linux/drivers/iio/adc/ti-ads1298.c

771 lines
21 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/* TI ADS1298 chip family driver
* Copyright (C) 2023 - 2024 Topic Embedded Products
*/
#include <linux/bitfield.h>
#include <linux/cleanup.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio/consumer.h>
#include <linux/log2.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/kfifo_buf.h>
#include <linux/unaligned.h>
/* Commands */
#define ADS1298_CMD_WAKEUP 0x02
#define ADS1298_CMD_STANDBY 0x04
#define ADS1298_CMD_RESET 0x06
#define ADS1298_CMD_START 0x08
#define ADS1298_CMD_STOP 0x0a
#define ADS1298_CMD_RDATAC 0x10
#define ADS1298_CMD_SDATAC 0x11
#define ADS1298_CMD_RDATA 0x12
#define ADS1298_CMD_RREG 0x20
#define ADS1298_CMD_WREG 0x40
/* Registers */
#define ADS1298_REG_ID 0x00
#define ADS1298_MASK_ID_FAMILY GENMASK(7, 3)
#define ADS1298_MASK_ID_CHANNELS GENMASK(2, 0)
#define ADS1298_ID_FAMILY_ADS129X 0x90
#define ADS1298_ID_FAMILY_ADS129XR 0xd0
#define ADS1298_REG_CONFIG1 0x01
#define ADS1298_MASK_CONFIG1_HR BIT(7)
#define ADS1298_MASK_CONFIG1_DR GENMASK(2, 0)
#define ADS1298_SHIFT_DR_HR 6
#define ADS1298_SHIFT_DR_LP 7
#define ADS1298_LOWEST_DR 0x06
#define ADS1298_REG_CONFIG2 0x02
#define ADS1298_MASK_CONFIG2_RESERVED BIT(6)
#define ADS1298_MASK_CONFIG2_WCT_CHOP BIT(5)
#define ADS1298_MASK_CONFIG2_INT_TEST BIT(4)
#define ADS1298_MASK_CONFIG2_TEST_AMP BIT(2)
#define ADS1298_MASK_CONFIG2_TEST_FREQ_DC GENMASK(1, 0)
#define ADS1298_MASK_CONFIG2_TEST_FREQ_SLOW 0
#define ADS1298_MASK_CONFIG2_TEST_FREQ_FAST BIT(0)
#define ADS1298_REG_CONFIG3 0x03
#define ADS1298_MASK_CONFIG3_PWR_REFBUF BIT(7)
#define ADS1298_MASK_CONFIG3_RESERVED BIT(6)
#define ADS1298_MASK_CONFIG3_VREF_4V BIT(5)
#define ADS1298_REG_LOFF 0x04
#define ADS1298_REG_CHnSET(n) (0x05 + n)
#define ADS1298_MASK_CH_PD BIT(7)
#define ADS1298_MASK_CH_PGA GENMASK(6, 4)
#define ADS1298_MASK_CH_MUX GENMASK(2, 0)
#define ADS1298_REG_LOFF_STATP 0x12
#define ADS1298_REG_LOFF_STATN 0x13
#define ADS1298_REG_CONFIG4 0x17
#define ADS1298_MASK_CONFIG4_SINGLE_SHOT BIT(3)
#define ADS1298_REG_WCT1 0x18
#define ADS1298_REG_WCT2 0x19
#define ADS1298_MAX_CHANNELS 8
#define ADS1298_BITS_PER_SAMPLE 24
#define ADS1298_CLK_RATE_HZ 2048000
#define ADS1298_CLOCKS_TO_USECS(x) \
(DIV_ROUND_UP((x) * MICROHZ_PER_HZ, ADS1298_CLK_RATE_HZ))
/*
* Read/write register commands require 4 clocks to decode, for speeds above
* 2x the clock rate, this would require extra time between the command byte and
* the data. Much simpler is to just limit the SPI transfer speed while doing
* register access.
*/
#define ADS1298_SPI_BUS_SPEED_SLOW ADS1298_CLK_RATE_HZ
/* For reading and writing registers, we need a 3-byte buffer */
#define ADS1298_SPI_CMD_BUFFER_SIZE 3
/* Outputs status word and 'n' 24-bit samples, plus the command byte */
#define ADS1298_SPI_RDATA_BUFFER_SIZE(n) (((n) + 1) * 3 + 1)
#define ADS1298_SPI_RDATA_BUFFER_SIZE_MAX \
ADS1298_SPI_RDATA_BUFFER_SIZE(ADS1298_MAX_CHANNELS)
struct ads1298_private {
const struct ads1298_chip_info *chip_info;
struct spi_device *spi;
struct regulator *reg_avdd;
struct regulator *reg_vref;
struct clk *clk;
struct regmap *regmap;
struct completion completion;
struct iio_trigger *trig;
struct spi_transfer rdata_xfer;
struct spi_message rdata_msg;
spinlock_t irq_busy_lock; /* Handshake between SPI and DRDY irqs */
/*
* rdata_xfer_busy increments when a DRDY occurs and decrements when SPI
* completion is reported. Hence its meaning is:
* 0 = Waiting for DRDY interrupt
* 1 = SPI transfer in progress
* 2 = DRDY during SPI transfer, start another transfer on completion
* >2 = Multiple DRDY during transfer, lost rdata_xfer_busy - 2 samples
*/
unsigned int rdata_xfer_busy;
/* Temporary storage for demuxing data after SPI transfer */
u32 bounce_buffer[ADS1298_MAX_CHANNELS];
/* For synchronous SPI exchanges (read/write registers) */
u8 cmd_buffer[ADS1298_SPI_CMD_BUFFER_SIZE] __aligned(IIO_DMA_MINALIGN);
/* Buffer used for incoming SPI data */
u8 rx_buffer[ADS1298_SPI_RDATA_BUFFER_SIZE_MAX];
/* Contains the RDATA command and zeroes to clock out */
u8 tx_buffer[ADS1298_SPI_RDATA_BUFFER_SIZE_MAX];
};
/* Three bytes per sample in RX buffer, starting at offset 4 */
#define ADS1298_OFFSET_IN_RX_BUFFER(index) (3 * (index) + 4)
#define ADS1298_CHAN(index) \
{ \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = index, \
.address = ADS1298_OFFSET_IN_RX_BUFFER(index), \
.info_mask_separate = \
BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = \
BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = ADS1298_BITS_PER_SAMPLE, \
.storagebits = 32, \
.endianness = IIO_CPU, \
}, \
}
static const struct iio_chan_spec ads1298_channels[] = {
ADS1298_CHAN(0),
ADS1298_CHAN(1),
ADS1298_CHAN(2),
ADS1298_CHAN(3),
ADS1298_CHAN(4),
ADS1298_CHAN(5),
ADS1298_CHAN(6),
ADS1298_CHAN(7),
};
static int ads1298_write_cmd(struct ads1298_private *priv, u8 command)
{
struct spi_transfer xfer = {
.tx_buf = priv->cmd_buffer,
.rx_buf = priv->cmd_buffer,
.len = 1,
.speed_hz = ADS1298_SPI_BUS_SPEED_SLOW,
.delay = {
.value = 2,
.unit = SPI_DELAY_UNIT_USECS,
},
};
priv->cmd_buffer[0] = command;
return spi_sync_transfer(priv->spi, &xfer, 1);
}
static int ads1298_read_one(struct ads1298_private *priv, int chan_index)
{
int ret;
/* Enable the channel */
ret = regmap_update_bits(priv->regmap, ADS1298_REG_CHnSET(chan_index),
ADS1298_MASK_CH_PD, 0);
if (ret)
return ret;
/* Enable single-shot mode, so we don't need to send a STOP */
ret = regmap_update_bits(priv->regmap, ADS1298_REG_CONFIG4,
ADS1298_MASK_CONFIG4_SINGLE_SHOT,
ADS1298_MASK_CONFIG4_SINGLE_SHOT);
if (ret)
return ret;
reinit_completion(&priv->completion);
ret = ads1298_write_cmd(priv, ADS1298_CMD_START);
if (ret < 0) {
dev_err(&priv->spi->dev, "CMD_START error: %d\n", ret);
return ret;
}
/* Cannot take longer than 40ms (250Hz) */
ret = wait_for_completion_timeout(&priv->completion, msecs_to_jiffies(50));
if (!ret)
return -ETIMEDOUT;
return 0;
}
static int ads1298_get_samp_freq(struct ads1298_private *priv, int *val)
{
unsigned long rate;
unsigned int cfg;
int ret;
ret = regmap_read(priv->regmap, ADS1298_REG_CONFIG1, &cfg);
if (ret)
return ret;
if (priv->clk)
rate = clk_get_rate(priv->clk);
else
rate = ADS1298_CLK_RATE_HZ;
if (!rate)
return -EINVAL;
/* Data rate shift depends on HR/LP mode */
if (cfg & ADS1298_MASK_CONFIG1_HR)
rate >>= ADS1298_SHIFT_DR_HR;
else
rate >>= ADS1298_SHIFT_DR_LP;
*val = rate >> (cfg & ADS1298_MASK_CONFIG1_DR);
return IIO_VAL_INT;
}
static int ads1298_set_samp_freq(struct ads1298_private *priv, int val)
{
unsigned long rate;
unsigned int factor;
unsigned int cfg;
if (priv->clk)
rate = clk_get_rate(priv->clk);
else
rate = ADS1298_CLK_RATE_HZ;
if (!rate)
return -EINVAL;
if (val <= 0)
return -EINVAL;
factor = (rate >> ADS1298_SHIFT_DR_HR) / val;
if (factor >= BIT(ADS1298_SHIFT_DR_LP))
cfg = ADS1298_LOWEST_DR;
else if (factor)
cfg = ADS1298_MASK_CONFIG1_HR | ilog2(factor); /* Use HR mode */
else
cfg = ADS1298_MASK_CONFIG1_HR; /* Fastest possible */
return regmap_update_bits(priv->regmap, ADS1298_REG_CONFIG1,
ADS1298_MASK_CONFIG1_HR | ADS1298_MASK_CONFIG1_DR,
cfg);
}
static const u8 ads1298_pga_settings[] = { 6, 1, 2, 3, 4, 8, 12 };
static int ads1298_get_scale(struct ads1298_private *priv,
int channel, int *val, int *val2)
{
int ret;
unsigned int regval;
u8 gain;
if (priv->reg_vref) {
ret = regulator_get_voltage(priv->reg_vref);
if (ret < 0)
return ret;
*val = ret / MILLI; /* Convert to millivolts */
} else {
ret = regmap_read(priv->regmap, ADS1298_REG_CONFIG3, &regval);
if (ret)
return ret;
/* Reference in millivolts */
*val = regval & ADS1298_MASK_CONFIG3_VREF_4V ? 4000 : 2400;
}
ret = regmap_read(priv->regmap, ADS1298_REG_CHnSET(channel), &regval);
if (ret)
return ret;
gain = ads1298_pga_settings[FIELD_GET(ADS1298_MASK_CH_PGA, regval)];
*val /= gain; /* Full scale is VREF / gain */
*val2 = ADS1298_BITS_PER_SAMPLE - 1; /* Signed, hence the -1 */
return IIO_VAL_FRACTIONAL_LOG2;
}
static int ads1298_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct ads1298_private *priv = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = ads1298_read_one(priv, chan->scan_index);
iio_device_release_direct_mode(indio_dev);
if (ret)
return ret;
*val = sign_extend32(get_unaligned_be24(priv->rx_buffer + chan->address),
ADS1298_BITS_PER_SAMPLE - 1);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
return ads1298_get_scale(priv, chan->channel, val, val2);
case IIO_CHAN_INFO_SAMP_FREQ:
return ads1298_get_samp_freq(priv, val);
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
ret = regmap_read(priv->regmap, ADS1298_REG_CONFIG1, val);
if (ret)
return ret;
*val = 16 << (*val & ADS1298_MASK_CONFIG1_DR);
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int ads1298_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct ads1298_private *priv = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
return ads1298_set_samp_freq(priv, val);
default:
return -EINVAL;
}
}
static int ads1298_reg_write(void *context, unsigned int reg, unsigned int val)
{
struct ads1298_private *priv = context;
struct spi_transfer reg_write_xfer = {
.tx_buf = priv->cmd_buffer,
.rx_buf = priv->cmd_buffer,
.len = 3,
.speed_hz = ADS1298_SPI_BUS_SPEED_SLOW,
.delay = {
.value = 2,
.unit = SPI_DELAY_UNIT_USECS,
},
};
priv->cmd_buffer[0] = ADS1298_CMD_WREG | reg;
priv->cmd_buffer[1] = 0; /* Number of registers to be written - 1 */
priv->cmd_buffer[2] = val;
return spi_sync_transfer(priv->spi, &reg_write_xfer, 1);
}
static int ads1298_reg_read(void *context, unsigned int reg, unsigned int *val)
{
struct ads1298_private *priv = context;
struct spi_transfer reg_read_xfer = {
.tx_buf = priv->cmd_buffer,
.rx_buf = priv->cmd_buffer,
.len = 3,
.speed_hz = ADS1298_SPI_BUS_SPEED_SLOW,
.delay = {
.value = 2,
.unit = SPI_DELAY_UNIT_USECS,
},
};
int ret;
priv->cmd_buffer[0] = ADS1298_CMD_RREG | reg;
priv->cmd_buffer[1] = 0; /* Number of registers to be read - 1 */
priv->cmd_buffer[2] = 0;
ret = spi_sync_transfer(priv->spi, &reg_read_xfer, 1);
if (ret)
return ret;
*val = priv->cmd_buffer[2];
return 0;
}
static int ads1298_reg_access(struct iio_dev *indio_dev, unsigned int reg,
unsigned int writeval, unsigned int *readval)
{
struct ads1298_private *priv = iio_priv(indio_dev);
if (readval)
return regmap_read(priv->regmap, reg, readval);
return regmap_write(priv->regmap, reg, writeval);
}
static void ads1298_rdata_unmark_busy(struct ads1298_private *priv)
{
/* Notify we're no longer waiting for the SPI transfer to complete */
guard(spinlock_irqsave)(&priv->irq_busy_lock);
priv->rdata_xfer_busy = 0;
}
static int ads1298_update_scan_mode(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
struct ads1298_private *priv = iio_priv(indio_dev);
unsigned int val;
int ret;
int i;
/* Make the interrupt routines start with a clean slate */
ads1298_rdata_unmark_busy(priv);
/* Configure power-down bits to match scan mask */
for (i = 0; i < indio_dev->num_channels; i++) {
val = test_bit(i, scan_mask) ? 0 : ADS1298_MASK_CH_PD;
ret = regmap_update_bits(priv->regmap, ADS1298_REG_CHnSET(i),
ADS1298_MASK_CH_PD, val);
if (ret)
return ret;
}
return 0;
}
static const struct iio_info ads1298_info = {
.read_raw = &ads1298_read_raw,
.write_raw = &ads1298_write_raw,
.update_scan_mode = &ads1298_update_scan_mode,
.debugfs_reg_access = &ads1298_reg_access,
};
static void ads1298_rdata_release_busy_or_restart(struct ads1298_private *priv)
{
guard(spinlock_irqsave)(&priv->irq_busy_lock);
if (priv->rdata_xfer_busy > 1) {
/*
* DRDY interrupt occurred before SPI completion. Start a new
* SPI transaction now to retrieve the data that wasn't latched
* into the ADS1298 chip's transfer buffer yet.
*/
spi_async(priv->spi, &priv->rdata_msg);
/*
* If more than one DRDY took place, there was an overrun. Since
* the sample is already lost, reset the counter to 1 so that
* we will wait for a DRDY interrupt after this SPI transaction.
*/
priv->rdata_xfer_busy = 1;
} else {
/* No pending data, wait for DRDY */
priv->rdata_xfer_busy = 0;
}
}
/* Called from SPI completion interrupt handler */
static void ads1298_rdata_complete(void *context)
{
struct iio_dev *indio_dev = context;
struct ads1298_private *priv = iio_priv(indio_dev);
int scan_index;
u32 *bounce = priv->bounce_buffer;
if (!iio_buffer_enabled(indio_dev)) {
/*
* for a single transfer mode we're kept in direct_mode until
* completion, avoiding a race with buffered IO.
*/
ads1298_rdata_unmark_busy(priv);
complete(&priv->completion);
return;
}
/* Demux the channel data into our bounce buffer */
iio_for_each_active_channel(indio_dev, scan_index) {
const struct iio_chan_spec *scan_chan =
&indio_dev->channels[scan_index];
const u8 *data = priv->rx_buffer + scan_chan->address;
*bounce++ = get_unaligned_be24(data);
}
/* rx_buffer can be overwritten from this point on */
ads1298_rdata_release_busy_or_restart(priv);
iio_push_to_buffers(indio_dev, priv->bounce_buffer);
}
static irqreturn_t ads1298_interrupt(int irq, void *dev_id)
{
struct iio_dev *indio_dev = dev_id;
struct ads1298_private *priv = iio_priv(indio_dev);
unsigned int wasbusy;
guard(spinlock_irqsave)(&priv->irq_busy_lock);
wasbusy = priv->rdata_xfer_busy++;
/* When no SPI transfer in transit, start one now */
if (!wasbusy)
spi_async(priv->spi, &priv->rdata_msg);
return IRQ_HANDLED;
};
static int ads1298_buffer_postenable(struct iio_dev *indio_dev)
{
struct ads1298_private *priv = iio_priv(indio_dev);
int ret;
/* Disable single-shot mode */
ret = regmap_update_bits(priv->regmap, ADS1298_REG_CONFIG4,
ADS1298_MASK_CONFIG4_SINGLE_SHOT, 0);
if (ret)
return ret;
return ads1298_write_cmd(priv, ADS1298_CMD_START);
}
static int ads1298_buffer_predisable(struct iio_dev *indio_dev)
{
struct ads1298_private *priv = iio_priv(indio_dev);
return ads1298_write_cmd(priv, ADS1298_CMD_STOP);
}
static const struct iio_buffer_setup_ops ads1298_setup_ops = {
.postenable = &ads1298_buffer_postenable,
.predisable = &ads1298_buffer_predisable,
};
static void ads1298_reg_disable(void *reg)
{
regulator_disable(reg);
}
static const struct regmap_range ads1298_regmap_volatile_range[] = {
regmap_reg_range(ADS1298_REG_LOFF_STATP, ADS1298_REG_LOFF_STATN),
};
static const struct regmap_access_table ads1298_regmap_volatile = {
.yes_ranges = ads1298_regmap_volatile_range,
.n_yes_ranges = ARRAY_SIZE(ads1298_regmap_volatile_range),
};
static const struct regmap_config ads1298_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.reg_read = ads1298_reg_read,
.reg_write = ads1298_reg_write,
.max_register = ADS1298_REG_WCT2,
.volatile_table = &ads1298_regmap_volatile,
.cache_type = REGCACHE_MAPLE,
};
static int ads1298_init(struct iio_dev *indio_dev)
{
struct ads1298_private *priv = iio_priv(indio_dev);
struct device *dev = &priv->spi->dev;
const char *suffix;
unsigned int val;
int ret;
/* Device initializes into RDATAC mode, which we don't want */
ret = ads1298_write_cmd(priv, ADS1298_CMD_SDATAC);
if (ret)
return ret;
ret = regmap_read(priv->regmap, ADS1298_REG_ID, &val);
if (ret)
return ret;
/* Fill in name and channel count based on what the chip told us */
indio_dev->num_channels = 4 + 2 * (val & ADS1298_MASK_ID_CHANNELS);
switch (val & ADS1298_MASK_ID_FAMILY) {
case ADS1298_ID_FAMILY_ADS129X:
suffix = "";
break;
case ADS1298_ID_FAMILY_ADS129XR:
suffix = "r";
break;
default:
return dev_err_probe(dev, -ENODEV, "Unknown ID: 0x%x\n", val);
}
indio_dev->name = devm_kasprintf(dev, GFP_KERNEL, "ads129%u%s",
indio_dev->num_channels, suffix);
/* Enable internal test signal, double amplitude, double frequency */
ret = regmap_write(priv->regmap, ADS1298_REG_CONFIG2,
ADS1298_MASK_CONFIG2_RESERVED |
ADS1298_MASK_CONFIG2_INT_TEST |
ADS1298_MASK_CONFIG2_TEST_AMP |
ADS1298_MASK_CONFIG2_TEST_FREQ_FAST);
if (ret)
return ret;
val = ADS1298_MASK_CONFIG3_RESERVED; /* Must write 1 always */
if (!priv->reg_vref) {
/* Enable internal reference */
val |= ADS1298_MASK_CONFIG3_PWR_REFBUF;
/* Use 4V VREF when power supply is at least 4.4V */
if (regulator_get_voltage(priv->reg_avdd) >= 4400000)
val |= ADS1298_MASK_CONFIG3_VREF_4V;
}
return regmap_write(priv->regmap, ADS1298_REG_CONFIG3, val);
}
static int ads1298_probe(struct spi_device *spi)
{
struct ads1298_private *priv;
struct iio_dev *indio_dev;
struct device *dev = &spi->dev;
struct gpio_desc *reset_gpio;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*priv));
if (!indio_dev)
return -ENOMEM;
priv = iio_priv(indio_dev);
/* Reset to be asserted before enabling clock and power */
reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
if (IS_ERR(reset_gpio))
return dev_err_probe(dev, PTR_ERR(reset_gpio),
"Cannot get reset GPIO\n");
/* VREF can be supplied externally, otherwise use internal reference */
priv->reg_vref = devm_regulator_get_optional(dev, "vref");
if (IS_ERR(priv->reg_vref)) {
if (PTR_ERR(priv->reg_vref) != -ENODEV)
return dev_err_probe(dev, PTR_ERR(priv->reg_vref),
"Failed to get vref regulator\n");
priv->reg_vref = NULL;
} else {
ret = regulator_enable(priv->reg_vref);
if (ret)
return ret;
ret = devm_add_action_or_reset(dev, ads1298_reg_disable, priv->reg_vref);
if (ret)
return ret;
}
priv->clk = devm_clk_get_optional_enabled(dev, "clk");
if (IS_ERR(priv->clk))
return dev_err_probe(dev, PTR_ERR(priv->clk), "Failed to get clk\n");
priv->reg_avdd = devm_regulator_get(dev, "avdd");
if (IS_ERR(priv->reg_avdd))
return dev_err_probe(dev, PTR_ERR(priv->reg_avdd),
"Failed to get avdd regulator\n");
ret = regulator_enable(priv->reg_avdd);
if (ret)
return dev_err_probe(dev, ret, "Failed to enable avdd regulator\n");
ret = devm_add_action_or_reset(dev, ads1298_reg_disable, priv->reg_avdd);
if (ret)
return ret;
priv->spi = spi;
init_completion(&priv->completion);
spin_lock_init(&priv->irq_busy_lock);
priv->regmap = devm_regmap_init(dev, NULL, priv, &ads1298_regmap_config);
if (IS_ERR(priv->regmap))
return PTR_ERR(priv->regmap);
indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
indio_dev->channels = ads1298_channels;
indio_dev->info = &ads1298_info;
if (reset_gpio) {
/*
* Deassert reset now that clock and power are active.
* Minimum reset pulsewidth is 2 clock cycles.
*/
fsleep(ADS1298_CLOCKS_TO_USECS(2));
gpiod_set_value_cansleep(reset_gpio, 0);
} else {
ret = ads1298_write_cmd(priv, ADS1298_CMD_RESET);
if (ret)
return dev_err_probe(dev, ret, "RESET failed\n");
}
/* Wait 18 clock cycles for reset command to complete */
fsleep(ADS1298_CLOCKS_TO_USECS(18));
ret = ads1298_init(indio_dev);
if (ret)
return dev_err_probe(dev, ret, "Init failed\n");
priv->tx_buffer[0] = ADS1298_CMD_RDATA;
priv->rdata_xfer.tx_buf = priv->tx_buffer;
priv->rdata_xfer.rx_buf = priv->rx_buffer;
priv->rdata_xfer.len = ADS1298_SPI_RDATA_BUFFER_SIZE(indio_dev->num_channels);
/* Must keep CS low for 4 clocks */
priv->rdata_xfer.delay.value = 2;
priv->rdata_xfer.delay.unit = SPI_DELAY_UNIT_USECS;
spi_message_init_with_transfers(&priv->rdata_msg, &priv->rdata_xfer, 1);
priv->rdata_msg.complete = &ads1298_rdata_complete;
priv->rdata_msg.context = indio_dev;
ret = devm_request_irq(dev, spi->irq, &ads1298_interrupt,
IRQF_TRIGGER_FALLING, indio_dev->name,
indio_dev);
if (ret)
return ret;
ret = devm_iio_kfifo_buffer_setup(dev, indio_dev, &ads1298_setup_ops);
if (ret)
return ret;
return devm_iio_device_register(dev, indio_dev);
}
static const struct spi_device_id ads1298_id[] = {
{ "ads1298" },
{ }
};
MODULE_DEVICE_TABLE(spi, ads1298_id);
static const struct of_device_id ads1298_of_table[] = {
{ .compatible = "ti,ads1298" },
{ }
};
MODULE_DEVICE_TABLE(of, ads1298_of_table);
static struct spi_driver ads1298_driver = {
.driver = {
.name = "ads1298",
.of_match_table = ads1298_of_table,
},
.probe = ads1298_probe,
.id_table = ads1298_id,
};
module_spi_driver(ads1298_driver);
MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
MODULE_DESCRIPTION("TI ADS1298 ADC");
MODULE_LICENSE("GPL");