linux/drivers/iommu/ipmmu-vmsa.c

1077 lines
27 KiB
C
Raw Normal View History

/*
* IPMMU VMSA
*
* Copyright (C) 2014 Renesas Electronics Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*/
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/module.h>
#include <linux/platform_data/ipmmu-vmsa.h>
#include <linux/platform_device.h>
#include <linux/sizes.h>
#include <linux/slab.h>
#include <asm/dma-iommu.h>
#include <asm/pgalloc.h>
struct ipmmu_vmsa_device {
struct device *dev;
void __iomem *base;
struct list_head list;
const struct ipmmu_vmsa_platform_data *pdata;
unsigned int num_utlbs;
struct dma_iommu_mapping *mapping;
};
struct ipmmu_vmsa_domain {
struct ipmmu_vmsa_device *mmu;
struct iommu_domain *io_domain;
unsigned int context_id;
spinlock_t lock; /* Protects mappings */
pgd_t *pgd;
};
struct ipmmu_vmsa_archdata {
struct ipmmu_vmsa_device *mmu;
unsigned int utlb;
};
static DEFINE_SPINLOCK(ipmmu_devices_lock);
static LIST_HEAD(ipmmu_devices);
#define TLB_LOOP_TIMEOUT 100 /* 100us */
/* -----------------------------------------------------------------------------
* Registers Definition
*/
#define IM_CTX_SIZE 0x40
#define IMCTR 0x0000
#define IMCTR_TRE (1 << 17)
#define IMCTR_AFE (1 << 16)
#define IMCTR_RTSEL_MASK (3 << 4)
#define IMCTR_RTSEL_SHIFT 4
#define IMCTR_TREN (1 << 3)
#define IMCTR_INTEN (1 << 2)
#define IMCTR_FLUSH (1 << 1)
#define IMCTR_MMUEN (1 << 0)
#define IMCAAR 0x0004
#define IMTTBCR 0x0008
#define IMTTBCR_EAE (1 << 31)
#define IMTTBCR_PMB (1 << 30)
#define IMTTBCR_SH1_NON_SHAREABLE (0 << 28)
#define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28)
#define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28)
#define IMTTBCR_SH1_MASK (3 << 28)
#define IMTTBCR_ORGN1_NC (0 << 26)
#define IMTTBCR_ORGN1_WB_WA (1 << 26)
#define IMTTBCR_ORGN1_WT (2 << 26)
#define IMTTBCR_ORGN1_WB (3 << 26)
#define IMTTBCR_ORGN1_MASK (3 << 26)
#define IMTTBCR_IRGN1_NC (0 << 24)
#define IMTTBCR_IRGN1_WB_WA (1 << 24)
#define IMTTBCR_IRGN1_WT (2 << 24)
#define IMTTBCR_IRGN1_WB (3 << 24)
#define IMTTBCR_IRGN1_MASK (3 << 24)
#define IMTTBCR_TSZ1_MASK (7 << 16)
#define IMTTBCR_TSZ1_SHIFT 16
#define IMTTBCR_SH0_NON_SHAREABLE (0 << 12)
#define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12)
#define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12)
#define IMTTBCR_SH0_MASK (3 << 12)
#define IMTTBCR_ORGN0_NC (0 << 10)
#define IMTTBCR_ORGN0_WB_WA (1 << 10)
#define IMTTBCR_ORGN0_WT (2 << 10)
#define IMTTBCR_ORGN0_WB (3 << 10)
#define IMTTBCR_ORGN0_MASK (3 << 10)
#define IMTTBCR_IRGN0_NC (0 << 8)
#define IMTTBCR_IRGN0_WB_WA (1 << 8)
#define IMTTBCR_IRGN0_WT (2 << 8)
#define IMTTBCR_IRGN0_WB (3 << 8)
#define IMTTBCR_IRGN0_MASK (3 << 8)
#define IMTTBCR_SL0_LVL_2 (0 << 4)
#define IMTTBCR_SL0_LVL_1 (1 << 4)
#define IMTTBCR_TSZ0_MASK (7 << 0)
#define IMTTBCR_TSZ0_SHIFT O
#define IMBUSCR 0x000c
#define IMBUSCR_DVM (1 << 2)
#define IMBUSCR_BUSSEL_SYS (0 << 0)
#define IMBUSCR_BUSSEL_CCI (1 << 0)
#define IMBUSCR_BUSSEL_IMCAAR (2 << 0)
#define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0)
#define IMBUSCR_BUSSEL_MASK (3 << 0)
#define IMTTLBR0 0x0010
#define IMTTUBR0 0x0014
#define IMTTLBR1 0x0018
#define IMTTUBR1 0x001c
#define IMSTR 0x0020
#define IMSTR_ERRLVL_MASK (3 << 12)
#define IMSTR_ERRLVL_SHIFT 12
#define IMSTR_ERRCODE_TLB_FORMAT (1 << 8)
#define IMSTR_ERRCODE_ACCESS_PERM (4 << 8)
#define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8)
#define IMSTR_ERRCODE_MASK (7 << 8)
#define IMSTR_MHIT (1 << 4)
#define IMSTR_ABORT (1 << 2)
#define IMSTR_PF (1 << 1)
#define IMSTR_TF (1 << 0)
#define IMMAIR0 0x0028
#define IMMAIR1 0x002c
#define IMMAIR_ATTR_MASK 0xff
#define IMMAIR_ATTR_DEVICE 0x04
#define IMMAIR_ATTR_NC 0x44
#define IMMAIR_ATTR_WBRWA 0xff
#define IMMAIR_ATTR_SHIFT(n) ((n) << 3)
#define IMMAIR_ATTR_IDX_NC 0
#define IMMAIR_ATTR_IDX_WBRWA 1
#define IMMAIR_ATTR_IDX_DEV 2
#define IMEAR 0x0030
#define IMPCTR 0x0200
#define IMPSTR 0x0208
#define IMPEAR 0x020c
#define IMPMBA(n) (0x0280 + ((n) * 4))
#define IMPMBD(n) (0x02c0 + ((n) * 4))
#define IMUCTR(n) (0x0300 + ((n) * 16))
#define IMUCTR_FIXADDEN (1 << 31)
#define IMUCTR_FIXADD_MASK (0xff << 16)
#define IMUCTR_FIXADD_SHIFT 16
#define IMUCTR_TTSEL_MMU(n) ((n) << 4)
#define IMUCTR_TTSEL_PMB (8 << 4)
#define IMUCTR_TTSEL_MASK (15 << 4)
#define IMUCTR_FLUSH (1 << 1)
#define IMUCTR_MMUEN (1 << 0)
#define IMUASID(n) (0x0308 + ((n) * 16))
#define IMUASID_ASID8_MASK (0xff << 8)
#define IMUASID_ASID8_SHIFT 8
#define IMUASID_ASID0_MASK (0xff << 0)
#define IMUASID_ASID0_SHIFT 0
/* -----------------------------------------------------------------------------
* Page Table Bits
*/
/*
* VMSA states in section B3.6.3 "Control of Secure or Non-secure memory access,
* Long-descriptor format" that the NStable bit being set in a table descriptor
* will result in the NStable and NS bits of all child entries being ignored and
* considered as being set. The IPMMU seems not to comply with this, as it
* generates a secure access page fault if any of the NStable and NS bits isn't
* set when running in non-secure mode.
*/
#ifndef PMD_NSTABLE
#define PMD_NSTABLE (_AT(pmdval_t, 1) << 63)
#endif
#define ARM_VMSA_PTE_XN (((pteval_t)3) << 53)
#define ARM_VMSA_PTE_CONT (((pteval_t)1) << 52)
#define ARM_VMSA_PTE_AF (((pteval_t)1) << 10)
#define ARM_VMSA_PTE_SH_NS (((pteval_t)0) << 8)
#define ARM_VMSA_PTE_SH_OS (((pteval_t)2) << 8)
#define ARM_VMSA_PTE_SH_IS (((pteval_t)3) << 8)
#define ARM_VMSA_PTE_NS (((pteval_t)1) << 5)
#define ARM_VMSA_PTE_PAGE (((pteval_t)3) << 0)
/* Stage-1 PTE */
#define ARM_VMSA_PTE_AP_UNPRIV (((pteval_t)1) << 6)
#define ARM_VMSA_PTE_AP_RDONLY (((pteval_t)2) << 6)
#define ARM_VMSA_PTE_ATTRINDX_SHIFT 2
#define ARM_VMSA_PTE_nG (((pteval_t)1) << 11)
/* Stage-2 PTE */
#define ARM_VMSA_PTE_HAP_FAULT (((pteval_t)0) << 6)
#define ARM_VMSA_PTE_HAP_READ (((pteval_t)1) << 6)
#define ARM_VMSA_PTE_HAP_WRITE (((pteval_t)2) << 6)
#define ARM_VMSA_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
#define ARM_VMSA_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
#define ARM_VMSA_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
#define ARM_VMSA_PTE_CONT_ENTRIES 16
#define ARM_VMSA_PTE_CONT_SIZE (PAGE_SIZE * ARM_VMSA_PTE_CONT_ENTRIES)
#define IPMMU_PTRS_PER_PTE 512
#define IPMMU_PTRS_PER_PMD 512
#define IPMMU_PTRS_PER_PGD 4
/* -----------------------------------------------------------------------------
* Read/Write Access
*/
static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
{
return ioread32(mmu->base + offset);
}
static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
u32 data)
{
iowrite32(data, mmu->base + offset);
}
static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
{
return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
}
static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
u32 data)
{
ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
}
/* -----------------------------------------------------------------------------
* TLB and microTLB Management
*/
/* Wait for any pending TLB invalidations to complete */
static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
{
unsigned int count = 0;
while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
cpu_relax();
if (++count == TLB_LOOP_TIMEOUT) {
dev_err_ratelimited(domain->mmu->dev,
"TLB sync timed out -- MMU may be deadlocked\n");
return;
}
udelay(1);
}
}
static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
{
u32 reg;
reg = ipmmu_ctx_read(domain, IMCTR);
reg |= IMCTR_FLUSH;
ipmmu_ctx_write(domain, IMCTR, reg);
ipmmu_tlb_sync(domain);
}
/*
* Enable MMU translation for the microTLB.
*/
static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
unsigned int utlb)
{
struct ipmmu_vmsa_device *mmu = domain->mmu;
/*
* TODO: Reference-count the microTLB as several bus masters can be
* connected to the same microTLB.
*/
/* TODO: What should we set the ASID to ? */
ipmmu_write(mmu, IMUASID(utlb), 0);
/* TODO: Do we need to flush the microTLB ? */
ipmmu_write(mmu, IMUCTR(utlb),
IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
IMUCTR_MMUEN);
}
/*
* Disable MMU translation for the microTLB.
*/
static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
unsigned int utlb)
{
struct ipmmu_vmsa_device *mmu = domain->mmu;
ipmmu_write(mmu, IMUCTR(utlb), 0);
}
static void ipmmu_flush_pgtable(struct ipmmu_vmsa_device *mmu, void *addr,
size_t size)
{
unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
/*
* TODO: Add support for coherent walk through CCI with DVM and remove
* cache handling.
*/
dma_map_page(mmu->dev, virt_to_page(addr), offset, size, DMA_TO_DEVICE);
}
/* -----------------------------------------------------------------------------
* Domain/Context Management
*/
static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
{
phys_addr_t ttbr;
u32 reg;
/*
* TODO: When adding support for multiple contexts, find an unused
* context.
*/
domain->context_id = 0;
/* TTBR0 */
ipmmu_flush_pgtable(domain->mmu, domain->pgd,
IPMMU_PTRS_PER_PGD * sizeof(*domain->pgd));
ttbr = __pa(domain->pgd);
ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
/*
* TTBCR
* We use long descriptors with inner-shareable WBWA tables and allocate
* the whole 32-bit VA space to TTBR0.
*/
ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
/*
* MAIR0
* We need three attributes only, non-cacheable, write-back read/write
* allocate and device memory.
*/
reg = (IMMAIR_ATTR_NC << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_NC))
| (IMMAIR_ATTR_WBRWA << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_WBRWA))
| (IMMAIR_ATTR_DEVICE << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_DEV));
ipmmu_ctx_write(domain, IMMAIR0, reg);
/* IMBUSCR */
ipmmu_ctx_write(domain, IMBUSCR,
ipmmu_ctx_read(domain, IMBUSCR) &
~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
/*
* IMSTR
* Clear all interrupt flags.
*/
ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
/*
* IMCTR
* Enable the MMU and interrupt generation. The long-descriptor
* translation table format doesn't use TEX remapping. Don't enable AF
* software management as we have no use for it. Flush the TLB as
* required when modifying the context registers.
*/
ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
return 0;
}
static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
{
/*
* Disable the context. Flush the TLB as required when modifying the
* context registers.
*
* TODO: Is TLB flush really needed ?
*/
ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
ipmmu_tlb_sync(domain);
}
/* -----------------------------------------------------------------------------
* Fault Handling
*/
static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
{
const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
struct ipmmu_vmsa_device *mmu = domain->mmu;
u32 status;
u32 iova;
status = ipmmu_ctx_read(domain, IMSTR);
if (!(status & err_mask))
return IRQ_NONE;
iova = ipmmu_ctx_read(domain, IMEAR);
/*
* Clear the error status flags. Unlike traditional interrupt flag
* registers that must be cleared by writing 1, this status register
* seems to require 0. The error address register must be read before,
* otherwise its value will be 0.
*/
ipmmu_ctx_write(domain, IMSTR, 0);
/* Log fatal errors. */
if (status & IMSTR_MHIT)
dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
iova);
if (status & IMSTR_ABORT)
dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
iova);
if (!(status & (IMSTR_PF | IMSTR_TF)))
return IRQ_NONE;
/*
* Try to handle page faults and translation faults.
*
* TODO: We need to look up the faulty device based on the I/O VA. Use
* the IOMMU device for now.
*/
if (!report_iommu_fault(domain->io_domain, mmu->dev, iova, 0))
return IRQ_HANDLED;
dev_err_ratelimited(mmu->dev,
"Unhandled fault: status 0x%08x iova 0x%08x\n",
status, iova);
return IRQ_HANDLED;
}
static irqreturn_t ipmmu_irq(int irq, void *dev)
{
struct ipmmu_vmsa_device *mmu = dev;
struct iommu_domain *io_domain;
struct ipmmu_vmsa_domain *domain;
if (!mmu->mapping)
return IRQ_NONE;
io_domain = mmu->mapping->domain;
domain = io_domain->priv;
return ipmmu_domain_irq(domain);
}
/* -----------------------------------------------------------------------------
* Page Table Management
*/
#define pud_pgtable(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK))
static void ipmmu_free_ptes(pmd_t *pmd)
{
pgtable_t table = pmd_pgtable(*pmd);
__free_page(table);
}
static void ipmmu_free_pmds(pud_t *pud)
{
pmd_t *pmd = pmd_offset(pud, 0);
pgtable_t table;
unsigned int i;
for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) {
if (pmd_none(*pmd))
continue;
ipmmu_free_ptes(pmd);
pmd++;
}
table = pud_pgtable(*pud);
__free_page(table);
}
static void ipmmu_free_pgtables(struct ipmmu_vmsa_domain *domain)
{
pgd_t *pgd, *pgd_base = domain->pgd;
unsigned int i;
/*
* Recursively free the page tables for this domain. We don't care about
* speculative TLB filling, because the TLB will be nuked next time this
* context bank is re-allocated and no devices currently map to these
* tables.
*/
pgd = pgd_base;
for (i = 0; i < IPMMU_PTRS_PER_PGD; ++i) {
if (pgd_none(*pgd))
continue;
ipmmu_free_pmds((pud_t *)pgd);
pgd++;
}
kfree(pgd_base);
}
/*
* We can't use the (pgd|pud|pmd|pte)_populate or the set_(pgd|pud|pmd|pte)
* functions as they would flush the CPU TLB.
*/
static int ipmmu_alloc_init_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd,
unsigned long addr, unsigned long end,
phys_addr_t phys, int prot)
{
unsigned long pfn = __phys_to_pfn(phys);
pteval_t pteval = ARM_VMSA_PTE_PAGE | ARM_VMSA_PTE_NS | ARM_VMSA_PTE_AF
| ARM_VMSA_PTE_XN;
pte_t *pte, *start;
if (pmd_none(*pmd)) {
/* Allocate a new set of tables */
pte = (pte_t *)get_zeroed_page(GFP_ATOMIC);
if (!pte)
return -ENOMEM;
ipmmu_flush_pgtable(mmu, pte, PAGE_SIZE);
*pmd = __pmd(__pa(pte) | PMD_NSTABLE | PMD_TYPE_TABLE);
ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd));
pte += pte_index(addr);
} else
pte = pte_offset_kernel(pmd, addr);
pteval |= ARM_VMSA_PTE_AP_UNPRIV | ARM_VMSA_PTE_nG;
if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
pteval |= ARM_VMSA_PTE_AP_RDONLY;
if (prot & IOMMU_CACHE)
pteval |= (IMMAIR_ATTR_IDX_WBRWA <<
ARM_VMSA_PTE_ATTRINDX_SHIFT);
/* If no access, create a faulting entry to avoid TLB fills */
if (prot & IOMMU_EXEC)
pteval &= ~ARM_VMSA_PTE_XN;
else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
pteval &= ~ARM_VMSA_PTE_PAGE;
pteval |= ARM_VMSA_PTE_SH_IS;
start = pte;
/*
* Install the page table entries.
*
* Set the contiguous hint in the PTEs where possible. The hint
* indicates a series of ARM_VMSA_PTE_CONT_ENTRIES PTEs mapping a
* physically contiguous region with the following constraints:
*
* - The region start is aligned to ARM_VMSA_PTE_CONT_SIZE
* - Each PTE in the region has the contiguous hint bit set
*
* We don't support partial unmapping so there's no need to care about
* clearing the contiguous hint from neighbour PTEs.
*/
do {
unsigned long chunk_end;
/*
* If the address is aligned to a contiguous region size and the
* mapping size is large enough, process the largest possible
* number of PTEs multiple of ARM_VMSA_PTE_CONT_ENTRIES.
* Otherwise process the smallest number of PTEs to align the
* address to a contiguous region size or to complete the
* mapping.
*/
if (IS_ALIGNED(addr, ARM_VMSA_PTE_CONT_SIZE) &&
end - addr >= ARM_VMSA_PTE_CONT_SIZE) {
chunk_end = round_down(end, ARM_VMSA_PTE_CONT_SIZE);
pteval |= ARM_VMSA_PTE_CONT;
} else {
chunk_end = min(ALIGN(addr, ARM_VMSA_PTE_CONT_SIZE),
end);
pteval &= ~ARM_VMSA_PTE_CONT;
}
do {
*pte++ = pfn_pte(pfn++, __pgprot(pteval));
addr += PAGE_SIZE;
} while (addr != chunk_end);
} while (addr != end);
ipmmu_flush_pgtable(mmu, start, sizeof(*pte) * (pte - start));
return 0;
}
static int ipmmu_alloc_init_pmd(struct ipmmu_vmsa_device *mmu, pud_t *pud,
unsigned long addr, unsigned long end,
phys_addr_t phys, int prot)
{
unsigned long next;
pmd_t *pmd;
int ret;
if (pud_none(*pud)) {
pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
if (!pmd)
return -ENOMEM;
ipmmu_flush_pgtable(mmu, pmd, PAGE_SIZE);
*pud = __pud(__pa(pmd) | PMD_NSTABLE | PMD_TYPE_TABLE);
ipmmu_flush_pgtable(mmu, pud, sizeof(*pud));
pmd += pmd_index(addr);
} else
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
ret = ipmmu_alloc_init_pte(mmu, pmd, addr, end, phys, prot);
phys += next - addr;
} while (pmd++, addr = next, addr < end);
return ret;
}
static int ipmmu_handle_mapping(struct ipmmu_vmsa_domain *domain,
unsigned long iova, phys_addr_t paddr,
size_t size, int prot)
{
struct ipmmu_vmsa_device *mmu = domain->mmu;
pgd_t *pgd = domain->pgd;
unsigned long flags;
unsigned long end;
int ret;
if (!pgd)
return -EINVAL;
if (size & ~PAGE_MASK)
return -EINVAL;
if (paddr & ~((1ULL << 40) - 1))
return -ERANGE;
spin_lock_irqsave(&domain->lock, flags);
pgd += pgd_index(iova);
end = iova + size;
do {
unsigned long next = pgd_addr_end(iova, end);
ret = ipmmu_alloc_init_pmd(mmu, (pud_t *)pgd, iova, next, paddr,
prot);
if (ret)
break;
paddr += next - iova;
iova = next;
} while (pgd++, iova != end);
spin_unlock_irqrestore(&domain->lock, flags);
ipmmu_tlb_invalidate(domain);
return ret;
}
/* -----------------------------------------------------------------------------
* IOMMU Operations
*/
static int ipmmu_domain_init(struct iommu_domain *io_domain)
{
struct ipmmu_vmsa_domain *domain;
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!domain)
return -ENOMEM;
spin_lock_init(&domain->lock);
domain->pgd = kzalloc(IPMMU_PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL);
if (!domain->pgd) {
kfree(domain);
return -ENOMEM;
}
io_domain->priv = domain;
domain->io_domain = io_domain;
return 0;
}
static void ipmmu_domain_destroy(struct iommu_domain *io_domain)
{
struct ipmmu_vmsa_domain *domain = io_domain->priv;
/*
* Free the domain resources. We assume that all devices have already
* been detached.
*/
ipmmu_domain_destroy_context(domain);
ipmmu_free_pgtables(domain);
kfree(domain);
}
static int ipmmu_attach_device(struct iommu_domain *io_domain,
struct device *dev)
{
struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
struct ipmmu_vmsa_device *mmu = archdata->mmu;
struct ipmmu_vmsa_domain *domain = io_domain->priv;
unsigned long flags;
int ret = 0;
if (!mmu) {
dev_err(dev, "Cannot attach to IPMMU\n");
return -ENXIO;
}
spin_lock_irqsave(&domain->lock, flags);
if (!domain->mmu) {
/* The domain hasn't been used yet, initialize it. */
domain->mmu = mmu;
ret = ipmmu_domain_init_context(domain);
} else if (domain->mmu != mmu) {
/*
* Something is wrong, we can't attach two devices using
* different IOMMUs to the same domain.
*/
dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
dev_name(mmu->dev), dev_name(domain->mmu->dev));
ret = -EINVAL;
}
spin_unlock_irqrestore(&domain->lock, flags);
if (ret < 0)
return ret;
ipmmu_utlb_enable(domain, archdata->utlb);
return 0;
}
static void ipmmu_detach_device(struct iommu_domain *io_domain,
struct device *dev)
{
struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
struct ipmmu_vmsa_domain *domain = io_domain->priv;
ipmmu_utlb_disable(domain, archdata->utlb);
/*
* TODO: Optimize by disabling the context when no device is attached.
*/
}
static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
phys_addr_t paddr, size_t size, int prot)
{
struct ipmmu_vmsa_domain *domain = io_domain->priv;
if (!domain)
return -ENODEV;
return ipmmu_handle_mapping(domain, iova, paddr, size, prot);
}
static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
size_t size)
{
struct ipmmu_vmsa_domain *domain = io_domain->priv;
int ret;
ret = ipmmu_handle_mapping(domain, iova, 0, size, 0);
return ret ? 0 : size;
}
static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
dma_addr_t iova)
{
struct ipmmu_vmsa_domain *domain = io_domain->priv;
pgd_t pgd;
pud_t pud;
pmd_t pmd;
pte_t pte;
/* TODO: Is locking needed ? */
if (!domain->pgd)
return 0;
pgd = *(domain->pgd + pgd_index(iova));
if (pgd_none(pgd))
return 0;
pud = *pud_offset(&pgd, iova);
if (pud_none(pud))
return 0;
pmd = *pmd_offset(&pud, iova);
if (pmd_none(pmd))
return 0;
pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
if (pte_none(pte))
return 0;
return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
}
static int ipmmu_find_utlb(struct ipmmu_vmsa_device *mmu, struct device *dev)
{
const struct ipmmu_vmsa_master *master = mmu->pdata->masters;
const char *devname = dev_name(dev);
unsigned int i;
for (i = 0; i < mmu->pdata->num_masters; ++i, ++master) {
if (strcmp(master->name, devname) == 0)
return master->utlb;
}
return -1;
}
static int ipmmu_add_device(struct device *dev)
{
struct ipmmu_vmsa_archdata *archdata;
struct ipmmu_vmsa_device *mmu;
struct iommu_group *group;
int utlb = -1;
int ret;
if (dev->archdata.iommu) {
dev_warn(dev, "IOMMU driver already assigned to device %s\n",
dev_name(dev));
return -EINVAL;
}
/* Find the master corresponding to the device. */
spin_lock(&ipmmu_devices_lock);
list_for_each_entry(mmu, &ipmmu_devices, list) {
utlb = ipmmu_find_utlb(mmu, dev);
if (utlb >= 0) {
/*
* TODO Take a reference to the MMU to protect
* against device removal.
*/
break;
}
}
spin_unlock(&ipmmu_devices_lock);
if (utlb < 0)
return -ENODEV;
if (utlb >= mmu->num_utlbs)
return -EINVAL;
/* Create a device group and add the device to it. */
group = iommu_group_alloc();
if (IS_ERR(group)) {
dev_err(dev, "Failed to allocate IOMMU group\n");
return PTR_ERR(group);
}
ret = iommu_group_add_device(group, dev);
iommu_group_put(group);
if (ret < 0) {
dev_err(dev, "Failed to add device to IPMMU group\n");
return ret;
}
archdata = kzalloc(sizeof(*archdata), GFP_KERNEL);
if (!archdata) {
ret = -ENOMEM;
goto error;
}
archdata->mmu = mmu;
archdata->utlb = utlb;
dev->archdata.iommu = archdata;
/*
* Create the ARM mapping, used by the ARM DMA mapping core to allocate
* VAs. This will allocate a corresponding IOMMU domain.
*
* TODO:
* - Create one mapping per context (TLB).
* - Make the mapping size configurable ? We currently use a 2GB mapping
* at a 1GB offset to ensure that NULL VAs will fault.
*/
if (!mmu->mapping) {
struct dma_iommu_mapping *mapping;
mapping = arm_iommu_create_mapping(&platform_bus_type,
SZ_1G, SZ_2G, 0);
if (IS_ERR(mapping)) {
dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
return PTR_ERR(mapping);
}
mmu->mapping = mapping;
}
/* Attach the ARM VA mapping to the device. */
ret = arm_iommu_attach_device(dev, mmu->mapping);
if (ret < 0) {
dev_err(dev, "Failed to attach device to VA mapping\n");
goto error;
}
return 0;
error:
kfree(dev->archdata.iommu);
dev->archdata.iommu = NULL;
iommu_group_remove_device(dev);
return ret;
}
static void ipmmu_remove_device(struct device *dev)
{
arm_iommu_detach_device(dev);
iommu_group_remove_device(dev);
kfree(dev->archdata.iommu);
dev->archdata.iommu = NULL;
}
static struct iommu_ops ipmmu_ops = {
.domain_init = ipmmu_domain_init,
.domain_destroy = ipmmu_domain_destroy,
.attach_dev = ipmmu_attach_device,
.detach_dev = ipmmu_detach_device,
.map = ipmmu_map,
.unmap = ipmmu_unmap,
.iova_to_phys = ipmmu_iova_to_phys,
.add_device = ipmmu_add_device,
.remove_device = ipmmu_remove_device,
.pgsize_bitmap = SZ_2M | SZ_64K | SZ_4K,
};
/* -----------------------------------------------------------------------------
* Probe/remove and init
*/
static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
{
unsigned int i;
/* Disable all contexts. */
for (i = 0; i < 4; ++i)
ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
}
static int ipmmu_probe(struct platform_device *pdev)
{
struct ipmmu_vmsa_device *mmu;
struct resource *res;
int irq;
int ret;
if (!pdev->dev.platform_data) {
dev_err(&pdev->dev, "missing platform data\n");
return -EINVAL;
}
mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
if (!mmu) {
dev_err(&pdev->dev, "cannot allocate device data\n");
return -ENOMEM;
}
mmu->dev = &pdev->dev;
mmu->pdata = pdev->dev.platform_data;
mmu->num_utlbs = 32;
/* Map I/O memory and request IRQ. */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mmu->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(mmu->base))
return PTR_ERR(mmu->base);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no IRQ found\n");
return irq;
}
ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
dev_name(&pdev->dev), mmu);
if (ret < 0) {
dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
return irq;
}
ipmmu_device_reset(mmu);
/*
* We can't create the ARM mapping here as it requires the bus to have
* an IOMMU, which only happens when bus_set_iommu() is called in
* ipmmu_init() after the probe function returns.
*/
spin_lock(&ipmmu_devices_lock);
list_add(&mmu->list, &ipmmu_devices);
spin_unlock(&ipmmu_devices_lock);
platform_set_drvdata(pdev, mmu);
return 0;
}
static int ipmmu_remove(struct platform_device *pdev)
{
struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
spin_lock(&ipmmu_devices_lock);
list_del(&mmu->list);
spin_unlock(&ipmmu_devices_lock);
arm_iommu_release_mapping(mmu->mapping);
ipmmu_device_reset(mmu);
return 0;
}
static struct platform_driver ipmmu_driver = {
.driver = {
.owner = THIS_MODULE,
.name = "ipmmu-vmsa",
},
.probe = ipmmu_probe,
.remove = ipmmu_remove,
};
static int __init ipmmu_init(void)
{
int ret;
ret = platform_driver_register(&ipmmu_driver);
if (ret < 0)
return ret;
if (!iommu_present(&platform_bus_type))
bus_set_iommu(&platform_bus_type, &ipmmu_ops);
return 0;
}
static void __exit ipmmu_exit(void)
{
return platform_driver_unregister(&ipmmu_driver);
}
subsys_initcall(ipmmu_init);
module_exit(ipmmu_exit);
MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
MODULE_LICENSE("GPL v2");