assign to the resource node. The only real downside is that a request is now explicitly limited to pinning 2 resources, one file and one buffer, where before just assigning a resource node to a request would pin all of them. The upside is that it's easier to follow now, as an individual resource is explicitly referenced and assigned to the request. With this in place, the above mentioned example will be using exactly 5 files at the end of the loop, not N. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-10-25 19:27:39 -06:00
ret = io_import_fixed(ITER_SOURCE, &kmsg->msg.msg_iter,
node->buf, (u64)(uintptr_t)sr->buf,
sr->len);
if (unlikely(ret))
return ret;
kmsg->msg.sg_from_iter = io_sg_from_iter;
} else {
ret = import_ubuf(ITER_SOURCE, sr->buf, sr->len, &kmsg->msg.msg_iter);
if (unlikely(ret))
return ret;
ret = io_notif_account_mem(sr->notif, sr->len);
if (unlikely(ret))
return ret;
kmsg->msg.sg_from_iter = io_sg_from_iter_iovec;
}
return ret;
}
int io_send_zc(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *zc = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *kmsg = req->async_data;
struct socket *sock;
unsigned msg_flags;
int ret, min_ret = 0;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (!test_bit(SOCK_SUPPORT_ZC, &sock->flags))
return -EOPNOTSUPP;
if (!(req->flags & REQ_F_POLLED) &&
(zc->flags & IORING_RECVSEND_POLL_FIRST))
return -EAGAIN;
if (!zc->done_io) {
ret = io_send_zc_import(req, issue_flags);
if (unlikely(ret))
return ret;
}
msg_flags = zc->msg_flags;
if (issue_flags & IO_URING_F_NONBLOCK)
msg_flags |= MSG_DONTWAIT;
if (msg_flags & MSG_WAITALL)
min_ret = iov_iter_count(&kmsg->msg.msg_iter);
msg_flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
kmsg->msg.msg_flags = msg_flags;
kmsg->msg.msg_ubuf = &io_notif_to_data(zc->notif)->uarg;
ret = sock_sendmsg(sock, &kmsg->msg);
if (unlikely(ret < min_ret)) {
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return -EAGAIN;
if (ret > 0 && io_net_retry(sock, kmsg->msg.msg_flags)) {
zc->len -= ret;
zc->buf += ret;
zc->done_io += ret;
req->flags |= REQ_F_BL_NO_RECYCLE;
return -EAGAIN;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
}
if (ret >= 0)
ret += zc->done_io;
else if (zc->done_io)
ret = zc->done_io;
/*
* If we're in io-wq we can't rely on tw ordering guarantees, defer
* flushing notif to io_send_zc_cleanup()
*/
if (!(issue_flags & IO_URING_F_UNLOCKED)) {
io_notif_flush(zc->notif);
io_req_msg_cleanup(req, 0);
}
io_req_set_res(req, ret, IORING_CQE_F_MORE);
return IOU_OK;
}
int io_sendmsg_zc(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
struct io_async_msghdr *kmsg = req->async_data;
struct socket *sock;
unsigned flags;
int ret, min_ret = 0;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
if (!test_bit(SOCK_SUPPORT_ZC, &sock->flags))
return -EOPNOTSUPP;
if (!(req->flags & REQ_F_POLLED) &&
(sr->flags & IORING_RECVSEND_POLL_FIRST))
return -EAGAIN;
flags = sr->msg_flags;
if (issue_flags & IO_URING_F_NONBLOCK)
flags |= MSG_DONTWAIT;
if (flags & MSG_WAITALL)
min_ret = iov_iter_count(&kmsg->msg.msg_iter);
kmsg->msg.msg_control_user = sr->msg_control;
kmsg->msg.msg_ubuf = &io_notif_to_data(sr->notif)->uarg;
kmsg->msg.sg_from_iter = io_sg_from_iter_iovec;
ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
if (unlikely(ret < min_ret)) {
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return -EAGAIN;
if (ret > 0 && io_net_retry(sock, flags)) {
sr->done_io += ret;
req->flags |= REQ_F_BL_NO_RECYCLE;
return -EAGAIN;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
}
if (ret >= 0)
ret += sr->done_io;
else if (sr->done_io)
ret = sr->done_io;
/*
* If we're in io-wq we can't rely on tw ordering guarantees, defer
* flushing notif to io_send_zc_cleanup()
*/
if (!(issue_flags & IO_URING_F_UNLOCKED)) {
io_notif_flush(sr->notif);
io_req_msg_cleanup(req, 0);
}
io_req_set_res(req, ret, IORING_CQE_F_MORE);
return IOU_OK;
}
void io_sendrecv_fail(struct io_kiocb *req)
{
struct io_sr_msg *sr = io_kiocb_to_cmd(req, struct io_sr_msg);
if (sr->done_io)
req->cqe.res = sr->done_io;
if ((req->flags & REQ_F_NEED_CLEANUP) &&
(req->opcode == IORING_OP_SEND_ZC || req->opcode == IORING_OP_SENDMSG_ZC))
req->cqe.flags |= IORING_CQE_F_MORE;
}
#define ACCEPT_FLAGS (IORING_ACCEPT_MULTISHOT | IORING_ACCEPT_DONTWAIT | \
IORING_ACCEPT_POLL_FIRST)
int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_accept *accept = io_kiocb_to_cmd(req, struct io_accept);
if (sqe->len || sqe->buf_index)
return -EINVAL;
accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
accept->flags = READ_ONCE(sqe->accept_flags);
accept->nofile = rlimit(RLIMIT_NOFILE);
accept->iou_flags = READ_ONCE(sqe->ioprio);
if (accept->iou_flags & ~ACCEPT_FLAGS)
return -EINVAL;
accept->file_slot = READ_ONCE(sqe->file_index);
if (accept->file_slot) {
if (accept->flags & SOCK_CLOEXEC)
return -EINVAL;
if (accept->iou_flags & IORING_ACCEPT_MULTISHOT &&
accept->file_slot != IORING_FILE_INDEX_ALLOC)
return -EINVAL;
}
if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return -EINVAL;
if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
if (accept->iou_flags & IORING_ACCEPT_MULTISHOT)
req->flags |= REQ_F_APOLL_MULTISHOT;
if (accept->iou_flags & IORING_ACCEPT_DONTWAIT)
req->flags |= REQ_F_NOWAIT;
return 0;
}
int io_accept(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_accept *accept = io_kiocb_to_cmd(req, struct io_accept);
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
bool fixed = !!accept->file_slot;
struct proto_accept_arg arg = {
.flags = force_nonblock ? O_NONBLOCK : 0,
};
struct file *file;
unsigned cflags;
int ret, fd;
if (!(req->flags & REQ_F_POLLED) &&
accept->iou_flags & IORING_ACCEPT_POLL_FIRST)
return -EAGAIN;
retry:
if (!fixed) {
fd = __get_unused_fd_flags(accept->flags, accept->nofile);
if (unlikely(fd < 0))
return fd;
}
arg.err = 0;
arg.is_empty = -1;
file = do_accept(req->file, &arg, accept->addr, accept->addr_len,
accept->flags);
if (IS_ERR(file)) {
if (!fixed)
put_unused_fd(fd);
ret = PTR_ERR(file);
if (ret == -EAGAIN && force_nonblock &&
!(accept->iou_flags & IORING_ACCEPT_DONTWAIT)) {
/*
* if it's multishot and polled, we don't need to
* return EAGAIN to arm the poll infra since it
* has already been done
*/
if (issue_flags & IO_URING_F_MULTISHOT)
return IOU_ISSUE_SKIP_COMPLETE;
return ret;
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
} else if (!fixed) {
fd_install(fd, file);
ret = fd;
} else {
ret = io_fixed_fd_install(req, issue_flags, file,
accept->file_slot);
}
cflags = 0;
if (!arg.is_empty)
cflags |= IORING_CQE_F_SOCK_NONEMPTY;
if (!(req->flags & REQ_F_APOLL_MULTISHOT)) {
io_req_set_res(req, ret, cflags);
return IOU_OK;
}
if (ret < 0)
return ret;
if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) {
if (cflags & IORING_CQE_F_SOCK_NONEMPTY || arg.is_empty == -1)
goto retry;
if (issue_flags & IO_URING_F_MULTISHOT)
return IOU_ISSUE_SKIP_COMPLETE;
return -EAGAIN;
}
io_req_set_res(req, ret, cflags);
return IOU_STOP_MULTISHOT;
}
int io_socket_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_socket *sock = io_kiocb_to_cmd(req, struct io_socket);
if (sqe->addr || sqe->rw_flags || sqe->buf_index)
return -EINVAL;
sock->domain = READ_ONCE(sqe->fd);
sock->type = READ_ONCE(sqe->off);
sock->protocol = READ_ONCE(sqe->len);
sock->file_slot = READ_ONCE(sqe->file_index);
sock->nofile = rlimit(RLIMIT_NOFILE);
sock->flags = sock->type & ~SOCK_TYPE_MASK;
if (sock->file_slot && (sock->flags & SOCK_CLOEXEC))
return -EINVAL;
if (sock->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
return -EINVAL;
return 0;
}
int io_socket(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_socket *sock = io_kiocb_to_cmd(req, struct io_socket);
bool fixed = !!sock->file_slot;
struct file *file;
int ret, fd;
if (!fixed) {
fd = __get_unused_fd_flags(sock->flags, sock->nofile);
if (unlikely(fd < 0))
return fd;
}
file = __sys_socket_file(sock->domain, sock->type, sock->protocol);
if (IS_ERR(file)) {
if (!fixed)
put_unused_fd(fd);
ret = PTR_ERR(file);
if (ret == -EAGAIN && (issue_flags & IO_URING_F_NONBLOCK))
return -EAGAIN;
if (ret == -ERESTARTSYS)
ret = -EINTR;
req_set_fail(req);
} else if (!fixed) {
fd_install(fd, file);
ret = fd;
} else {
ret = io_fixed_fd_install(req, issue_flags, file,
sock->file_slot);
}
io_req_set_res(req, ret, 0);
return IOU_OK;
}
int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_connect *conn = io_kiocb_to_cmd(req, struct io_connect);
struct io_async_msghdr *io;
if (sqe->len || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in)
return -EINVAL;
conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
conn->addr_len = READ_ONCE(sqe->addr2);
conn->in_progress = conn->seen_econnaborted = false;
io = io_msg_alloc_async(req);
if (unlikely(!io))
return -ENOMEM;
return move_addr_to_kernel(conn->addr, conn->addr_len, &io->addr);
}
int io_connect(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_connect *connect = io_kiocb_to_cmd(req, struct io_connect);
struct io_async_msghdr *io = req->async_data;
unsigned file_flags;
int ret;
bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
file_flags = force_nonblock ? O_NONBLOCK : 0;
ret = __sys_connect_file(req->file, &io->addr, connect->addr_len,
file_flags);
if ((ret == -EAGAIN || ret == -EINPROGRESS || ret == -ECONNABORTED)
&& force_nonblock) {
if (ret == -EINPROGRESS) {
connect->in_progress = true;
io_uring/net: ensure socket is marked connected on connect retry io_uring does non-blocking connection attempts, which can yield some unexpected results if a connect request is re-attempted by an an application. This is equivalent to the following sync syscall sequence: sock = socket(AF_INET, SOCK_STREAM | SOCK_NONBLOCK, IPPROTO_TCP); connect(sock, &addr, sizeof(addr); ret == -1 and errno == EINPROGRESS expected here. Now poll for POLLOUT on sock, and when that returns, we expect the socket to be connected. But if we follow that procedure with: connect(sock, &addr, sizeof(addr)); you'd expect ret == -1 and errno == EISCONN here, but you actually get ret == 0. If we attempt the connection one more time, then we get EISCON as expected. io_uring used to do this, but turns out that bluetooth fails with EBADFD if you attempt to re-connect. Also looks like EISCONN _could_ occur with this sequence. Retain the ->in_progress logic, but work-around a potential EISCONN or EBADFD error and only in those cases look at the sock_error(). This should work in general and avoid the odd sequence of a repeated connect request returning success when the socket is already connected. This is all a side effect of the socket state being in a CONNECTING state when we get EINPROGRESS, and only a re-connect or other related operation will turn that into CONNECTED. Cc: stable@vger.kernel.org Fixes: 3fb1bd688172 ("io_uring/net: handle -EINPROGRESS correct for IORING_OP_CONNECT") Link: https://github.com/axboe/liburing/issues/980 Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-11-03 10:35:40 -06:00
} else if (ret == -ECONNABORTED) {
if (connect->seen_econnaborted)
goto out;
connect->seen_econnaborted = true;
}
return -EAGAIN;
}
io_uring/net: ensure socket is marked connected on connect retry io_uring does non-blocking connection attempts, which can yield some unexpected results if a connect request is re-attempted by an an application. This is equivalent to the following sync syscall sequence: sock = socket(AF_INET, SOCK_STREAM | SOCK_NONBLOCK, IPPROTO_TCP); connect(sock, &addr, sizeof(addr); ret == -1 and errno == EINPROGRESS expected here. Now poll for POLLOUT on sock, and when that returns, we expect the socket to be connected. But if we follow that procedure with: connect(sock, &addr, sizeof(addr)); you'd expect ret == -1 and errno == EISCONN here, but you actually get ret == 0. If we attempt the connection one more time, then we get EISCON as expected. io_uring used to do this, but turns out that bluetooth fails with EBADFD if you attempt to re-connect. Also looks like EISCONN _could_ occur with this sequence. Retain the ->in_progress logic, but work-around a potential EISCONN or EBADFD error and only in those cases look at the sock_error(). This should work in general and avoid the odd sequence of a repeated connect request returning success when the socket is already connected. This is all a side effect of the socket state being in a CONNECTING state when we get EINPROGRESS, and only a re-connect or other related operation will turn that into CONNECTED. Cc: stable@vger.kernel.org Fixes: 3fb1bd688172 ("io_uring/net: handle -EINPROGRESS correct for IORING_OP_CONNECT") Link: https://github.com/axboe/liburing/issues/980 Signed-off-by: Jens Axboe <axboe@kernel.dk>
2023-11-03 10:35:40 -06:00
if (connect->in_progress) {
/*
* At least bluetooth will return -EBADFD on a re-connect
* attempt, and it's (supposedly) also valid to get -EISCONN
* which means the previous result is good. For both of these,
* grab the sock_error() and use that for the completion.
*/
if (ret == -EBADFD || ret == -EISCONN)
ret = sock_error(sock_from_file(req->file)->sk);
}
if (ret == -ERESTARTSYS)
ret = -EINTR;
out:
if (ret < 0)
req_set_fail(req);
io_req_msg_cleanup(req, issue_flags);
io_req_set_res(req, ret, 0);
return IOU_OK;
}
int io_bind_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_bind *bind = io_kiocb_to_cmd(req, struct io_bind);
struct sockaddr __user *uaddr;
struct io_async_msghdr *io;
if (sqe->len || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in)
return -EINVAL;
uaddr = u64_to_user_ptr(READ_ONCE(sqe->addr));
bind->addr_len = READ_ONCE(sqe->addr2);
io = io_msg_alloc_async(req);
if (unlikely(!io))
return -ENOMEM;
return move_addr_to_kernel(uaddr, bind->addr_len, &io->addr);
}
int io_bind(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_bind *bind = io_kiocb_to_cmd(req, struct io_bind);
struct io_async_msghdr *io = req->async_data;
struct socket *sock;
int ret;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
ret = __sys_bind_socket(sock, &io->addr, bind->addr_len);
if (ret < 0)
req_set_fail(req);
io_req_set_res(req, ret, 0);
return 0;
}
int io_listen_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_listen *listen = io_kiocb_to_cmd(req, struct io_listen);
if (sqe->addr || sqe->buf_index || sqe->rw_flags || sqe->splice_fd_in || sqe->addr2)
return -EINVAL;
listen->backlog = READ_ONCE(sqe->len);
return 0;
}
int io_listen(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_listen *listen = io_kiocb_to_cmd(req, struct io_listen);
struct socket *sock;
int ret;
sock = sock_from_file(req->file);
if (unlikely(!sock))
return -ENOTSOCK;
ret = __sys_listen_socket(sock, listen->backlog);
if (ret < 0)
req_set_fail(req);
io_req_set_res(req, ret, 0);
return 0;
}
void io_netmsg_cache_free(const void *entry)
{
struct io_async_msghdr *kmsg = (struct io_async_msghdr *) entry;
if (kmsg->free_iov) {
kasan_mempool_unpoison_object(kmsg->free_iov,
kmsg->free_iov_nr * sizeof(struct iovec));
io_netmsg_iovec_free(kmsg);
}
kfree(kmsg);
}
#endif