linux/drivers/remoteproc/remoteproc_debugfs.c

347 lines
10 KiB
C
Raw Normal View History

/*
* Remote Processor Framework
*
* Copyright (C) 2011 Texas Instruments, Inc.
* Copyright (C) 2011 Google, Inc.
*
* Ohad Ben-Cohen <ohad@wizery.com>
* Mark Grosen <mgrosen@ti.com>
* Brian Swetland <swetland@google.com>
* Fernando Guzman Lugo <fernando.lugo@ti.com>
* Suman Anna <s-anna@ti.com>
* Robert Tivy <rtivy@ti.com>
* Armando Uribe De Leon <x0095078@ti.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) "%s: " fmt, __func__
#include <linux/kernel.h>
#include <linux/debugfs.h>
#include <linux/remoteproc.h>
#include <linux/device.h>
#include <linux/uaccess.h>
#include "remoteproc_internal.h"
/* remoteproc debugfs parent dir */
static struct dentry *rproc_dbg;
/*
* Some remote processors may support dumping trace logs into a shared
* memory buffer. We expose this trace buffer using debugfs, so users
* can easily tell what's going on remotely.
*
* We will most probably improve the rproc tracing facilities later on,
* but this kind of lightweight and simple mechanism is always good to have,
* as it provides very early tracing with little to no dependencies at all.
*/
static ssize_t rproc_trace_read(struct file *filp, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct rproc_mem_entry *trace = filp->private_data;
int len = strnlen(trace->va, trace->len);
return simple_read_from_buffer(userbuf, count, ppos, trace->va, len);
}
static const struct file_operations trace_rproc_ops = {
.read = rproc_trace_read,
.open = simple_open,
.llseek = generic_file_llseek,
};
/* expose the name of the remote processor via debugfs */
static ssize_t rproc_name_read(struct file *filp, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct rproc *rproc = filp->private_data;
/* need room for the name, a newline and a terminating null */
char buf[100];
int i;
i = scnprintf(buf, sizeof(buf), "%.98s\n", rproc->name);
return simple_read_from_buffer(userbuf, count, ppos, buf, i);
}
static const struct file_operations rproc_name_ops = {
.read = rproc_name_read,
.open = simple_open,
.llseek = generic_file_llseek,
};
/* expose recovery flag via debugfs */
static ssize_t rproc_recovery_read(struct file *filp, char __user *userbuf,
size_t count, loff_t *ppos)
{
struct rproc *rproc = filp->private_data;
char *buf = rproc->recovery_disabled ? "disabled\n" : "enabled\n";
return simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
}
/*
* By writing to the 'recovery' debugfs entry, we control the behavior of the
* recovery mechanism dynamically. The default value of this entry is "enabled".
*
* The 'recovery' debugfs entry supports these commands:
*
* enabled: When enabled, the remote processor will be automatically
* recovered whenever it crashes. Moreover, if the remote
* processor crashes while recovery is disabled, it will
* be automatically recovered too as soon as recovery is enabled.
*
* disabled: When disabled, a remote processor will remain in a crashed
* state if it crashes. This is useful for debugging purposes;
* without it, debugging a crash is substantially harder.
*
* recover: This function will trigger an immediate recovery if the
* remote processor is in a crashed state, without changing
* or checking the recovery state (enabled/disabled).
* This is useful during debugging sessions, when one expects
* additional crashes to happen after enabling recovery. In this
* case, enabling recovery will make it hard to debug subsequent
* crashes, so it's recommended to keep recovery disabled, and
* instead use the "recover" command as needed.
*/
static ssize_t
rproc_recovery_write(struct file *filp, const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct rproc *rproc = filp->private_data;
char buf[10];
int ret;
if (count < 1 || count > sizeof(buf))
return -EINVAL;
ret = copy_from_user(buf, user_buf, count);
if (ret)
return -EFAULT;
/* remove end of line */
if (buf[count - 1] == '\n')
buf[count - 1] = '\0';
if (!strncmp(buf, "enabled", count)) {
rproc->recovery_disabled = false;
/* if rproc has crashed, trigger recovery */
if (rproc->state == RPROC_CRASHED)
rproc_trigger_recovery(rproc);
} else if (!strncmp(buf, "disabled", count)) {
rproc->recovery_disabled = true;
} else if (!strncmp(buf, "recover", count)) {
/* if rproc has crashed, trigger recovery */
if (rproc->state == RPROC_CRASHED)
rproc_trigger_recovery(rproc);
}
return count;
}
static const struct file_operations rproc_recovery_ops = {
.read = rproc_recovery_read,
.write = rproc_recovery_write,
.open = simple_open,
.llseek = generic_file_llseek,
};
/* Expose resource table content via debugfs */
static int rproc_rsc_table_show(struct seq_file *seq, void *p)
{
static const char * const types[] = {"carveout", "devmem", "trace", "vdev"};
struct rproc *rproc = seq->private;
struct resource_table *table = rproc->table_ptr;
struct fw_rsc_carveout *c;
struct fw_rsc_devmem *d;
struct fw_rsc_trace *t;
struct fw_rsc_vdev *v;
int i, j;
if (!table) {
seq_puts(seq, "No resource table found\n");
return 0;
}
for (i = 0; i < table->num; i++) {
int offset = table->offset[i];
struct fw_rsc_hdr *hdr = (void *)table + offset;
void *rsc = (void *)hdr + sizeof(*hdr);
switch (hdr->type) {
case RSC_CARVEOUT:
c = rsc;
seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]);
seq_printf(seq, " Device Address 0x%x\n", c->da);
seq_printf(seq, " Physical Address 0x%x\n", c->pa);
seq_printf(seq, " Length 0x%x Bytes\n", c->len);
seq_printf(seq, " Flags 0x%x\n", c->flags);
seq_printf(seq, " Reserved (should be zero) [%d]\n", c->reserved);
seq_printf(seq, " Name %s\n\n", c->name);
break;
case RSC_DEVMEM:
d = rsc;
seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]);
seq_printf(seq, " Device Address 0x%x\n", d->da);
seq_printf(seq, " Physical Address 0x%x\n", d->pa);
seq_printf(seq, " Length 0x%x Bytes\n", d->len);
seq_printf(seq, " Flags 0x%x\n", d->flags);
seq_printf(seq, " Reserved (should be zero) [%d]\n", d->reserved);
seq_printf(seq, " Name %s\n\n", d->name);
break;
case RSC_TRACE:
t = rsc;
seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]);
seq_printf(seq, " Device Address 0x%x\n", t->da);
seq_printf(seq, " Length 0x%x Bytes\n", t->len);
seq_printf(seq, " Reserved (should be zero) [%d]\n", t->reserved);
seq_printf(seq, " Name %s\n\n", t->name);
break;
case RSC_VDEV:
v = rsc;
seq_printf(seq, "Entry %d is of type %s\n", i, types[hdr->type]);
seq_printf(seq, " ID %d\n", v->id);
seq_printf(seq, " Notify ID %d\n", v->notifyid);
seq_printf(seq, " Device features 0x%x\n", v->dfeatures);
seq_printf(seq, " Guest features 0x%x\n", v->gfeatures);
seq_printf(seq, " Config length 0x%x\n", v->config_len);
seq_printf(seq, " Status 0x%x\n", v->status);
seq_printf(seq, " Number of vrings %d\n", v->num_of_vrings);
seq_printf(seq, " Reserved (should be zero) [%d][%d]\n\n",
v->reserved[0], v->reserved[1]);
for (j = 0; j < v->num_of_vrings; j++) {
seq_printf(seq, " Vring %d\n", j);
seq_printf(seq, " Device Address 0x%x\n", v->vring[j].da);
seq_printf(seq, " Alignment %d\n", v->vring[j].align);
seq_printf(seq, " Number of buffers %d\n", v->vring[j].num);
seq_printf(seq, " Notify ID %d\n", v->vring[j].notifyid);
seq_printf(seq, " Physical Address 0x%x\n\n",
v->vring[j].pa);
}
break;
default:
seq_printf(seq, "Unknown resource type found: %d [hdr: %pK]\n",
hdr->type, hdr);
break;
}
}
return 0;
}
static int rproc_rsc_table_open(struct inode *inode, struct file *file)
{
return single_open(file, rproc_rsc_table_show, inode->i_private);
}
static const struct file_operations rproc_rsc_table_ops = {
.open = rproc_rsc_table_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/* Expose carveout content via debugfs */
static int rproc_carveouts_show(struct seq_file *seq, void *p)
{
struct rproc *rproc = seq->private;
struct rproc_mem_entry *carveout;
list_for_each_entry(carveout, &rproc->carveouts, node) {
seq_puts(seq, "Carveout memory entry:\n");
seq_printf(seq, "\tName: %s\n", carveout->name);
seq_printf(seq, "\tVirtual address: %pK\n", carveout->va);
seq_printf(seq, "\tDMA address: %pad\n", &carveout->dma);
seq_printf(seq, "\tDevice address: 0x%x\n", carveout->da);
seq_printf(seq, "\tLength: 0x%x Bytes\n\n", carveout->len);
}
return 0;
}
static int rproc_carveouts_open(struct inode *inode, struct file *file)
{
return single_open(file, rproc_carveouts_show, inode->i_private);
}
static const struct file_operations rproc_carveouts_ops = {
.open = rproc_carveouts_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
void rproc_remove_trace_file(struct dentry *tfile)
{
debugfs_remove(tfile);
}
struct dentry *rproc_create_trace_file(const char *name, struct rproc *rproc,
struct rproc_mem_entry *trace)
{
struct dentry *tfile;
tfile = debugfs_create_file(name, 0400, rproc->dbg_dir, trace,
&trace_rproc_ops);
if (!tfile) {
remoteproc: maintain a generic child device for each rproc For each registered rproc, maintain a generic remoteproc device whose parent is the low level platform-specific device (commonly a pdev, but it may certainly be any other type of device too). With this in hand, the resulting device hierarchy might then look like: omap-rproc.0 | - remoteproc0 <---- new ! | - virtio0 | - virtio1 | - rpmsg0 | - rpmsg1 | - rpmsg2 Where: - omap-rproc.0 is the low level device that's bound to the driver which invokes rproc_register() - remoteproc0 is the result of this patch, and will be added by the remoteproc framework when rproc_register() is invoked - virtio0 and virtio1 are vdevs that are registered by remoteproc when it realizes that they are supported by the firmware of the physical remote processor represented by omap-rproc.0 - rpmsg0, rpmsg1 and rpmsg2 are rpmsg devices that represent rpmsg channels, and are registerd by the rpmsg bus when it gets notified about their existence Technically, this patch: - changes 'struct rproc' to contain this generic remoteproc.x device - creates a new "remoteproc" type, to which this new generic remoteproc.x device belong to. - adds a super simple enumeration method for the indices of the remoteproc.x devices - updates all dev_* messaging to use the generic remoteproc.x device instead of the low level platform-specific device - updates all dma_* allocations to use the parent of remoteproc.x (where the platform-specific memory pools, most commonly CMA, are to be found) Adding this generic device has several merits: - we can now add remoteproc runtime PM support simply by hooking onto the new "remoteproc" type - all remoteproc log messages will now carry a common name prefix instead of having a platform-specific one - having a device as part of the rproc struct makes it possible to simplify refcounting (see subsequent patch) Thanks to Stephen Boyd <sboyd@codeaurora.org> for suggesting and discussing these ideas in one of the remoteproc review threads and to Fernando Guzman Lugo <fernando.lugo@ti.com> for trying them out with the (upcoming) runtime PM support for remoteproc. Cc: Fernando Guzman Lugo <fernando.lugo@ti.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
2012-05-30 22:01:25 +03:00
dev_err(&rproc->dev, "failed to create debugfs trace entry\n");
return NULL;
}
return tfile;
}
void rproc_delete_debug_dir(struct rproc *rproc)
{
if (!rproc->dbg_dir)
return;
debugfs_remove_recursive(rproc->dbg_dir);
}
void rproc_create_debug_dir(struct rproc *rproc)
{
remoteproc: maintain a generic child device for each rproc For each registered rproc, maintain a generic remoteproc device whose parent is the low level platform-specific device (commonly a pdev, but it may certainly be any other type of device too). With this in hand, the resulting device hierarchy might then look like: omap-rproc.0 | - remoteproc0 <---- new ! | - virtio0 | - virtio1 | - rpmsg0 | - rpmsg1 | - rpmsg2 Where: - omap-rproc.0 is the low level device that's bound to the driver which invokes rproc_register() - remoteproc0 is the result of this patch, and will be added by the remoteproc framework when rproc_register() is invoked - virtio0 and virtio1 are vdevs that are registered by remoteproc when it realizes that they are supported by the firmware of the physical remote processor represented by omap-rproc.0 - rpmsg0, rpmsg1 and rpmsg2 are rpmsg devices that represent rpmsg channels, and are registerd by the rpmsg bus when it gets notified about their existence Technically, this patch: - changes 'struct rproc' to contain this generic remoteproc.x device - creates a new "remoteproc" type, to which this new generic remoteproc.x device belong to. - adds a super simple enumeration method for the indices of the remoteproc.x devices - updates all dev_* messaging to use the generic remoteproc.x device instead of the low level platform-specific device - updates all dma_* allocations to use the parent of remoteproc.x (where the platform-specific memory pools, most commonly CMA, are to be found) Adding this generic device has several merits: - we can now add remoteproc runtime PM support simply by hooking onto the new "remoteproc" type - all remoteproc log messages will now carry a common name prefix instead of having a platform-specific one - having a device as part of the rproc struct makes it possible to simplify refcounting (see subsequent patch) Thanks to Stephen Boyd <sboyd@codeaurora.org> for suggesting and discussing these ideas in one of the remoteproc review threads and to Fernando Guzman Lugo <fernando.lugo@ti.com> for trying them out with the (upcoming) runtime PM support for remoteproc. Cc: Fernando Guzman Lugo <fernando.lugo@ti.com> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
2012-05-30 22:01:25 +03:00
struct device *dev = &rproc->dev;
if (!rproc_dbg)
return;
rproc->dbg_dir = debugfs_create_dir(dev_name(dev), rproc_dbg);
if (!rproc->dbg_dir)
return;
debugfs_create_file("name", 0400, rproc->dbg_dir,
rproc, &rproc_name_ops);
debugfs_create_file("recovery", 0400, rproc->dbg_dir,
rproc, &rproc_recovery_ops);
debugfs_create_file("resource_table", 0400, rproc->dbg_dir,
rproc, &rproc_rsc_table_ops);
debugfs_create_file("carveout_memories", 0400, rproc->dbg_dir,
rproc, &rproc_carveouts_ops);
}
void __init rproc_init_debugfs(void)
{
if (debugfs_initialized()) {
rproc_dbg = debugfs_create_dir(KBUILD_MODNAME, NULL);
if (!rproc_dbg)
pr_err("can't create debugfs dir\n");
}
}
void __exit rproc_exit_debugfs(void)
{
debugfs_remove(rproc_dbg);
}