2005-04-16 15:20:36 -07:00
|
|
|
/* fd_mcs.c -- Future Domain MCS 600/700 (or IBM OEM) driver
|
|
|
|
*
|
|
|
|
* FutureDomain MCS-600/700 v0.2 03/11/1998 by ZP Gu (zpg@castle.net)
|
|
|
|
*
|
|
|
|
* This driver is cloned from fdomain.* to specifically support
|
|
|
|
* the Future Domain MCS 600/700 MCA SCSI adapters. Some PS/2s
|
|
|
|
* also equipped with IBM Fast SCSI Adapter/A which is an OEM
|
|
|
|
* of MCS 700.
|
|
|
|
*
|
|
|
|
* This driver also supports Reply SB16/SCSI card (the SCSI part).
|
|
|
|
*
|
|
|
|
* What makes this driver different is that this driver is MCA only
|
|
|
|
* and it supports multiple adapters in the same system, IRQ
|
|
|
|
* sharing, some driver statistics, and maps highest SCSI id to sda.
|
|
|
|
* All cards are auto-detected.
|
|
|
|
*
|
|
|
|
* Assumptions: TMC-1800/18C50/18C30, BIOS >= 3.4
|
|
|
|
*
|
|
|
|
* LILO command-line options:
|
|
|
|
* fd_mcs=<FIFO_COUNT>[,<FIFO_SIZE>]
|
|
|
|
*
|
|
|
|
* ********************************************************
|
|
|
|
* Please see Copyrights/Comments in fdomain.* for credits.
|
|
|
|
* Following is from fdomain.c for acknowledgement:
|
|
|
|
*
|
|
|
|
* Created: Sun May 3 18:53:19 1992 by faith@cs.unc.edu
|
|
|
|
* Revised: Wed Oct 2 11:10:55 1996 by r.faith@ieee.org
|
|
|
|
* Author: Rickard E. Faith, faith@cs.unc.edu
|
|
|
|
* Copyright 1992, 1993, 1994, 1995, 1996 Rickard E. Faith
|
|
|
|
*
|
|
|
|
* $Id: fdomain.c,v 5.45 1996/10/02 15:13:06 root Exp $
|
|
|
|
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License as published by the
|
|
|
|
* Free Software Foundation; either version 2, or (at your option) any
|
|
|
|
* later version.
|
|
|
|
|
|
|
|
* This program is distributed in the hope that it will be useful, but
|
|
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* General Public License for more details.
|
|
|
|
|
|
|
|
* You should have received a copy of the GNU General Public License along
|
|
|
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
|
|
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
|
|
|
|
|
|
**************************************************************************
|
|
|
|
|
|
|
|
NOTES ON USER DEFINABLE OPTIONS:
|
|
|
|
|
|
|
|
DEBUG: This turns on the printing of various debug information.
|
|
|
|
|
|
|
|
ENABLE_PARITY: This turns on SCSI parity checking. With the current
|
|
|
|
driver, all attached devices must support SCSI parity. If none of your
|
|
|
|
devices support parity, then you can probably get the driver to work by
|
|
|
|
turning this option off. I have no way of testing this, however, and it
|
|
|
|
would appear that no one ever uses this option.
|
|
|
|
|
|
|
|
FIFO_COUNT: The host adapter has an 8K cache (host adapters based on the
|
|
|
|
18C30 chip have a 2k cache). When this many 512 byte blocks are filled by
|
|
|
|
the SCSI device, an interrupt will be raised. Therefore, this could be as
|
|
|
|
low as 0, or as high as 16. Note, however, that values which are too high
|
|
|
|
or too low seem to prevent any interrupts from occurring, and thereby lock
|
|
|
|
up the machine. I have found that 2 is a good number, but throughput may
|
|
|
|
be increased by changing this value to values which are close to 2.
|
|
|
|
Please let me know if you try any different values.
|
|
|
|
[*****Now a runtime option*****]
|
|
|
|
|
|
|
|
RESELECTION: This is no longer an option, since I gave up trying to
|
|
|
|
implement it in version 4.x of this driver. It did not improve
|
|
|
|
performance at all and made the driver unstable (because I never found one
|
|
|
|
of the two race conditions which were introduced by the multiple
|
|
|
|
outstanding command code). The instability seems a very high price to pay
|
|
|
|
just so that you don't have to wait for the tape to rewind. If you want
|
|
|
|
this feature implemented, send me patches. I'll be happy to send a copy
|
|
|
|
of my (broken) driver to anyone who would like to see a copy.
|
|
|
|
|
|
|
|
**************************************************************************/
|
|
|
|
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/blkdev.h>
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#include <linux/string.h>
|
|
|
|
#include <linux/ioport.h>
|
|
|
|
#include <linux/proc_fs.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/mca.h>
|
|
|
|
#include <linux/spinlock.h>
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 17:04:11 +09:00
|
|
|
#include <linux/slab.h>
|
2005-04-16 15:20:36 -07:00
|
|
|
#include <scsi/scsicam.h>
|
|
|
|
#include <linux/mca-legacy.h>
|
|
|
|
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/system.h>
|
|
|
|
|
|
|
|
#include "scsi.h"
|
|
|
|
#include <scsi/scsi_host.h>
|
|
|
|
|
|
|
|
#define DRIVER_VERSION "v0.2 by ZP Gu<zpg@castle.net>"
|
|
|
|
|
|
|
|
/* START OF USER DEFINABLE OPTIONS */
|
|
|
|
|
|
|
|
#define DEBUG 0 /* Enable debugging output */
|
|
|
|
#define ENABLE_PARITY 1 /* Enable SCSI Parity */
|
|
|
|
|
|
|
|
/* END OF USER DEFINABLE OPTIONS */
|
|
|
|
|
|
|
|
#if DEBUG
|
|
|
|
#define EVERY_ACCESS 0 /* Write a line on every scsi access */
|
|
|
|
#define ERRORS_ONLY 1 /* Only write a line if there is an error */
|
|
|
|
#define DEBUG_MESSAGES 1 /* Debug MESSAGE IN phase */
|
|
|
|
#define DEBUG_ABORT 1 /* Debug abort() routine */
|
|
|
|
#define DEBUG_RESET 1 /* Debug reset() routine */
|
|
|
|
#define DEBUG_RACE 1 /* Debug interrupt-driven race condition */
|
|
|
|
#else
|
|
|
|
#define EVERY_ACCESS 0 /* LEAVE THESE ALONE--CHANGE THE ONES ABOVE */
|
|
|
|
#define ERRORS_ONLY 0
|
|
|
|
#define DEBUG_MESSAGES 0
|
|
|
|
#define DEBUG_ABORT 0
|
|
|
|
#define DEBUG_RESET 0
|
|
|
|
#define DEBUG_RACE 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Errors are reported on the line, so we don't need to report them again */
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
#undef ERRORS_ONLY
|
|
|
|
#define ERRORS_ONLY 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLE_PARITY
|
|
|
|
#define PARITY_MASK 0x08
|
|
|
|
#else
|
|
|
|
#define PARITY_MASK 0x00
|
|
|
|
#endif
|
|
|
|
|
|
|
|
enum chip_type {
|
|
|
|
unknown = 0x00,
|
|
|
|
tmc1800 = 0x01,
|
|
|
|
tmc18c50 = 0x02,
|
|
|
|
tmc18c30 = 0x03,
|
|
|
|
};
|
|
|
|
|
|
|
|
enum {
|
|
|
|
in_arbitration = 0x02,
|
|
|
|
in_selection = 0x04,
|
|
|
|
in_other = 0x08,
|
|
|
|
disconnect = 0x10,
|
|
|
|
aborted = 0x20,
|
|
|
|
sent_ident = 0x40,
|
|
|
|
};
|
|
|
|
|
|
|
|
enum in_port_type {
|
|
|
|
Read_SCSI_Data = 0,
|
|
|
|
SCSI_Status = 1,
|
|
|
|
TMC_Status = 2,
|
|
|
|
FIFO_Status = 3, /* tmc18c50/tmc18c30 only */
|
|
|
|
Interrupt_Cond = 4, /* tmc18c50/tmc18c30 only */
|
|
|
|
LSB_ID_Code = 5,
|
|
|
|
MSB_ID_Code = 6,
|
|
|
|
Read_Loopback = 7,
|
|
|
|
SCSI_Data_NoACK = 8,
|
|
|
|
Interrupt_Status = 9,
|
|
|
|
Configuration1 = 10,
|
|
|
|
Configuration2 = 11, /* tmc18c50/tmc18c30 only */
|
|
|
|
Read_FIFO = 12,
|
|
|
|
FIFO_Data_Count = 14
|
|
|
|
};
|
|
|
|
|
|
|
|
enum out_port_type {
|
|
|
|
Write_SCSI_Data = 0,
|
|
|
|
SCSI_Cntl = 1,
|
|
|
|
Interrupt_Cntl = 2,
|
|
|
|
SCSI_Mode_Cntl = 3,
|
|
|
|
TMC_Cntl = 4,
|
|
|
|
Memory_Cntl = 5, /* tmc18c50/tmc18c30 only */
|
|
|
|
Write_Loopback = 7,
|
|
|
|
IO_Control = 11, /* tmc18c30 only */
|
|
|
|
Write_FIFO = 12
|
|
|
|
};
|
|
|
|
|
|
|
|
struct fd_hostdata {
|
|
|
|
unsigned long _bios_base;
|
|
|
|
int _bios_major;
|
|
|
|
int _bios_minor;
|
|
|
|
volatile int _in_command;
|
|
|
|
Scsi_Cmnd *_current_SC;
|
|
|
|
enum chip_type _chip;
|
|
|
|
int _adapter_mask;
|
|
|
|
int _fifo_count; /* Number of 512 byte blocks before INTR */
|
|
|
|
|
|
|
|
char _adapter_name[64];
|
|
|
|
#if DEBUG_RACE
|
|
|
|
volatile int _in_interrupt_flag;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
int _SCSI_Mode_Cntl_port;
|
|
|
|
int _FIFO_Data_Count_port;
|
|
|
|
int _Interrupt_Cntl_port;
|
|
|
|
int _Interrupt_Status_port;
|
|
|
|
int _Interrupt_Cond_port;
|
|
|
|
int _Read_FIFO_port;
|
|
|
|
int _Read_SCSI_Data_port;
|
|
|
|
int _SCSI_Cntl_port;
|
|
|
|
int _SCSI_Data_NoACK_port;
|
|
|
|
int _SCSI_Status_port;
|
|
|
|
int _TMC_Cntl_port;
|
|
|
|
int _TMC_Status_port;
|
|
|
|
int _Write_FIFO_port;
|
|
|
|
int _Write_SCSI_Data_port;
|
|
|
|
|
|
|
|
int _FIFO_Size; /* = 0x2000; 8k FIFO for
|
|
|
|
pre-tmc18c30 chips */
|
|
|
|
/* simple stats */
|
|
|
|
int _Bytes_Read;
|
|
|
|
int _Bytes_Written;
|
|
|
|
int _INTR_Processed;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define FD_MAX_HOSTS 3 /* enough? */
|
|
|
|
|
|
|
|
#define HOSTDATA(shpnt) ((struct fd_hostdata *) shpnt->hostdata)
|
|
|
|
#define bios_base (HOSTDATA(shpnt)->_bios_base)
|
|
|
|
#define bios_major (HOSTDATA(shpnt)->_bios_major)
|
|
|
|
#define bios_minor (HOSTDATA(shpnt)->_bios_minor)
|
|
|
|
#define in_command (HOSTDATA(shpnt)->_in_command)
|
|
|
|
#define current_SC (HOSTDATA(shpnt)->_current_SC)
|
|
|
|
#define chip (HOSTDATA(shpnt)->_chip)
|
|
|
|
#define adapter_mask (HOSTDATA(shpnt)->_adapter_mask)
|
|
|
|
#define FIFO_COUNT (HOSTDATA(shpnt)->_fifo_count)
|
|
|
|
#define adapter_name (HOSTDATA(shpnt)->_adapter_name)
|
|
|
|
#if DEBUG_RACE
|
|
|
|
#define in_interrupt_flag (HOSTDATA(shpnt)->_in_interrupt_flag)
|
|
|
|
#endif
|
|
|
|
#define SCSI_Mode_Cntl_port (HOSTDATA(shpnt)->_SCSI_Mode_Cntl_port)
|
|
|
|
#define FIFO_Data_Count_port (HOSTDATA(shpnt)->_FIFO_Data_Count_port)
|
|
|
|
#define Interrupt_Cntl_port (HOSTDATA(shpnt)->_Interrupt_Cntl_port)
|
|
|
|
#define Interrupt_Status_port (HOSTDATA(shpnt)->_Interrupt_Status_port)
|
|
|
|
#define Interrupt_Cond_port (HOSTDATA(shpnt)->_Interrupt_Cond_port)
|
|
|
|
#define Read_FIFO_port (HOSTDATA(shpnt)->_Read_FIFO_port)
|
|
|
|
#define Read_SCSI_Data_port (HOSTDATA(shpnt)->_Read_SCSI_Data_port)
|
|
|
|
#define SCSI_Cntl_port (HOSTDATA(shpnt)->_SCSI_Cntl_port)
|
|
|
|
#define SCSI_Data_NoACK_port (HOSTDATA(shpnt)->_SCSI_Data_NoACK_port)
|
|
|
|
#define SCSI_Status_port (HOSTDATA(shpnt)->_SCSI_Status_port)
|
|
|
|
#define TMC_Cntl_port (HOSTDATA(shpnt)->_TMC_Cntl_port)
|
|
|
|
#define TMC_Status_port (HOSTDATA(shpnt)->_TMC_Status_port)
|
|
|
|
#define Write_FIFO_port (HOSTDATA(shpnt)->_Write_FIFO_port)
|
|
|
|
#define Write_SCSI_Data_port (HOSTDATA(shpnt)->_Write_SCSI_Data_port)
|
|
|
|
#define FIFO_Size (HOSTDATA(shpnt)->_FIFO_Size)
|
|
|
|
#define Bytes_Read (HOSTDATA(shpnt)->_Bytes_Read)
|
|
|
|
#define Bytes_Written (HOSTDATA(shpnt)->_Bytes_Written)
|
|
|
|
#define INTR_Processed (HOSTDATA(shpnt)->_INTR_Processed)
|
|
|
|
|
|
|
|
struct fd_mcs_adapters_struct {
|
|
|
|
char *name;
|
|
|
|
int id;
|
|
|
|
enum chip_type fd_chip;
|
|
|
|
int fifo_size;
|
|
|
|
int fifo_count;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define REPLY_ID 0x5137
|
|
|
|
|
|
|
|
static struct fd_mcs_adapters_struct fd_mcs_adapters[] = {
|
|
|
|
{"Future Domain SCSI Adapter MCS-700(18C50)",
|
|
|
|
0x60e9,
|
|
|
|
tmc18c50,
|
|
|
|
0x2000,
|
|
|
|
4},
|
|
|
|
{"Future Domain SCSI Adapter MCS-600/700(TMC-1800)",
|
|
|
|
0x6127,
|
|
|
|
tmc1800,
|
|
|
|
0x2000,
|
|
|
|
4},
|
|
|
|
{"Reply Sound Blaster/SCSI Adapter",
|
|
|
|
REPLY_ID,
|
|
|
|
tmc18c30,
|
|
|
|
0x800,
|
|
|
|
2},
|
|
|
|
};
|
|
|
|
|
2006-06-08 22:23:48 -07:00
|
|
|
#define FD_BRDS ARRAY_SIZE(fd_mcs_adapters)
|
2005-04-16 15:20:36 -07:00
|
|
|
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 14:55:46 +01:00
|
|
|
static irqreturn_t fd_mcs_intr(int irq, void *dev_id);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
static unsigned long addresses[] = { 0xc8000, 0xca000, 0xce000, 0xde000 };
|
|
|
|
static unsigned short ports[] = { 0x140, 0x150, 0x160, 0x170 };
|
|
|
|
static unsigned short interrupts[] = { 3, 5, 10, 11, 12, 14, 15, 0 };
|
|
|
|
|
|
|
|
/* host information */
|
|
|
|
static int found = 0;
|
|
|
|
static struct Scsi_Host *hosts[FD_MAX_HOSTS + 1] = { NULL };
|
|
|
|
|
|
|
|
static int user_fifo_count = 0;
|
|
|
|
static int user_fifo_size = 0;
|
|
|
|
|
2006-11-08 19:56:20 -08:00
|
|
|
#ifndef MODULE
|
2005-04-16 15:20:36 -07:00
|
|
|
static int __init fd_mcs_setup(char *str)
|
|
|
|
{
|
|
|
|
static int done_setup = 0;
|
|
|
|
int ints[3];
|
|
|
|
|
|
|
|
get_options(str, 3, ints);
|
|
|
|
if (done_setup++ || ints[0] < 1 || ints[0] > 2 || ints[1] < 1 || ints[1] > 16) {
|
|
|
|
printk("fd_mcs: usage: fd_mcs=FIFO_COUNT, FIFO_SIZE\n");
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
user_fifo_count = ints[0] >= 1 ? ints[1] : 0;
|
|
|
|
user_fifo_size = ints[0] >= 2 ? ints[2] : 0;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
__setup("fd_mcs=", fd_mcs_setup);
|
2006-11-08 19:56:20 -08:00
|
|
|
#endif /* !MODULE */
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
static void print_banner(struct Scsi_Host *shpnt)
|
|
|
|
{
|
|
|
|
printk("scsi%d <fd_mcs>: ", shpnt->host_no);
|
|
|
|
|
|
|
|
if (bios_base) {
|
|
|
|
printk("BIOS at 0x%lX", bios_base);
|
|
|
|
} else {
|
|
|
|
printk("No BIOS");
|
|
|
|
}
|
|
|
|
|
|
|
|
printk(", HostID %d, %s Chip, IRQ %d, IO 0x%lX\n", shpnt->this_id, chip == tmc18c50 ? "TMC-18C50" : (chip == tmc18c30 ? "TMC-18C30" : (chip == tmc1800 ? "TMC-1800" : "Unknown")), shpnt->irq, shpnt->io_port);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void do_pause(unsigned amount)
|
|
|
|
{ /* Pause for amount*10 milliseconds */
|
|
|
|
do {
|
|
|
|
mdelay(10);
|
|
|
|
} while (--amount);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void fd_mcs_make_bus_idle(struct Scsi_Host *shpnt)
|
|
|
|
{
|
|
|
|
outb(0, SCSI_Cntl_port);
|
|
|
|
outb(0, SCSI_Mode_Cntl_port);
|
|
|
|
if (chip == tmc18c50 || chip == tmc18c30)
|
|
|
|
outb(0x21 | PARITY_MASK, TMC_Cntl_port); /* Clear forced intr. */
|
|
|
|
else
|
|
|
|
outb(0x01 | PARITY_MASK, TMC_Cntl_port);
|
|
|
|
}
|
|
|
|
|
2005-10-31 18:31:40 +01:00
|
|
|
static int fd_mcs_detect(struct scsi_host_template * tpnt)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
|
|
|
int loop;
|
|
|
|
struct Scsi_Host *shpnt;
|
|
|
|
|
|
|
|
/* get id, port, bios, irq */
|
|
|
|
int slot;
|
|
|
|
u_char pos2, pos3, pos4;
|
|
|
|
int id, port, irq;
|
|
|
|
unsigned long bios;
|
|
|
|
|
|
|
|
/* if not MCA machine, return */
|
|
|
|
if (!MCA_bus)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* changeable? */
|
|
|
|
id = 7;
|
|
|
|
|
|
|
|
for (loop = 0; loop < FD_BRDS; loop++) {
|
|
|
|
slot = 0;
|
|
|
|
while (MCA_NOTFOUND != (slot = mca_find_adapter(fd_mcs_adapters[loop].id, slot))) {
|
|
|
|
|
|
|
|
/* if we get this far, an adapter has been detected and is
|
|
|
|
enabled */
|
|
|
|
|
|
|
|
printk(KERN_INFO "scsi <fd_mcs>: %s at slot %d\n", fd_mcs_adapters[loop].name, slot + 1);
|
|
|
|
|
|
|
|
pos2 = mca_read_stored_pos(slot, 2);
|
|
|
|
pos3 = mca_read_stored_pos(slot, 3);
|
|
|
|
pos4 = mca_read_stored_pos(slot, 4);
|
|
|
|
|
|
|
|
/* ready for next probe */
|
|
|
|
slot++;
|
|
|
|
|
|
|
|
if (fd_mcs_adapters[loop].id == REPLY_ID) { /* reply card */
|
|
|
|
static int reply_irq[] = { 10, 11, 14, 15 };
|
|
|
|
|
|
|
|
bios = 0; /* no bios */
|
|
|
|
|
|
|
|
if (pos2 & 0x2)
|
|
|
|
port = ports[pos4 & 0x3];
|
|
|
|
else
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* can't really disable it, same as irq=10 */
|
|
|
|
irq = reply_irq[((pos4 >> 2) & 0x1) + 2 * ((pos4 >> 4) & 0x1)];
|
|
|
|
} else {
|
|
|
|
bios = addresses[pos2 >> 6];
|
|
|
|
port = ports[(pos2 >> 4) & 0x03];
|
|
|
|
irq = interrupts[(pos2 >> 1) & 0x07];
|
|
|
|
}
|
|
|
|
|
|
|
|
if (irq) {
|
|
|
|
/* claim the slot */
|
|
|
|
mca_set_adapter_name(slot - 1, fd_mcs_adapters[loop].name);
|
|
|
|
|
|
|
|
/* check irq/region */
|
2006-07-01 19:29:42 -07:00
|
|
|
if (request_irq(irq, fd_mcs_intr, IRQF_SHARED, "fd_mcs", hosts)) {
|
2005-04-16 15:20:36 -07:00
|
|
|
printk(KERN_ERR "fd_mcs: interrupt is not available, skipping...\n");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* request I/O region */
|
|
|
|
if (request_region(port, 0x10, "fd_mcs")) {
|
|
|
|
printk(KERN_ERR "fd_mcs: I/O region is already in use, skipping...\n");
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
/* register */
|
|
|
|
if (!(shpnt = scsi_register(tpnt, sizeof(struct fd_hostdata)))) {
|
|
|
|
printk(KERN_ERR "fd_mcs: scsi_register() failed\n");
|
|
|
|
release_region(port, 0x10);
|
|
|
|
free_irq(irq, hosts);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* save name */
|
|
|
|
strcpy(adapter_name, fd_mcs_adapters[loop].name);
|
|
|
|
|
|
|
|
/* chip/fifo */
|
|
|
|
chip = fd_mcs_adapters[loop].fd_chip;
|
|
|
|
/* use boot time value if available */
|
|
|
|
FIFO_COUNT = user_fifo_count ? user_fifo_count : fd_mcs_adapters[loop].fifo_count;
|
|
|
|
FIFO_Size = user_fifo_size ? user_fifo_size : fd_mcs_adapters[loop].fifo_size;
|
|
|
|
|
|
|
|
/* FIXME: Do we need to keep this bit of code inside NOT_USED around at all? */
|
|
|
|
#ifdef NOT_USED
|
|
|
|
/* *************************************************** */
|
|
|
|
/* Try to toggle 32-bit mode. This only
|
|
|
|
works on an 18c30 chip. (User reports
|
|
|
|
say this works, so we should switch to
|
|
|
|
it in the near future.) */
|
|
|
|
outb(0x80, port + IO_Control);
|
|
|
|
if ((inb(port + Configuration2) & 0x80) == 0x80) {
|
|
|
|
outb(0x00, port + IO_Control);
|
|
|
|
if ((inb(port + Configuration2) & 0x80) == 0x00) {
|
|
|
|
chip = tmc18c30;
|
|
|
|
FIFO_Size = 0x800; /* 2k FIFO */
|
|
|
|
|
|
|
|
printk("FIRST: chip=%s, fifo_size=0x%x\n", (chip == tmc18c30) ? "tmc18c30" : "tmc18c50", FIFO_Size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* That should have worked, but appears to
|
|
|
|
have problems. Let's assume it is an
|
|
|
|
18c30 if the RAM is disabled. */
|
|
|
|
|
|
|
|
if (inb(port + Configuration2) & 0x02) {
|
|
|
|
chip = tmc18c30;
|
|
|
|
FIFO_Size = 0x800; /* 2k FIFO */
|
|
|
|
|
|
|
|
printk("SECOND: chip=%s, fifo_size=0x%x\n", (chip == tmc18c30) ? "tmc18c30" : "tmc18c50", FIFO_Size);
|
|
|
|
}
|
|
|
|
/* *************************************************** */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* IBM/ANSI scsi scan ordering */
|
|
|
|
/* Stick this back in when the scsi.c changes are there */
|
|
|
|
shpnt->reverse_ordering = 1;
|
|
|
|
|
|
|
|
|
|
|
|
/* saving info */
|
|
|
|
hosts[found++] = shpnt;
|
|
|
|
|
|
|
|
shpnt->this_id = id;
|
|
|
|
shpnt->irq = irq;
|
|
|
|
shpnt->io_port = port;
|
|
|
|
shpnt->n_io_port = 0x10;
|
|
|
|
|
|
|
|
/* save */
|
|
|
|
bios_base = bios;
|
|
|
|
adapter_mask = (1 << id);
|
|
|
|
|
|
|
|
/* save more */
|
|
|
|
SCSI_Mode_Cntl_port = port + SCSI_Mode_Cntl;
|
|
|
|
FIFO_Data_Count_port = port + FIFO_Data_Count;
|
|
|
|
Interrupt_Cntl_port = port + Interrupt_Cntl;
|
|
|
|
Interrupt_Status_port = port + Interrupt_Status;
|
|
|
|
Interrupt_Cond_port = port + Interrupt_Cond;
|
|
|
|
Read_FIFO_port = port + Read_FIFO;
|
|
|
|
Read_SCSI_Data_port = port + Read_SCSI_Data;
|
|
|
|
SCSI_Cntl_port = port + SCSI_Cntl;
|
|
|
|
SCSI_Data_NoACK_port = port + SCSI_Data_NoACK;
|
|
|
|
SCSI_Status_port = port + SCSI_Status;
|
|
|
|
TMC_Cntl_port = port + TMC_Cntl;
|
|
|
|
TMC_Status_port = port + TMC_Status;
|
|
|
|
Write_FIFO_port = port + Write_FIFO;
|
|
|
|
Write_SCSI_Data_port = port + Write_SCSI_Data;
|
|
|
|
|
|
|
|
Bytes_Read = 0;
|
|
|
|
Bytes_Written = 0;
|
|
|
|
INTR_Processed = 0;
|
|
|
|
|
|
|
|
/* say something */
|
|
|
|
print_banner(shpnt);
|
|
|
|
|
|
|
|
/* reset */
|
|
|
|
outb(1, SCSI_Cntl_port);
|
|
|
|
do_pause(2);
|
|
|
|
outb(0, SCSI_Cntl_port);
|
|
|
|
do_pause(115);
|
|
|
|
outb(0, SCSI_Mode_Cntl_port);
|
|
|
|
outb(PARITY_MASK, TMC_Cntl_port);
|
|
|
|
/* done reset */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (found == FD_MAX_HOSTS) {
|
|
|
|
printk("fd_mcs: detecting reached max=%d host adapters.\n", FD_MAX_HOSTS);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return found;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const char *fd_mcs_info(struct Scsi_Host *shpnt)
|
|
|
|
{
|
|
|
|
return adapter_name;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int TOTAL_INTR = 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* inout : decides on the direction of the dataflow and the meaning of the
|
|
|
|
* variables
|
|
|
|
* buffer: If inout==FALSE data is being written to it else read from it
|
|
|
|
* *start: If inout==FALSE start of the valid data in the buffer
|
|
|
|
* offset: If inout==FALSE offset from the beginning of the imaginary file
|
|
|
|
* from which we start writing into the buffer
|
|
|
|
* length: If inout==FALSE max number of bytes to be written into the buffer
|
|
|
|
* else number of bytes in the buffer
|
|
|
|
*/
|
|
|
|
static int fd_mcs_proc_info(struct Scsi_Host *shpnt, char *buffer, char **start, off_t offset, int length, int inout)
|
|
|
|
{
|
|
|
|
int len = 0;
|
|
|
|
|
|
|
|
if (inout)
|
|
|
|
return (-ENOSYS);
|
|
|
|
|
|
|
|
*start = buffer + offset;
|
|
|
|
|
|
|
|
len += sprintf(buffer + len, "Future Domain MCS-600/700 Driver %s\n", DRIVER_VERSION);
|
|
|
|
len += sprintf(buffer + len, "HOST #%d: %s\n", shpnt->host_no, adapter_name);
|
|
|
|
len += sprintf(buffer + len, "FIFO Size=0x%x, FIFO Count=%d\n", FIFO_Size, FIFO_COUNT);
|
|
|
|
len += sprintf(buffer + len, "DriverCalls=%d, Interrupts=%d, BytesRead=%d, BytesWrite=%d\n\n", TOTAL_INTR, INTR_Processed, Bytes_Read, Bytes_Written);
|
|
|
|
|
|
|
|
if ((len -= offset) <= 0)
|
|
|
|
return 0;
|
|
|
|
if (len > length)
|
|
|
|
len = length;
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int fd_mcs_select(struct Scsi_Host *shpnt, int target)
|
|
|
|
{
|
|
|
|
int status;
|
|
|
|
unsigned long timeout;
|
|
|
|
|
|
|
|
outb(0x82, SCSI_Cntl_port); /* Bus Enable + Select */
|
|
|
|
outb(adapter_mask | (1 << target), SCSI_Data_NoACK_port);
|
|
|
|
|
|
|
|
/* Stop arbitration and enable parity */
|
|
|
|
outb(PARITY_MASK, TMC_Cntl_port);
|
|
|
|
|
|
|
|
timeout = 350; /* 350mS -- because of timeouts
|
|
|
|
(was 250mS) */
|
|
|
|
|
|
|
|
do {
|
|
|
|
status = inb(SCSI_Status_port); /* Read adapter status */
|
|
|
|
if (status & 1) { /* Busy asserted */
|
|
|
|
/* Enable SCSI Bus (on error, should make bus idle with 0) */
|
|
|
|
outb(0x80, SCSI_Cntl_port);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
udelay(1000); /* wait one msec */
|
|
|
|
} while (--timeout);
|
|
|
|
|
|
|
|
/* Make bus idle */
|
|
|
|
fd_mcs_make_bus_idle(shpnt);
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
if (!target)
|
|
|
|
printk("Selection failed\n");
|
|
|
|
#endif
|
|
|
|
#if ERRORS_ONLY
|
|
|
|
if (!target) {
|
|
|
|
static int flag = 0;
|
|
|
|
|
|
|
|
if (!flag) /* Skip first failure for all chips. */
|
|
|
|
++flag;
|
|
|
|
else
|
|
|
|
printk("fd_mcs: Selection failed\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void my_done(struct Scsi_Host *shpnt, int error)
|
|
|
|
{
|
|
|
|
if (in_command) {
|
|
|
|
in_command = 0;
|
|
|
|
outb(0x00, Interrupt_Cntl_port);
|
|
|
|
fd_mcs_make_bus_idle(shpnt);
|
|
|
|
current_SC->result = error;
|
|
|
|
current_SC->scsi_done(current_SC);
|
|
|
|
} else {
|
|
|
|
panic("fd_mcs: my_done() called outside of command\n");
|
|
|
|
}
|
|
|
|
#if DEBUG_RACE
|
|
|
|
in_interrupt_flag = 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
/* only my_done needs to be protected */
|
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.
The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around. On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).
Where appropriate, an arch may override the generic storage facility and do
something different with the variable. On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.
Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions. Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller. A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.
I've build this code with allyesconfig for x86_64 and i386. I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.
This will affect all archs. Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:
struct pt_regs *old_regs = set_irq_regs(regs);
And put the old one back at the end:
set_irq_regs(old_regs);
Don't pass regs through to generic_handle_irq() or __do_IRQ().
In timer_interrupt(), this sort of change will be necessary:
- update_process_times(user_mode(regs));
- profile_tick(CPU_PROFILING, regs);
+ update_process_times(user_mode(get_irq_regs()));
+ profile_tick(CPU_PROFILING);
I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().
Some notes on the interrupt handling in the drivers:
(*) input_dev() is now gone entirely. The regs pointer is no longer stored in
the input_dev struct.
(*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does
something different depending on whether it's been supplied with a regs
pointer or not.
(*) Various IRQ handler function pointers have been moved to type
irq_handler_t.
Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 14:55:46 +01:00
|
|
|
static irqreturn_t fd_mcs_intr(int irq, void *dev_id)
|
2005-04-16 15:20:36 -07:00
|
|
|
{
|
|
|
|
unsigned long flags;
|
|
|
|
int status;
|
|
|
|
int done = 0;
|
|
|
|
unsigned data_count, tmp_count;
|
|
|
|
|
|
|
|
int i = 0;
|
|
|
|
struct Scsi_Host *shpnt;
|
|
|
|
|
|
|
|
TOTAL_INTR++;
|
|
|
|
|
|
|
|
/* search for one adapter-response on shared interrupt */
|
|
|
|
while ((shpnt = hosts[i++])) {
|
|
|
|
if ((inb(TMC_Status_port)) & 1)
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* return if some other device on this IRQ caused the interrupt */
|
|
|
|
if (!shpnt) {
|
|
|
|
return IRQ_NONE;
|
|
|
|
}
|
|
|
|
|
|
|
|
INTR_Processed++;
|
|
|
|
|
|
|
|
outb(0x00, Interrupt_Cntl_port);
|
|
|
|
|
|
|
|
/* Abort calls my_done, so we do nothing here. */
|
|
|
|
if (current_SC->SCp.phase & aborted) {
|
|
|
|
#if DEBUG_ABORT
|
|
|
|
printk("Interrupt after abort, ignoring\n");
|
|
|
|
#endif
|
|
|
|
/* return IRQ_HANDLED; */
|
|
|
|
}
|
|
|
|
#if DEBUG_RACE
|
|
|
|
++in_interrupt_flag;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (current_SC->SCp.phase & in_arbitration) {
|
|
|
|
status = inb(TMC_Status_port); /* Read adapter status */
|
|
|
|
if (!(status & 0x02)) {
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk(" AFAIL ");
|
|
|
|
#endif
|
|
|
|
spin_lock_irqsave(shpnt->host_lock, flags);
|
|
|
|
my_done(shpnt, DID_BUS_BUSY << 16);
|
|
|
|
spin_unlock_irqrestore(shpnt->host_lock, flags);
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
current_SC->SCp.phase = in_selection;
|
|
|
|
|
|
|
|
outb(0x40 | FIFO_COUNT, Interrupt_Cntl_port);
|
|
|
|
|
|
|
|
outb(0x82, SCSI_Cntl_port); /* Bus Enable + Select */
|
2005-10-24 18:05:09 -04:00
|
|
|
outb(adapter_mask | (1 << scmd_id(current_SC)), SCSI_Data_NoACK_port);
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
/* Stop arbitration and enable parity */
|
|
|
|
outb(0x10 | PARITY_MASK, TMC_Cntl_port);
|
|
|
|
#if DEBUG_RACE
|
|
|
|
in_interrupt_flag = 0;
|
|
|
|
#endif
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
} else if (current_SC->SCp.phase & in_selection) {
|
|
|
|
status = inb(SCSI_Status_port);
|
|
|
|
if (!(status & 0x01)) {
|
|
|
|
/* Try again, for slow devices */
|
2005-10-24 18:05:09 -04:00
|
|
|
if (fd_mcs_select(shpnt, scmd_id(current_SC))) {
|
2005-04-16 15:20:36 -07:00
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk(" SFAIL ");
|
|
|
|
#endif
|
|
|
|
spin_lock_irqsave(shpnt->host_lock, flags);
|
|
|
|
my_done(shpnt, DID_NO_CONNECT << 16);
|
|
|
|
spin_unlock_irqrestore(shpnt->host_lock, flags);
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
} else {
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk(" AltSel ");
|
|
|
|
#endif
|
|
|
|
/* Stop arbitration and enable parity */
|
|
|
|
outb(0x10 | PARITY_MASK, TMC_Cntl_port);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
current_SC->SCp.phase = in_other;
|
|
|
|
outb(0x90 | FIFO_COUNT, Interrupt_Cntl_port);
|
|
|
|
outb(0x80, SCSI_Cntl_port);
|
|
|
|
#if DEBUG_RACE
|
|
|
|
in_interrupt_flag = 0;
|
|
|
|
#endif
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* current_SC->SCp.phase == in_other: this is the body of the routine */
|
|
|
|
|
|
|
|
status = inb(SCSI_Status_port);
|
|
|
|
|
|
|
|
if (status & 0x10) { /* REQ */
|
|
|
|
|
|
|
|
switch (status & 0x0e) {
|
|
|
|
|
|
|
|
case 0x08: /* COMMAND OUT */
|
|
|
|
outb(current_SC->cmnd[current_SC->SCp.sent_command++], Write_SCSI_Data_port);
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk("CMD = %x,", current_SC->cmnd[current_SC->SCp.sent_command - 1]);
|
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
case 0x00: /* DATA OUT -- tmc18c50/tmc18c30 only */
|
|
|
|
if (chip != tmc1800 && !current_SC->SCp.have_data_in) {
|
|
|
|
current_SC->SCp.have_data_in = -1;
|
|
|
|
outb(0xd0 | PARITY_MASK, TMC_Cntl_port);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0x04: /* DATA IN -- tmc18c50/tmc18c30 only */
|
|
|
|
if (chip != tmc1800 && !current_SC->SCp.have_data_in) {
|
|
|
|
current_SC->SCp.have_data_in = 1;
|
|
|
|
outb(0x90 | PARITY_MASK, TMC_Cntl_port);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 0x0c: /* STATUS IN */
|
|
|
|
current_SC->SCp.Status = inb(Read_SCSI_Data_port);
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk("Status = %x, ", current_SC->SCp.Status);
|
|
|
|
#endif
|
|
|
|
#if ERRORS_ONLY
|
|
|
|
if (current_SC->SCp.Status && current_SC->SCp.Status != 2 && current_SC->SCp.Status != 8) {
|
|
|
|
printk("ERROR fd_mcs: target = %d, command = %x, status = %x\n", current_SC->device->id, current_SC->cmnd[0], current_SC->SCp.Status);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
case 0x0a: /* MESSAGE OUT */
|
|
|
|
outb(MESSAGE_REJECT, Write_SCSI_Data_port); /* Reject */
|
|
|
|
break;
|
|
|
|
case 0x0e: /* MESSAGE IN */
|
|
|
|
current_SC->SCp.Message = inb(Read_SCSI_Data_port);
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk("Message = %x, ", current_SC->SCp.Message);
|
|
|
|
#endif
|
|
|
|
if (!current_SC->SCp.Message)
|
|
|
|
++done;
|
|
|
|
#if DEBUG_MESSAGES || EVERY_ACCESS
|
|
|
|
if (current_SC->SCp.Message) {
|
|
|
|
printk("fd_mcs: message = %x\n", current_SC->SCp.Message);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (chip == tmc1800 && !current_SC->SCp.have_data_in && (current_SC->SCp.sent_command >= current_SC->cmd_len)) {
|
|
|
|
/* We have to get the FIFO direction
|
|
|
|
correct, so I've made a table based
|
|
|
|
on the SCSI Standard of which commands
|
|
|
|
appear to require a DATA OUT phase.
|
|
|
|
*/
|
|
|
|
/*
|
|
|
|
p. 94: Command for all device types
|
|
|
|
CHANGE DEFINITION 40 DATA OUT
|
|
|
|
COMPARE 39 DATA OUT
|
|
|
|
COPY 18 DATA OUT
|
|
|
|
COPY AND VERIFY 3a DATA OUT
|
|
|
|
INQUIRY 12
|
|
|
|
LOG SELECT 4c DATA OUT
|
|
|
|
LOG SENSE 4d
|
|
|
|
MODE SELECT (6) 15 DATA OUT
|
|
|
|
MODE SELECT (10) 55 DATA OUT
|
|
|
|
MODE SENSE (6) 1a
|
|
|
|
MODE SENSE (10) 5a
|
|
|
|
READ BUFFER 3c
|
|
|
|
RECEIVE DIAGNOSTIC RESULTS 1c
|
|
|
|
REQUEST SENSE 03
|
|
|
|
SEND DIAGNOSTIC 1d DATA OUT
|
|
|
|
TEST UNIT READY 00
|
|
|
|
WRITE BUFFER 3b DATA OUT
|
|
|
|
|
|
|
|
p.178: Commands for direct-access devices (not listed on p. 94)
|
|
|
|
FORMAT UNIT 04 DATA OUT
|
|
|
|
LOCK-UNLOCK CACHE 36
|
|
|
|
PRE-FETCH 34
|
|
|
|
PREVENT-ALLOW MEDIUM REMOVAL 1e
|
|
|
|
READ (6)/RECEIVE 08
|
|
|
|
READ (10) 3c
|
|
|
|
READ CAPACITY 25
|
|
|
|
READ DEFECT DATA (10) 37
|
|
|
|
READ LONG 3e
|
|
|
|
REASSIGN BLOCKS 07 DATA OUT
|
|
|
|
RELEASE 17
|
|
|
|
RESERVE 16 DATA OUT
|
|
|
|
REZERO UNIT/REWIND 01
|
|
|
|
SEARCH DATA EQUAL (10) 31 DATA OUT
|
|
|
|
SEARCH DATA HIGH (10) 30 DATA OUT
|
|
|
|
SEARCH DATA LOW (10) 32 DATA OUT
|
|
|
|
SEEK (6) 0b
|
|
|
|
SEEK (10) 2b
|
|
|
|
SET LIMITS (10) 33
|
|
|
|
START STOP UNIT 1b
|
|
|
|
SYNCHRONIZE CACHE 35
|
|
|
|
VERIFY (10) 2f
|
|
|
|
WRITE (6)/PRINT/SEND 0a DATA OUT
|
|
|
|
WRITE (10)/SEND 2a DATA OUT
|
|
|
|
WRITE AND VERIFY (10) 2e DATA OUT
|
|
|
|
WRITE LONG 3f DATA OUT
|
|
|
|
WRITE SAME 41 DATA OUT ?
|
|
|
|
|
|
|
|
p. 261: Commands for sequential-access devices (not previously listed)
|
|
|
|
ERASE 19
|
|
|
|
LOAD UNLOAD 1b
|
|
|
|
LOCATE 2b
|
|
|
|
READ BLOCK LIMITS 05
|
|
|
|
READ POSITION 34
|
|
|
|
READ REVERSE 0f
|
|
|
|
RECOVER BUFFERED DATA 14
|
|
|
|
SPACE 11
|
|
|
|
WRITE FILEMARKS 10 ?
|
|
|
|
|
|
|
|
p. 298: Commands for printer devices (not previously listed)
|
|
|
|
****** NOT SUPPORTED BY THIS DRIVER, since 0b is SEEK (6) *****
|
|
|
|
SLEW AND PRINT 0b DATA OUT -- same as seek
|
|
|
|
STOP PRINT 1b
|
|
|
|
SYNCHRONIZE BUFFER 10
|
|
|
|
|
|
|
|
p. 315: Commands for processor devices (not previously listed)
|
|
|
|
|
|
|
|
p. 321: Commands for write-once devices (not previously listed)
|
|
|
|
MEDIUM SCAN 38
|
|
|
|
READ (12) a8
|
|
|
|
SEARCH DATA EQUAL (12) b1 DATA OUT
|
|
|
|
SEARCH DATA HIGH (12) b0 DATA OUT
|
|
|
|
SEARCH DATA LOW (12) b2 DATA OUT
|
|
|
|
SET LIMITS (12) b3
|
|
|
|
VERIFY (12) af
|
|
|
|
WRITE (12) aa DATA OUT
|
|
|
|
WRITE AND VERIFY (12) ae DATA OUT
|
|
|
|
|
|
|
|
p. 332: Commands for CD-ROM devices (not previously listed)
|
|
|
|
PAUSE/RESUME 4b
|
|
|
|
PLAY AUDIO (10) 45
|
|
|
|
PLAY AUDIO (12) a5
|
|
|
|
PLAY AUDIO MSF 47
|
|
|
|
PLAY TRACK RELATIVE (10) 49
|
|
|
|
PLAY TRACK RELATIVE (12) a9
|
|
|
|
READ HEADER 44
|
|
|
|
READ SUB-CHANNEL 42
|
|
|
|
READ TOC 43
|
|
|
|
|
|
|
|
p. 370: Commands for scanner devices (not previously listed)
|
|
|
|
GET DATA BUFFER STATUS 34
|
|
|
|
GET WINDOW 25
|
|
|
|
OBJECT POSITION 31
|
|
|
|
SCAN 1b
|
|
|
|
SET WINDOW 24 DATA OUT
|
|
|
|
|
|
|
|
p. 391: Commands for optical memory devices (not listed)
|
|
|
|
ERASE (10) 2c
|
|
|
|
ERASE (12) ac
|
|
|
|
MEDIUM SCAN 38 DATA OUT
|
|
|
|
READ DEFECT DATA (12) b7
|
|
|
|
READ GENERATION 29
|
|
|
|
READ UPDATED BLOCK 2d
|
|
|
|
UPDATE BLOCK 3d DATA OUT
|
|
|
|
|
|
|
|
p. 419: Commands for medium changer devices (not listed)
|
|
|
|
EXCHANGE MEDIUM 46
|
|
|
|
INITIALIZE ELEMENT STATUS 07
|
|
|
|
MOVE MEDIUM a5
|
|
|
|
POSITION TO ELEMENT 2b
|
|
|
|
READ ELEMENT STATUS b8
|
|
|
|
REQUEST VOL. ELEMENT ADDRESS b5
|
|
|
|
SEND VOLUME TAG b6 DATA OUT
|
|
|
|
|
|
|
|
p. 454: Commands for communications devices (not listed previously)
|
|
|
|
GET MESSAGE (6) 08
|
|
|
|
GET MESSAGE (10) 28
|
|
|
|
GET MESSAGE (12) a8
|
|
|
|
*/
|
|
|
|
|
|
|
|
switch (current_SC->cmnd[0]) {
|
|
|
|
case CHANGE_DEFINITION:
|
|
|
|
case COMPARE:
|
|
|
|
case COPY:
|
|
|
|
case COPY_VERIFY:
|
|
|
|
case LOG_SELECT:
|
|
|
|
case MODE_SELECT:
|
|
|
|
case MODE_SELECT_10:
|
|
|
|
case SEND_DIAGNOSTIC:
|
|
|
|
case WRITE_BUFFER:
|
|
|
|
|
|
|
|
case FORMAT_UNIT:
|
|
|
|
case REASSIGN_BLOCKS:
|
|
|
|
case RESERVE:
|
|
|
|
case SEARCH_EQUAL:
|
|
|
|
case SEARCH_HIGH:
|
|
|
|
case SEARCH_LOW:
|
|
|
|
case WRITE_6:
|
|
|
|
case WRITE_10:
|
|
|
|
case WRITE_VERIFY:
|
|
|
|
case 0x3f:
|
|
|
|
case 0x41:
|
|
|
|
|
|
|
|
case 0xb1:
|
|
|
|
case 0xb0:
|
|
|
|
case 0xb2:
|
|
|
|
case 0xaa:
|
|
|
|
case 0xae:
|
|
|
|
|
|
|
|
case 0x24:
|
|
|
|
|
|
|
|
case 0x38:
|
|
|
|
case 0x3d:
|
|
|
|
|
|
|
|
case 0xb6:
|
|
|
|
|
|
|
|
case 0xea: /* alternate number for WRITE LONG */
|
|
|
|
|
|
|
|
current_SC->SCp.have_data_in = -1;
|
|
|
|
outb(0xd0 | PARITY_MASK, TMC_Cntl_port);
|
|
|
|
break;
|
|
|
|
|
|
|
|
case 0x00:
|
|
|
|
default:
|
|
|
|
|
|
|
|
current_SC->SCp.have_data_in = 1;
|
|
|
|
outb(0x90 | PARITY_MASK, TMC_Cntl_port);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (current_SC->SCp.have_data_in == -1) { /* DATA OUT */
|
|
|
|
while ((data_count = FIFO_Size - inw(FIFO_Data_Count_port)) > 512) {
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk("DC=%d, ", data_count);
|
|
|
|
#endif
|
|
|
|
if (data_count > current_SC->SCp.this_residual)
|
|
|
|
data_count = current_SC->SCp.this_residual;
|
|
|
|
if (data_count > 0) {
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk("%d OUT, ", data_count);
|
|
|
|
#endif
|
|
|
|
if (data_count == 1) {
|
|
|
|
Bytes_Written++;
|
|
|
|
|
|
|
|
outb(*current_SC->SCp.ptr++, Write_FIFO_port);
|
|
|
|
--current_SC->SCp.this_residual;
|
|
|
|
} else {
|
|
|
|
data_count >>= 1;
|
|
|
|
tmp_count = data_count << 1;
|
|
|
|
outsw(Write_FIFO_port, current_SC->SCp.ptr, data_count);
|
|
|
|
current_SC->SCp.ptr += tmp_count;
|
|
|
|
Bytes_Written += tmp_count;
|
|
|
|
current_SC->SCp.this_residual -= tmp_count;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!current_SC->SCp.this_residual) {
|
|
|
|
if (current_SC->SCp.buffers_residual) {
|
|
|
|
--current_SC->SCp.buffers_residual;
|
|
|
|
++current_SC->SCp.buffer;
|
2007-10-22 21:19:53 +02:00
|
|
|
current_SC->SCp.ptr = sg_virt(current_SC->SCp.buffer);
|
2005-04-16 15:20:36 -07:00
|
|
|
current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
|
|
|
|
} else
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else if (current_SC->SCp.have_data_in == 1) { /* DATA IN */
|
|
|
|
while ((data_count = inw(FIFO_Data_Count_port)) > 0) {
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk("DC=%d, ", data_count);
|
|
|
|
#endif
|
|
|
|
if (data_count > current_SC->SCp.this_residual)
|
|
|
|
data_count = current_SC->SCp.this_residual;
|
|
|
|
if (data_count) {
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk("%d IN, ", data_count);
|
|
|
|
#endif
|
|
|
|
if (data_count == 1) {
|
|
|
|
Bytes_Read++;
|
|
|
|
*current_SC->SCp.ptr++ = inb(Read_FIFO_port);
|
|
|
|
--current_SC->SCp.this_residual;
|
|
|
|
} else {
|
|
|
|
data_count >>= 1; /* Number of words */
|
|
|
|
tmp_count = data_count << 1;
|
|
|
|
insw(Read_FIFO_port, current_SC->SCp.ptr, data_count);
|
|
|
|
current_SC->SCp.ptr += tmp_count;
|
|
|
|
Bytes_Read += tmp_count;
|
|
|
|
current_SC->SCp.this_residual -= tmp_count;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!current_SC->SCp.this_residual && current_SC->SCp.buffers_residual) {
|
|
|
|
--current_SC->SCp.buffers_residual;
|
|
|
|
++current_SC->SCp.buffer;
|
2007-10-22 21:19:53 +02:00
|
|
|
current_SC->SCp.ptr = sg_virt(current_SC->SCp.buffer);
|
2005-04-16 15:20:36 -07:00
|
|
|
current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (done) {
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk(" ** IN DONE %d ** ", current_SC->SCp.have_data_in);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk("BEFORE MY_DONE. . .");
|
|
|
|
#endif
|
|
|
|
spin_lock_irqsave(shpnt->host_lock, flags);
|
|
|
|
my_done(shpnt, (current_SC->SCp.Status & 0xff)
|
|
|
|
| ((current_SC->SCp.Message & 0xff) << 8) | (DID_OK << 16));
|
|
|
|
spin_unlock_irqrestore(shpnt->host_lock, flags);
|
|
|
|
#if EVERY_ACCESS
|
|
|
|
printk("RETURNING.\n");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
} else {
|
|
|
|
if (current_SC->SCp.phase & disconnect) {
|
|
|
|
outb(0xd0 | FIFO_COUNT, Interrupt_Cntl_port);
|
|
|
|
outb(0x00, SCSI_Cntl_port);
|
|
|
|
} else {
|
|
|
|
outb(0x90 | FIFO_COUNT, Interrupt_Cntl_port);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#if DEBUG_RACE
|
|
|
|
in_interrupt_flag = 0;
|
|
|
|
#endif
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int fd_mcs_release(struct Scsi_Host *shpnt)
|
|
|
|
{
|
|
|
|
int i, this_host, irq_usage;
|
|
|
|
|
|
|
|
release_region(shpnt->io_port, shpnt->n_io_port);
|
|
|
|
|
|
|
|
this_host = -1;
|
|
|
|
irq_usage = 0;
|
|
|
|
for (i = 0; i < found; i++) {
|
|
|
|
if (shpnt == hosts[i])
|
|
|
|
this_host = i;
|
|
|
|
if (shpnt->irq == hosts[i]->irq)
|
|
|
|
irq_usage++;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* only for the last one */
|
|
|
|
if (1 == irq_usage)
|
|
|
|
free_irq(shpnt->irq, hosts);
|
|
|
|
|
|
|
|
found--;
|
|
|
|
|
|
|
|
for (i = this_host; i < found; i++)
|
|
|
|
hosts[i] = hosts[i + 1];
|
|
|
|
|
|
|
|
hosts[found] = NULL;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int fd_mcs_queue(Scsi_Cmnd * SCpnt, void (*done) (Scsi_Cmnd *))
|
|
|
|
{
|
|
|
|
struct Scsi_Host *shpnt = SCpnt->device->host;
|
|
|
|
|
|
|
|
if (in_command) {
|
|
|
|
panic("fd_mcs: fd_mcs_queue() NOT REENTRANT!\n");
|
|
|
|
}
|
|
|
|
#if EVERY_ACCESS
|
2007-09-09 21:12:24 +03:00
|
|
|
printk("queue: target = %d cmnd = 0x%02x pieces = %d size = %u\n",
|
|
|
|
SCpnt->target, *(unsigned char *) SCpnt->cmnd,
|
|
|
|
scsi_sg_count(SCpnt), scsi_bufflen(SCpnt));
|
2005-04-16 15:20:36 -07:00
|
|
|
#endif
|
|
|
|
|
|
|
|
fd_mcs_make_bus_idle(shpnt);
|
|
|
|
|
|
|
|
SCpnt->scsi_done = done; /* Save this for the done function */
|
|
|
|
current_SC = SCpnt;
|
|
|
|
|
|
|
|
/* Initialize static data */
|
|
|
|
|
2007-09-09 21:12:24 +03:00
|
|
|
if (scsi_bufflen(current_SC)) {
|
|
|
|
current_SC->SCp.buffer = scsi_sglist(current_SC);
|
2007-10-22 21:19:53 +02:00
|
|
|
current_SC->SCp.ptr = sg_virt(current_SC->SCp.buffer);
|
2005-04-16 15:20:36 -07:00
|
|
|
current_SC->SCp.this_residual = current_SC->SCp.buffer->length;
|
2007-09-09 21:12:24 +03:00
|
|
|
current_SC->SCp.buffers_residual = scsi_sg_count(current_SC) - 1;
|
2005-04-16 15:20:36 -07:00
|
|
|
} else {
|
2007-09-09 21:12:24 +03:00
|
|
|
current_SC->SCp.ptr = NULL;
|
|
|
|
current_SC->SCp.this_residual = 0;
|
2005-04-16 15:20:36 -07:00
|
|
|
current_SC->SCp.buffer = NULL;
|
|
|
|
current_SC->SCp.buffers_residual = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
current_SC->SCp.Status = 0;
|
|
|
|
current_SC->SCp.Message = 0;
|
|
|
|
current_SC->SCp.have_data_in = 0;
|
|
|
|
current_SC->SCp.sent_command = 0;
|
|
|
|
current_SC->SCp.phase = in_arbitration;
|
|
|
|
|
|
|
|
/* Start arbitration */
|
|
|
|
outb(0x00, Interrupt_Cntl_port);
|
|
|
|
outb(0x00, SCSI_Cntl_port); /* Disable data drivers */
|
|
|
|
outb(adapter_mask, SCSI_Data_NoACK_port); /* Set our id bit */
|
|
|
|
in_command = 1;
|
|
|
|
outb(0x20, Interrupt_Cntl_port);
|
|
|
|
outb(0x14 | PARITY_MASK, TMC_Cntl_port); /* Start arbitration */
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if DEBUG_ABORT || DEBUG_RESET
|
|
|
|
static void fd_mcs_print_info(Scsi_Cmnd * SCpnt)
|
|
|
|
{
|
|
|
|
unsigned int imr;
|
|
|
|
unsigned int irr;
|
|
|
|
unsigned int isr;
|
|
|
|
struct Scsi_Host *shpnt = SCpnt->host;
|
|
|
|
|
|
|
|
if (!SCpnt || !SCpnt->host) {
|
|
|
|
printk("fd_mcs: cannot provide detailed information\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
printk("%s\n", fd_mcs_info(SCpnt->host));
|
|
|
|
print_banner(SCpnt->host);
|
|
|
|
switch (SCpnt->SCp.phase) {
|
|
|
|
case in_arbitration:
|
|
|
|
printk("arbitration ");
|
|
|
|
break;
|
|
|
|
case in_selection:
|
|
|
|
printk("selection ");
|
|
|
|
break;
|
|
|
|
case in_other:
|
|
|
|
printk("other ");
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
printk("unknown ");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2007-09-09 21:12:24 +03:00
|
|
|
printk("(%d), target = %d cmnd = 0x%02x pieces = %d size = %u\n",
|
|
|
|
SCpnt->SCp.phase, SCpnt->device->id, *(unsigned char *) SCpnt->cmnd,
|
|
|
|
scsi_sg_count(SCpnt), scsi_bufflen(SCpnt));
|
2005-04-16 15:20:36 -07:00
|
|
|
printk("sent_command = %d, have_data_in = %d, timeout = %d\n", SCpnt->SCp.sent_command, SCpnt->SCp.have_data_in, SCpnt->timeout);
|
|
|
|
#if DEBUG_RACE
|
|
|
|
printk("in_interrupt_flag = %d\n", in_interrupt_flag);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
imr = (inb(0x0a1) << 8) + inb(0x21);
|
|
|
|
outb(0x0a, 0xa0);
|
|
|
|
irr = inb(0xa0) << 8;
|
|
|
|
outb(0x0a, 0x20);
|
|
|
|
irr += inb(0x20);
|
|
|
|
outb(0x0b, 0xa0);
|
|
|
|
isr = inb(0xa0) << 8;
|
|
|
|
outb(0x0b, 0x20);
|
|
|
|
isr += inb(0x20);
|
|
|
|
|
|
|
|
/* Print out interesting information */
|
|
|
|
printk("IMR = 0x%04x", imr);
|
|
|
|
if (imr & (1 << shpnt->irq))
|
|
|
|
printk(" (masked)");
|
|
|
|
printk(", IRR = 0x%04x, ISR = 0x%04x\n", irr, isr);
|
|
|
|
|
|
|
|
printk("SCSI Status = 0x%02x\n", inb(SCSI_Status_port));
|
|
|
|
printk("TMC Status = 0x%02x", inb(TMC_Status_port));
|
|
|
|
if (inb(TMC_Status_port) & 1)
|
|
|
|
printk(" (interrupt)");
|
|
|
|
printk("\n");
|
|
|
|
printk("Interrupt Status = 0x%02x", inb(Interrupt_Status_port));
|
|
|
|
if (inb(Interrupt_Status_port) & 0x08)
|
|
|
|
printk(" (enabled)");
|
|
|
|
printk("\n");
|
|
|
|
if (chip == tmc18c50 || chip == tmc18c30) {
|
|
|
|
printk("FIFO Status = 0x%02x\n", inb(shpnt->io_port + FIFO_Status));
|
|
|
|
printk("Int. Condition = 0x%02x\n", inb(shpnt->io_port + Interrupt_Cond));
|
|
|
|
}
|
|
|
|
printk("Configuration 1 = 0x%02x\n", inb(shpnt->io_port + Configuration1));
|
|
|
|
if (chip == tmc18c50 || chip == tmc18c30)
|
|
|
|
printk("Configuration 2 = 0x%02x\n", inb(shpnt->io_port + Configuration2));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static int fd_mcs_abort(Scsi_Cmnd * SCpnt)
|
|
|
|
{
|
|
|
|
struct Scsi_Host *shpnt = SCpnt->device->host;
|
|
|
|
|
|
|
|
unsigned long flags;
|
|
|
|
#if EVERY_ACCESS || ERRORS_ONLY || DEBUG_ABORT
|
|
|
|
printk("fd_mcs: abort ");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
spin_lock_irqsave(shpnt->host_lock, flags);
|
|
|
|
if (!in_command) {
|
|
|
|
#if EVERY_ACCESS || ERRORS_ONLY
|
|
|
|
printk(" (not in command)\n");
|
|
|
|
#endif
|
|
|
|
spin_unlock_irqrestore(shpnt->host_lock, flags);
|
|
|
|
return FAILED;
|
|
|
|
} else
|
|
|
|
printk("\n");
|
|
|
|
|
|
|
|
#if DEBUG_ABORT
|
|
|
|
fd_mcs_print_info(SCpnt);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
fd_mcs_make_bus_idle(shpnt);
|
|
|
|
|
|
|
|
current_SC->SCp.phase |= aborted;
|
|
|
|
|
|
|
|
current_SC->result = DID_ABORT << 16;
|
|
|
|
|
|
|
|
/* Aborts are not done well. . . */
|
|
|
|
my_done(shpnt, DID_ABORT << 16);
|
|
|
|
|
|
|
|
spin_unlock_irqrestore(shpnt->host_lock, flags);
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int fd_mcs_bus_reset(Scsi_Cmnd * SCpnt) {
|
|
|
|
struct Scsi_Host *shpnt = SCpnt->device->host;
|
2005-05-28 07:56:31 -04:00
|
|
|
unsigned long flags;
|
2005-04-16 15:20:36 -07:00
|
|
|
|
|
|
|
#if DEBUG_RESET
|
|
|
|
static int called_once = 0;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ERRORS_ONLY
|
|
|
|
if (SCpnt)
|
|
|
|
printk("fd_mcs: SCSI Bus Reset\n");
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if DEBUG_RESET
|
|
|
|
if (called_once)
|
|
|
|
fd_mcs_print_info(current_SC);
|
|
|
|
called_once = 1;
|
|
|
|
#endif
|
|
|
|
|
2005-05-28 07:56:31 -04:00
|
|
|
spin_lock_irqsave(shpnt->host_lock, flags);
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
outb(1, SCSI_Cntl_port);
|
|
|
|
do_pause(2);
|
|
|
|
outb(0, SCSI_Cntl_port);
|
|
|
|
do_pause(115);
|
|
|
|
outb(0, SCSI_Mode_Cntl_port);
|
|
|
|
outb(PARITY_MASK, TMC_Cntl_port);
|
|
|
|
|
2005-05-28 07:56:31 -04:00
|
|
|
spin_unlock_irqrestore(shpnt->host_lock, flags);
|
|
|
|
|
2005-04-16 15:20:36 -07:00
|
|
|
/* Unless this is the very first call (i.e., SCPnt == NULL), everything
|
|
|
|
is probably hosed at this point. We will, however, try to keep
|
|
|
|
things going by informing the high-level code that we need help. */
|
|
|
|
return SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
#include <scsi/scsi_ioctl.h>
|
|
|
|
|
|
|
|
static int fd_mcs_biosparam(struct scsi_device * disk, struct block_device *bdev,
|
|
|
|
sector_t capacity, int *info_array)
|
|
|
|
{
|
|
|
|
unsigned char *p = scsi_bios_ptable(bdev);
|
|
|
|
int size = capacity;
|
|
|
|
|
|
|
|
/* BIOS >= 3.4 for MCA cards */
|
|
|
|
/* This algorithm was provided by Future Domain (much thanks!). */
|
|
|
|
|
|
|
|
if (p && p[65] == 0xaa && p[64] == 0x55 /* Partition table valid */
|
|
|
|
&& p[4]) { /* Partition type */
|
|
|
|
/* The partition table layout is as follows:
|
|
|
|
|
|
|
|
Start: 0x1b3h
|
|
|
|
Offset: 0 = partition status
|
|
|
|
1 = starting head
|
|
|
|
2 = starting sector and cylinder (word, encoded)
|
|
|
|
4 = partition type
|
|
|
|
5 = ending head
|
|
|
|
6 = ending sector and cylinder (word, encoded)
|
|
|
|
8 = starting absolute sector (double word)
|
|
|
|
c = number of sectors (double word)
|
|
|
|
Signature: 0x1fe = 0x55aa
|
|
|
|
|
|
|
|
So, this algorithm assumes:
|
|
|
|
1) the first partition table is in use,
|
|
|
|
2) the data in the first entry is correct, and
|
|
|
|
3) partitions never divide cylinders
|
|
|
|
|
|
|
|
Note that (1) may be FALSE for NetBSD (and other BSD flavors),
|
|
|
|
as well as for Linux. Note also, that Linux doesn't pay any
|
|
|
|
attention to the fields that are used by this algorithm -- it
|
|
|
|
only uses the absolute sector data. Recent versions of Linux's
|
|
|
|
fdisk(1) will fill this data in correctly, and forthcoming
|
|
|
|
versions will check for consistency.
|
|
|
|
|
|
|
|
Checking for a non-zero partition type is not part of the
|
|
|
|
Future Domain algorithm, but it seemed to be a reasonable thing
|
|
|
|
to do, especially in the Linux and BSD worlds. */
|
|
|
|
|
|
|
|
info_array[0] = p[5] + 1; /* heads */
|
|
|
|
info_array[1] = p[6] & 0x3f; /* sectors */
|
|
|
|
} else {
|
|
|
|
/* Note that this new method guarantees that there will always be
|
|
|
|
less than 1024 cylinders on a platter. This is good for drives
|
|
|
|
up to approximately 7.85GB (where 1GB = 1024 * 1024 kB). */
|
|
|
|
if ((unsigned int) size >= 0x7e0000U)
|
|
|
|
{
|
|
|
|
info_array[0] = 0xff; /* heads = 255 */
|
|
|
|
info_array[1] = 0x3f; /* sectors = 63 */
|
|
|
|
} else if ((unsigned int) size >= 0x200000U) {
|
|
|
|
info_array[0] = 0x80; /* heads = 128 */
|
|
|
|
info_array[1] = 0x3f; /* sectors = 63 */
|
|
|
|
} else {
|
|
|
|
info_array[0] = 0x40; /* heads = 64 */
|
|
|
|
info_array[1] = 0x20; /* sectors = 32 */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* For both methods, compute the cylinders */
|
|
|
|
info_array[2] = (unsigned int) size / (info_array[0] * info_array[1]);
|
|
|
|
kfree(p);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2005-10-31 18:31:40 +01:00
|
|
|
static struct scsi_host_template driver_template = {
|
2005-04-16 15:20:36 -07:00
|
|
|
.proc_name = "fd_mcs",
|
|
|
|
.proc_info = fd_mcs_proc_info,
|
|
|
|
.detect = fd_mcs_detect,
|
|
|
|
.release = fd_mcs_release,
|
|
|
|
.info = fd_mcs_info,
|
|
|
|
.queuecommand = fd_mcs_queue,
|
|
|
|
.eh_abort_handler = fd_mcs_abort,
|
|
|
|
.eh_bus_reset_handler = fd_mcs_bus_reset,
|
|
|
|
.bios_param = fd_mcs_biosparam,
|
|
|
|
.can_queue = 1,
|
|
|
|
.this_id = 7,
|
|
|
|
.sg_tablesize = 64,
|
|
|
|
.cmd_per_lun = 1,
|
|
|
|
.use_clustering = DISABLE_CLUSTERING,
|
|
|
|
};
|
|
|
|
#include "scsi_module.c"
|
2005-09-13 21:43:56 -07:00
|
|
|
|
|
|
|
MODULE_LICENSE("GPL");
|