linux/net/smc/smc_tx.c

667 lines
19 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 14:07:57 +00:00
// SPDX-License-Identifier: GPL-2.0
/*
* Shared Memory Communications over RDMA (SMC-R) and RoCE
*
* Manage send buffer.
* Producer:
* Copy user space data into send buffer, if send buffer space available.
* Consumer:
* Trigger RDMA write into RMBE of peer and send CDC, if RMBE space available.
*
* Copyright IBM Corp. 2016
*
* Author(s): Ursula Braun <ubraun@linux.vnet.ibm.com>
*/
#include <linux/net.h>
#include <linux/rcupdate.h>
#include <linux/workqueue.h>
sched/headers: Move task_struct::signal and task_struct::sighand types and accessors into <linux/sched/signal.h> task_struct::signal and task_struct::sighand are pointers, which would normally make it straightforward to not define those types in sched.h. That is not so, because the types are accompanied by a myriad of APIs (macros and inline functions) that dereference them. Split the types and the APIs out of sched.h and move them into a new header, <linux/sched/signal.h>. With this change sched.h does not know about 'struct signal' and 'struct sighand' anymore, trying to put accessors into sched.h as a test fails the following way: ./include/linux/sched.h: In function ‘test_signal_types’: ./include/linux/sched.h:2461:18: error: dereferencing pointer to incomplete type ‘struct signal_struct’ ^ This reduces the size and complexity of sched.h significantly. Update all headers and .c code that relied on getting the signal handling functionality from <linux/sched.h> to include <linux/sched/signal.h>. The list of affected files in the preparatory patch was partly generated by grepping for the APIs, and partly by doing coverage build testing, both all[yes|mod|def|no]config builds on 64-bit and 32-bit x86, and an array of cross-architecture builds. Nevertheless some (trivial) build breakage is still expected related to rare Kconfig combinations and in-flight patches to various kernel code, but most of it should be handled by this patch. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-02 07:35:14 +00:00
#include <linux/sched/signal.h>
#include <net/sock.h>
#include <net/tcp.h>
#include "smc.h"
#include "smc_wr.h"
#include "smc_cdc.h"
#include "smc_close.h"
#include "smc_ism.h"
#include "smc_tx.h"
#include "smc_stats.h"
#include "smc_tracepoint.h"
#define SMC_TX_WORK_DELAY 0
#define SMC_TX_CORK_DELAY (HZ >> 2) /* 250 ms */
/***************************** sndbuf producer *******************************/
/* callback implementation for sk.sk_write_space()
* to wakeup sndbuf producers that blocked with smc_tx_wait().
* called under sk_socket lock.
*/
static void smc_tx_write_space(struct sock *sk)
{
struct socket *sock = sk->sk_socket;
struct smc_sock *smc = smc_sk(sk);
struct socket_wq *wq;
/* similar to sk_stream_write_space */
if (atomic_read(&smc->conn.sndbuf_space) && sock) {
if (test_bit(SOCK_NOSPACE, &sock->flags))
SMC_STAT_RMB_TX_FULL(smc, !smc->conn.lnk);
clear_bit(SOCK_NOSPACE, &sock->flags);
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_poll(&wq->wait,
EPOLLOUT | EPOLLWRNORM |
EPOLLWRBAND);
if (wq && wq->fasync_list && !(sk->sk_shutdown & SEND_SHUTDOWN))
sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
rcu_read_unlock();
}
}
/* Wakeup sndbuf producers that blocked with smc_tx_wait().
* Cf. tcp_data_snd_check()=>tcp_check_space()=>tcp_new_space().
*/
void smc_tx_sndbuf_nonfull(struct smc_sock *smc)
{
if (smc->sk.sk_socket &&
test_bit(SOCK_NOSPACE, &smc->sk.sk_socket->flags))
smc->sk.sk_write_space(&smc->sk);
}
/* blocks sndbuf producer until at least one byte of free space available
* or urgent Byte was consumed
*/
static int smc_tx_wait(struct smc_sock *smc, int flags)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
struct smc_connection *conn = &smc->conn;
struct sock *sk = &smc->sk;
long timeo;
int rc = 0;
/* similar to sk_stream_wait_memory */
timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
add_wait_queue(sk_sleep(sk), &wait);
while (1) {
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
if (sk->sk_err ||
(sk->sk_shutdown & SEND_SHUTDOWN) ||
conn->killed ||
conn->local_tx_ctrl.conn_state_flags.peer_done_writing) {
rc = -EPIPE;
break;
}
if (smc_cdc_rxed_any_close(conn)) {
rc = -ECONNRESET;
break;
}
if (!timeo) {
/* ensure EPOLLOUT is subsequently generated */
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
rc = -EAGAIN;
break;
}
if (signal_pending(current)) {
rc = sock_intr_errno(timeo);
break;
}
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
if (atomic_read(&conn->sndbuf_space) && !conn->urg_tx_pend)
break; /* at least 1 byte of free & no urgent data */
set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
sk_wait_event(sk, &timeo,
sk->sk_err ||
(sk->sk_shutdown & SEND_SHUTDOWN) ||
smc_cdc_rxed_any_close(conn) ||
(atomic_read(&conn->sndbuf_space) &&
!conn->urg_tx_pend),
&wait);
}
remove_wait_queue(sk_sleep(sk), &wait);
return rc;
}
static bool smc_tx_is_corked(struct smc_sock *smc)
{
struct tcp_sock *tp = tcp_sk(smc->clcsock->sk);
return (tp->nonagle & TCP_NAGLE_CORK) ? true : false;
}
/* sndbuf producer: main API called by socket layer.
* called under sock lock.
*/
int smc_tx_sendmsg(struct smc_sock *smc, struct msghdr *msg, size_t len)
{
size_t copylen, send_done = 0, send_remaining = len;
size_t chunk_len, chunk_off, chunk_len_sum;
struct smc_connection *conn = &smc->conn;
union smc_host_cursor prep;
struct sock *sk = &smc->sk;
char *sndbuf_base;
int tx_cnt_prep;
int writespace;
int rc, chunk;
/* This should be in poll */
sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)) {
rc = -EPIPE;
goto out_err;
}
if (sk->sk_state == SMC_INIT)
return -ENOTCONN;
if (len > conn->sndbuf_desc->len)
SMC_STAT_RMB_TX_SIZE_SMALL(smc, !conn->lnk);
if (len > conn->peer_rmbe_size)
SMC_STAT_RMB_TX_PEER_SIZE_SMALL(smc, !conn->lnk);
if (msg->msg_flags & MSG_OOB)
SMC_STAT_INC(smc, urg_data_cnt);
while (msg_data_left(msg)) {
if (smc->sk.sk_shutdown & SEND_SHUTDOWN ||
(smc->sk.sk_err == ECONNABORTED) ||
conn->killed)
return -EPIPE;
if (smc_cdc_rxed_any_close(conn))
return send_done ?: -ECONNRESET;
if (msg->msg_flags & MSG_OOB)
conn->local_tx_ctrl.prod_flags.urg_data_pending = 1;
if (!atomic_read(&conn->sndbuf_space) || conn->urg_tx_pend) {
if (send_done)
return send_done;
rc = smc_tx_wait(smc, msg->msg_flags);
if (rc)
goto out_err;
continue;
}
/* initialize variables for 1st iteration of subsequent loop */
/* could be just 1 byte, even after smc_tx_wait above */
writespace = atomic_read(&conn->sndbuf_space);
/* not more than what user space asked for */
copylen = min_t(size_t, send_remaining, writespace);
/* determine start of sndbuf */
sndbuf_base = conn->sndbuf_desc->cpu_addr;
smc_curs_copy(&prep, &conn->tx_curs_prep, conn);
tx_cnt_prep = prep.count;
/* determine chunks where to write into sndbuf */
/* either unwrapped case, or 1st chunk of wrapped case */
chunk_len = min_t(size_t, copylen, conn->sndbuf_desc->len -
tx_cnt_prep);
chunk_len_sum = chunk_len;
chunk_off = tx_cnt_prep;
smc_sndbuf_sync_sg_for_cpu(conn);
for (chunk = 0; chunk < 2; chunk++) {
rc = memcpy_from_msg(sndbuf_base + chunk_off,
msg, chunk_len);
if (rc) {
smc_sndbuf_sync_sg_for_device(conn);
if (send_done)
return send_done;
goto out_err;
}
send_done += chunk_len;
send_remaining -= chunk_len;
if (chunk_len_sum == copylen)
break; /* either on 1st or 2nd iteration */
/* prepare next (== 2nd) iteration */
chunk_len = copylen - chunk_len; /* remainder */
chunk_len_sum += chunk_len;
chunk_off = 0; /* modulo offset in send ring buffer */
}
smc_sndbuf_sync_sg_for_device(conn);
/* update cursors */
smc_curs_add(conn->sndbuf_desc->len, &prep, copylen);
smc_curs_copy(&conn->tx_curs_prep, &prep, conn);
/* increased in send tasklet smc_cdc_tx_handler() */
smp_mb__before_atomic();
atomic_sub(copylen, &conn->sndbuf_space);
/* guarantee 0 <= sndbuf_space <= sndbuf_desc->len */
smp_mb__after_atomic();
/* since we just produced more new data into sndbuf,
* trigger sndbuf consumer: RDMA write into peer RMBE and CDC
*/
if ((msg->msg_flags & MSG_OOB) && !send_remaining)
conn->urg_tx_pend = true;
if ((msg->msg_flags & MSG_MORE || smc_tx_is_corked(smc)) &&
(atomic_read(&conn->sndbuf_space) >
(conn->sndbuf_desc->len >> 1)))
/* for a corked socket defer the RDMA writes if there
* is still sufficient sndbuf_space available
*/
queue_delayed_work(conn->lgr->tx_wq, &conn->tx_work,
SMC_TX_CORK_DELAY);
else
smc_tx_sndbuf_nonempty(conn);
trace_smc_tx_sendmsg(smc, copylen);
} /* while (msg_data_left(msg)) */
return send_done;
out_err:
rc = sk_stream_error(sk, msg->msg_flags, rc);
/* make sure we wake any epoll edge trigger waiter */
if (unlikely(rc == -EAGAIN))
sk->sk_write_space(sk);
return rc;
}
/***************************** sndbuf consumer *******************************/
/* sndbuf consumer: actual data transfer of one target chunk with ISM write */
int smcd_tx_ism_write(struct smc_connection *conn, void *data, size_t len,
u32 offset, int signal)
{
struct smc_ism_position pos;
int rc;
memset(&pos, 0, sizeof(pos));
pos.token = conn->peer_token;
pos.index = conn->peer_rmbe_idx;
pos.offset = conn->tx_off + offset;
pos.signal = signal;
rc = smc_ism_write(conn->lgr->smcd, &pos, data, len);
if (rc)
conn->local_tx_ctrl.conn_state_flags.peer_conn_abort = 1;
return rc;
}
/* sndbuf consumer: actual data transfer of one target chunk with RDMA write */
static int smc_tx_rdma_write(struct smc_connection *conn, int peer_rmbe_offset,
int num_sges, struct ib_rdma_wr *rdma_wr)
{
struct smc_link_group *lgr = conn->lgr;
struct smc_link *link = conn->lnk;
int rc;
rdma_wr->wr.wr_id = smc_wr_tx_get_next_wr_id(link);
rdma_wr->wr.num_sge = num_sges;
rdma_wr->remote_addr =
lgr->rtokens[conn->rtoken_idx][link->link_idx].dma_addr +
/* RMBE within RMB */
conn->tx_off +
/* offset within RMBE */
peer_rmbe_offset;
rdma_wr->rkey = lgr->rtokens[conn->rtoken_idx][link->link_idx].rkey;
rc = ib_post_send(link->roce_qp, &rdma_wr->wr, NULL);
if (rc)
smcr_link_down_cond_sched(link);
return rc;
}
/* sndbuf consumer */
static inline void smc_tx_advance_cursors(struct smc_connection *conn,
union smc_host_cursor *prod,
union smc_host_cursor *sent,
size_t len)
{
smc_curs_add(conn->peer_rmbe_size, prod, len);
/* increased in recv tasklet smc_cdc_msg_rcv() */
smp_mb__before_atomic();
/* data in flight reduces usable snd_wnd */
atomic_sub(len, &conn->peer_rmbe_space);
/* guarantee 0 <= peer_rmbe_space <= peer_rmbe_size */
smp_mb__after_atomic();
smc_curs_add(conn->sndbuf_desc->len, sent, len);
}
/* SMC-R helper for smc_tx_rdma_writes() */
static int smcr_tx_rdma_writes(struct smc_connection *conn, size_t len,
size_t src_off, size_t src_len,
size_t dst_off, size_t dst_len,
struct smc_rdma_wr *wr_rdma_buf)
{
struct smc_link *link = conn->lnk;
dma_addr_t dma_addr =
sg_dma_address(conn->sndbuf_desc->sgt[link->link_idx].sgl);
int src_len_sum = src_len, dst_len_sum = dst_len;
int sent_count = src_off;
int srcchunk, dstchunk;
int num_sges;
int rc;
for (dstchunk = 0; dstchunk < 2; dstchunk++) {
struct ib_sge *sge =
wr_rdma_buf->wr_tx_rdma[dstchunk].wr.sg_list;
num_sges = 0;
for (srcchunk = 0; srcchunk < 2; srcchunk++) {
sge[srcchunk].addr = dma_addr + src_off;
sge[srcchunk].length = src_len;
num_sges++;
src_off += src_len;
if (src_off >= conn->sndbuf_desc->len)
src_off -= conn->sndbuf_desc->len;
/* modulo in send ring */
if (src_len_sum == dst_len)
break; /* either on 1st or 2nd iteration */
/* prepare next (== 2nd) iteration */
src_len = dst_len - src_len; /* remainder */
src_len_sum += src_len;
}
rc = smc_tx_rdma_write(conn, dst_off, num_sges,
&wr_rdma_buf->wr_tx_rdma[dstchunk]);
if (rc)
return rc;
if (dst_len_sum == len)
break; /* either on 1st or 2nd iteration */
/* prepare next (== 2nd) iteration */
dst_off = 0; /* modulo offset in RMBE ring buffer */
dst_len = len - dst_len; /* remainder */
dst_len_sum += dst_len;
src_len = min_t(int, dst_len, conn->sndbuf_desc->len -
sent_count);
src_len_sum = src_len;
}
return 0;
}
/* SMC-D helper for smc_tx_rdma_writes() */
static int smcd_tx_rdma_writes(struct smc_connection *conn, size_t len,
size_t src_off, size_t src_len,
size_t dst_off, size_t dst_len)
{
int src_len_sum = src_len, dst_len_sum = dst_len;
int srcchunk, dstchunk;
int rc;
for (dstchunk = 0; dstchunk < 2; dstchunk++) {
for (srcchunk = 0; srcchunk < 2; srcchunk++) {
void *data = conn->sndbuf_desc->cpu_addr + src_off;
rc = smcd_tx_ism_write(conn, data, src_len, dst_off +
sizeof(struct smcd_cdc_msg), 0);
if (rc)
return rc;
dst_off += src_len;
src_off += src_len;
if (src_off >= conn->sndbuf_desc->len)
src_off -= conn->sndbuf_desc->len;
/* modulo in send ring */
if (src_len_sum == dst_len)
break; /* either on 1st or 2nd iteration */
/* prepare next (== 2nd) iteration */
src_len = dst_len - src_len; /* remainder */
src_len_sum += src_len;
}
if (dst_len_sum == len)
break; /* either on 1st or 2nd iteration */
/* prepare next (== 2nd) iteration */
dst_off = 0; /* modulo offset in RMBE ring buffer */
dst_len = len - dst_len; /* remainder */
dst_len_sum += dst_len;
src_len = min_t(int, dst_len, conn->sndbuf_desc->len - src_off);
src_len_sum = src_len;
}
return 0;
}
/* sndbuf consumer: prepare all necessary (src&dst) chunks of data transmit;
* usable snd_wnd as max transmit
*/
static int smc_tx_rdma_writes(struct smc_connection *conn,
struct smc_rdma_wr *wr_rdma_buf)
{
size_t len, src_len, dst_off, dst_len; /* current chunk values */
union smc_host_cursor sent, prep, prod, cons;
struct smc_cdc_producer_flags *pflags;
int to_send, rmbespace;
int rc;
/* source: sndbuf */
smc_curs_copy(&sent, &conn->tx_curs_sent, conn);
smc_curs_copy(&prep, &conn->tx_curs_prep, conn);
/* cf. wmem_alloc - (snd_max - snd_una) */
to_send = smc_curs_diff(conn->sndbuf_desc->len, &sent, &prep);
if (to_send <= 0)
return 0;
/* destination: RMBE */
/* cf. snd_wnd */
rmbespace = atomic_read(&conn->peer_rmbe_space);
if (rmbespace <= 0) {
struct smc_sock *smc = container_of(conn, struct smc_sock,
conn);
SMC_STAT_RMB_TX_PEER_FULL(smc, !conn->lnk);
return 0;
}
smc_curs_copy(&prod, &conn->local_tx_ctrl.prod, conn);
smc_curs_copy(&cons, &conn->local_rx_ctrl.cons, conn);
/* if usable snd_wnd closes ask peer to advertise once it opens again */
pflags = &conn->local_tx_ctrl.prod_flags;
pflags->write_blocked = (to_send >= rmbespace);
/* cf. usable snd_wnd */
len = min(to_send, rmbespace);
/* initialize variables for first iteration of subsequent nested loop */
dst_off = prod.count;
if (prod.wrap == cons.wrap) {
/* the filled destination area is unwrapped,
* hence the available free destination space is wrapped
* and we need 2 destination chunks of sum len; start with 1st
* which is limited by what's available in sndbuf
*/
dst_len = min_t(size_t,
conn->peer_rmbe_size - prod.count, len);
} else {
/* the filled destination area is wrapped,
* hence the available free destination space is unwrapped
* and we need a single destination chunk of entire len
*/
dst_len = len;
}
/* dst_len determines the maximum src_len */
if (sent.count + dst_len <= conn->sndbuf_desc->len) {
/* unwrapped src case: single chunk of entire dst_len */
src_len = dst_len;
} else {
/* wrapped src case: 2 chunks of sum dst_len; start with 1st: */
src_len = conn->sndbuf_desc->len - sent.count;
}
if (conn->lgr->is_smcd)
rc = smcd_tx_rdma_writes(conn, len, sent.count, src_len,
dst_off, dst_len);
else
rc = smcr_tx_rdma_writes(conn, len, sent.count, src_len,
dst_off, dst_len, wr_rdma_buf);
if (rc)
return rc;
if (conn->urg_tx_pend && len == to_send)
pflags->urg_data_present = 1;
smc_tx_advance_cursors(conn, &prod, &sent, len);
/* update connection's cursors with advanced local cursors */
smc_curs_copy(&conn->local_tx_ctrl.prod, &prod, conn);
/* dst: peer RMBE */
smc_curs_copy(&conn->tx_curs_sent, &sent, conn);/* src: local sndbuf */
return 0;
}
/* Wakeup sndbuf consumers from any context (IRQ or process)
* since there is more data to transmit; usable snd_wnd as max transmit
*/
static int smcr_tx_sndbuf_nonempty(struct smc_connection *conn)
{
struct smc_cdc_producer_flags *pflags = &conn->local_tx_ctrl.prod_flags;
struct smc_link *link = conn->lnk;
struct smc_rdma_wr *wr_rdma_buf;
struct smc_cdc_tx_pend *pend;
struct smc_wr_buf *wr_buf;
int rc;
if (!link || !smc_wr_tx_link_hold(link))
return -ENOLINK;
rc = smc_cdc_get_free_slot(conn, link, &wr_buf, &wr_rdma_buf, &pend);
if (rc < 0) {
smc_wr_tx_link_put(link);
if (rc == -EBUSY) {
struct smc_sock *smc =
container_of(conn, struct smc_sock, conn);
if (smc->sk.sk_err == ECONNABORTED)
return sock_error(&smc->sk);
if (conn->killed)
return -EPIPE;
rc = 0;
mod_delayed_work(conn->lgr->tx_wq, &conn->tx_work,
SMC_TX_WORK_DELAY);
}
return rc;
}
spin_lock_bh(&conn->send_lock);
if (link != conn->lnk) {
/* link of connection changed, tx_work will restart */
smc_wr_tx_put_slot(link,
(struct smc_wr_tx_pend_priv *)pend);
rc = -ENOLINK;
goto out_unlock;
}
if (!pflags->urg_data_present) {
rc = smc_tx_rdma_writes(conn, wr_rdma_buf);
if (rc) {
smc_wr_tx_put_slot(link,
(struct smc_wr_tx_pend_priv *)pend);
goto out_unlock;
}
}
rc = smc_cdc_msg_send(conn, wr_buf, pend);
if (!rc && pflags->urg_data_present) {
pflags->urg_data_pending = 0;
pflags->urg_data_present = 0;
}
out_unlock:
spin_unlock_bh(&conn->send_lock);
smc_wr_tx_link_put(link);
return rc;
}
static int smcd_tx_sndbuf_nonempty(struct smc_connection *conn)
{
struct smc_cdc_producer_flags *pflags = &conn->local_tx_ctrl.prod_flags;
int rc = 0;
spin_lock_bh(&conn->send_lock);
if (!pflags->urg_data_present)
rc = smc_tx_rdma_writes(conn, NULL);
if (!rc)
rc = smcd_cdc_msg_send(conn);
if (!rc && pflags->urg_data_present) {
pflags->urg_data_pending = 0;
pflags->urg_data_present = 0;
}
spin_unlock_bh(&conn->send_lock);
return rc;
}
int smc_tx_sndbuf_nonempty(struct smc_connection *conn)
{
int rc;
if (conn->killed ||
conn->local_rx_ctrl.conn_state_flags.peer_conn_abort)
return -EPIPE; /* connection being aborted */
if (conn->lgr->is_smcd)
rc = smcd_tx_sndbuf_nonempty(conn);
else
rc = smcr_tx_sndbuf_nonempty(conn);
if (!rc) {
/* trigger socket release if connection is closing */
struct smc_sock *smc = container_of(conn, struct smc_sock,
conn);
smc_close_wake_tx_prepared(smc);
}
return rc;
}
/* Wakeup sndbuf consumers from process context
* since there is more data to transmit
*/
net/smc: init conn.tx_work & conn.send_lock sooner syzkaller found that following program crashes the host : { int fd = socket(AF_SMC, SOCK_STREAM, 0); int val = 1; listen(fd, 0); shutdown(fd, SHUT_RDWR); setsockopt(fd, 6, TCP_NODELAY, &val, 4); } Simply initialize conn.tx_work & conn.send_lock at socket creation, rather than deeper in the stack. ODEBUG: assert_init not available (active state 0) object type: timer_list hint: (null) WARNING: CPU: 1 PID: 13988 at lib/debugobjects.c:329 debug_print_object+0x16a/0x210 lib/debugobjects.c:326 Kernel panic - not syncing: panic_on_warn set ... CPU: 1 PID: 13988 Comm: syz-executor0 Not tainted 4.17.0-rc4+ #46 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1b9/0x294 lib/dump_stack.c:113 panic+0x22f/0x4de kernel/panic.c:184 __warn.cold.8+0x163/0x1b3 kernel/panic.c:536 report_bug+0x252/0x2d0 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x1de/0x490 arch/x86/kernel/traps.c:296 do_invalid_op+0x1b/0x20 arch/x86/kernel/traps.c:315 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:992 RIP: 0010:debug_print_object+0x16a/0x210 lib/debugobjects.c:326 RSP: 0018:ffff880197a37880 EFLAGS: 00010086 RAX: 0000000000000061 RBX: 0000000000000005 RCX: ffffc90001ed0000 RDX: 0000000000004aaf RSI: ffffffff8160f6f1 RDI: 0000000000000001 RBP: ffff880197a378c0 R08: ffff8801aa7a0080 R09: ffffed003b5e3eb2 R10: ffffed003b5e3eb2 R11: ffff8801daf1f597 R12: 0000000000000001 R13: ffffffff88d96980 R14: ffffffff87fa19a0 R15: ffffffff81666ec0 debug_object_assert_init+0x309/0x500 lib/debugobjects.c:692 debug_timer_assert_init kernel/time/timer.c:724 [inline] debug_assert_init kernel/time/timer.c:776 [inline] del_timer+0x74/0x140 kernel/time/timer.c:1198 try_to_grab_pending+0x439/0x9a0 kernel/workqueue.c:1223 mod_delayed_work_on+0x91/0x250 kernel/workqueue.c:1592 mod_delayed_work include/linux/workqueue.h:541 [inline] smc_setsockopt+0x387/0x6d0 net/smc/af_smc.c:1367 __sys_setsockopt+0x1bd/0x390 net/socket.c:1903 __do_sys_setsockopt net/socket.c:1914 [inline] __se_sys_setsockopt net/socket.c:1911 [inline] __x64_sys_setsockopt+0xbe/0x150 net/socket.c:1911 do_syscall_64+0x1b1/0x800 arch/x86/entry/common.c:287 entry_SYSCALL_64_after_hwframe+0x49/0xbe Fixes: 01d2f7e2cdd3 ("net/smc: sockopts TCP_NODELAY and TCP_CORK") Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Ursula Braun <ubraun@linux.ibm.com> Cc: linux-s390@vger.kernel.org Reported-by: syzbot <syzkaller@googlegroups.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-05-17 10:54:21 +00:00
void smc_tx_work(struct work_struct *work)
{
struct smc_connection *conn = container_of(to_delayed_work(work),
struct smc_connection,
tx_work);
struct smc_sock *smc = container_of(conn, struct smc_sock, conn);
int rc;
lock_sock(&smc->sk);
if (smc->sk.sk_err)
goto out;
rc = smc_tx_sndbuf_nonempty(conn);
if (!rc && conn->local_rx_ctrl.prod_flags.write_blocked &&
!atomic_read(&conn->bytes_to_rcv))
conn->local_rx_ctrl.prod_flags.write_blocked = 0;
out:
release_sock(&smc->sk);
}
void smc_tx_consumer_update(struct smc_connection *conn, bool force)
{
union smc_host_cursor cfed, cons, prod;
int sender_free = conn->rmb_desc->len;
int to_confirm;
smc_curs_copy(&cons, &conn->local_tx_ctrl.cons, conn);
smc_curs_copy(&cfed, &conn->rx_curs_confirmed, conn);
to_confirm = smc_curs_diff(conn->rmb_desc->len, &cfed, &cons);
if (to_confirm > conn->rmbe_update_limit) {
smc_curs_copy(&prod, &conn->local_rx_ctrl.prod, conn);
sender_free = conn->rmb_desc->len -
smc_curs_diff_large(conn->rmb_desc->len,
&cfed, &prod);
}
if (conn->local_rx_ctrl.prod_flags.cons_curs_upd_req ||
force ||
((to_confirm > conn->rmbe_update_limit) &&
((sender_free <= (conn->rmb_desc->len / 2)) ||
conn->local_rx_ctrl.prod_flags.write_blocked))) {
if (conn->killed ||
conn->local_rx_ctrl.conn_state_flags.peer_conn_abort)
return;
if ((smc_cdc_get_slot_and_msg_send(conn) < 0) &&
!conn->killed) {
queue_delayed_work(conn->lgr->tx_wq, &conn->tx_work,
SMC_TX_WORK_DELAY);
return;
}
}
if (conn->local_rx_ctrl.prod_flags.write_blocked &&
!atomic_read(&conn->bytes_to_rcv))
conn->local_rx_ctrl.prod_flags.write_blocked = 0;
}
/***************************** send initialize *******************************/
/* Initialize send properties on connection establishment. NB: not __init! */
void smc_tx_init(struct smc_sock *smc)
{
smc->sk.sk_write_space = smc_tx_write_space;
}