768 lines
18 KiB
C
Raw Normal View History

/*
* Elonics E4000 silicon tuner driver
*
* Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "e4000_priv.h"
static int e4000_init(struct e4000_dev *dev)
{
struct i2c_client *client = dev->client;
int ret;
dev_dbg(&client->dev, "\n");
/* reset */
ret = regmap_write(dev->regmap, 0x00, 0x01);
if (ret)
goto err;
/* disable output clock */
ret = regmap_write(dev->regmap, 0x06, 0x00);
if (ret)
goto err;
ret = regmap_write(dev->regmap, 0x7a, 0x96);
if (ret)
goto err;
/* configure gains */
ret = regmap_bulk_write(dev->regmap, 0x7e, "\x01\xfe", 2);
if (ret)
goto err;
ret = regmap_write(dev->regmap, 0x82, 0x00);
if (ret)
goto err;
ret = regmap_write(dev->regmap, 0x24, 0x05);
if (ret)
goto err;
ret = regmap_bulk_write(dev->regmap, 0x87, "\x20\x01", 2);
if (ret)
goto err;
ret = regmap_bulk_write(dev->regmap, 0x9f, "\x7f\x07", 2);
if (ret)
goto err;
/* DC offset control */
ret = regmap_write(dev->regmap, 0x2d, 0x1f);
if (ret)
goto err;
ret = regmap_bulk_write(dev->regmap, 0x70, "\x01\x01", 2);
if (ret)
goto err;
/* gain control */
ret = regmap_write(dev->regmap, 0x1a, 0x17);
if (ret)
goto err;
ret = regmap_write(dev->regmap, 0x1f, 0x1a);
if (ret)
goto err;
dev->active = true;
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int e4000_sleep(struct e4000_dev *dev)
{
struct i2c_client *client = dev->client;
int ret;
dev_dbg(&client->dev, "\n");
dev->active = false;
ret = regmap_write(dev->regmap, 0x00, 0x00);
if (ret)
goto err;
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int e4000_set_params(struct e4000_dev *dev)
{
struct i2c_client *client = dev->client;
int ret, i;
unsigned int div_n, k, k_cw, div_out;
u64 f_vco;
u8 buf[5], i_data[4], q_data[4];
if (!dev->active) {
dev_dbg(&client->dev, "tuner is sleeping\n");
return 0;
}
/* gain control manual */
ret = regmap_write(dev->regmap, 0x1a, 0x00);
if (ret)
goto err;
/*
* Fractional-N synthesizer
*
* +----------------------------+
* v |
* Fref +----+ +-------+ +------+ +---+
* ------> | PD | --> | VCO | ------> | /N.F | <-- | K |
* +----+ +-------+ +------+ +---+
* |
* |
* v
* +-------+ Fout
* | /Rout | ------>
* +-------+
*/
for (i = 0; i < ARRAY_SIZE(e4000_pll_lut); i++) {
if (dev->f_frequency <= e4000_pll_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_pll_lut)) {
ret = -EINVAL;
goto err;
}
#define F_REF dev->clk
div_out = e4000_pll_lut[i].div_out;
f_vco = (u64) dev->f_frequency * div_out;
/* calculate PLL integer and fractional control word */
div_n = div_u64_rem(f_vco, F_REF, &k);
k_cw = div_u64((u64) k * 0x10000, F_REF);
dev_dbg(&client->dev,
"frequency=%u bandwidth=%u f_vco=%llu F_REF=%u div_n=%u k=%u k_cw=%04x div_out=%u\n",
dev->f_frequency, dev->f_bandwidth, f_vco, F_REF, div_n, k,
k_cw, div_out);
buf[0] = div_n;
buf[1] = (k_cw >> 0) & 0xff;
buf[2] = (k_cw >> 8) & 0xff;
buf[3] = 0x00;
buf[4] = e4000_pll_lut[i].div_out_reg;
ret = regmap_bulk_write(dev->regmap, 0x09, buf, 5);
if (ret)
goto err;
/* LNA filter (RF filter) */
for (i = 0; i < ARRAY_SIZE(e400_lna_filter_lut); i++) {
if (dev->f_frequency <= e400_lna_filter_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e400_lna_filter_lut)) {
ret = -EINVAL;
goto err;
}
ret = regmap_write(dev->regmap, 0x10, e400_lna_filter_lut[i].val);
if (ret)
goto err;
/* IF filters */
for (i = 0; i < ARRAY_SIZE(e4000_if_filter_lut); i++) {
if (dev->f_bandwidth <= e4000_if_filter_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_if_filter_lut)) {
ret = -EINVAL;
goto err;
}
buf[0] = e4000_if_filter_lut[i].reg11_val;
buf[1] = e4000_if_filter_lut[i].reg12_val;
ret = regmap_bulk_write(dev->regmap, 0x11, buf, 2);
if (ret)
goto err;
/* frequency band */
for (i = 0; i < ARRAY_SIZE(e4000_band_lut); i++) {
if (dev->f_frequency <= e4000_band_lut[i].freq)
break;
}
if (i == ARRAY_SIZE(e4000_band_lut)) {
ret = -EINVAL;
goto err;
}
ret = regmap_write(dev->regmap, 0x07, e4000_band_lut[i].reg07_val);
if (ret)
goto err;
ret = regmap_write(dev->regmap, 0x78, e4000_band_lut[i].reg78_val);
if (ret)
goto err;
/* DC offset */
for (i = 0; i < 4; i++) {
if (i == 0)
ret = regmap_bulk_write(dev->regmap, 0x15, "\x00\x7e\x24", 3);
else if (i == 1)
ret = regmap_bulk_write(dev->regmap, 0x15, "\x00\x7f", 2);
else if (i == 2)
ret = regmap_bulk_write(dev->regmap, 0x15, "\x01", 1);
else
ret = regmap_bulk_write(dev->regmap, 0x16, "\x7e", 1);
if (ret)
goto err;
ret = regmap_write(dev->regmap, 0x29, 0x01);
if (ret)
goto err;
ret = regmap_bulk_read(dev->regmap, 0x2a, buf, 3);
if (ret)
goto err;
i_data[i] = (((buf[2] >> 0) & 0x3) << 6) | (buf[0] & 0x3f);
q_data[i] = (((buf[2] >> 4) & 0x3) << 6) | (buf[1] & 0x3f);
}
swap(q_data[2], q_data[3]);
swap(i_data[2], i_data[3]);
ret = regmap_bulk_write(dev->regmap, 0x50, q_data, 4);
if (ret)
goto err;
ret = regmap_bulk_write(dev->regmap, 0x60, i_data, 4);
if (ret)
goto err;
/* gain control auto */
ret = regmap_write(dev->regmap, 0x1a, 0x17);
if (ret)
goto err;
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
/*
* V4L2 API
*/
#if IS_ENABLED(CONFIG_VIDEO_V4L2)
static const struct v4l2_frequency_band bands[] = {
{
.type = V4L2_TUNER_RF,
.index = 0,
.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
.rangelow = 59000000,
.rangehigh = 1105000000,
},
{
.type = V4L2_TUNER_RF,
.index = 1,
.capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS,
.rangelow = 1249000000,
.rangehigh = 2208000000UL,
},
};
static inline struct e4000_dev *e4000_subdev_to_dev(struct v4l2_subdev *sd)
{
return container_of(sd, struct e4000_dev, sd);
}
static int e4000_s_power(struct v4l2_subdev *sd, int on)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
int ret;
dev_dbg(&client->dev, "on=%d\n", on);
if (on)
ret = e4000_init(dev);
else
ret = e4000_sleep(dev);
if (ret)
return ret;
return e4000_set_params(dev);
}
static const struct v4l2_subdev_core_ops e4000_subdev_core_ops = {
.s_power = e4000_s_power,
};
static int e4000_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *v)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
dev_dbg(&client->dev, "index=%d\n", v->index);
strlcpy(v->name, "Elonics E4000", sizeof(v->name));
v->type = V4L2_TUNER_RF;
v->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS;
v->rangelow = bands[0].rangelow;
v->rangehigh = bands[1].rangehigh;
return 0;
}
static int e4000_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *v)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
dev_dbg(&client->dev, "index=%d\n", v->index);
return 0;
}
static int e4000_g_frequency(struct v4l2_subdev *sd, struct v4l2_frequency *f)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
dev_dbg(&client->dev, "tuner=%d\n", f->tuner);
f->frequency = dev->f_frequency;
return 0;
}
static int e4000_s_frequency(struct v4l2_subdev *sd,
const struct v4l2_frequency *f)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
dev_dbg(&client->dev, "tuner=%d type=%d frequency=%u\n",
f->tuner, f->type, f->frequency);
dev->f_frequency = clamp_t(unsigned int, f->frequency,
bands[0].rangelow, bands[1].rangehigh);
return e4000_set_params(dev);
}
static int e4000_enum_freq_bands(struct v4l2_subdev *sd,
struct v4l2_frequency_band *band)
{
struct e4000_dev *dev = e4000_subdev_to_dev(sd);
struct i2c_client *client = dev->client;
dev_dbg(&client->dev, "tuner=%d type=%d index=%d\n",
band->tuner, band->type, band->index);
if (band->index >= ARRAY_SIZE(bands))
return -EINVAL;
band->capability = bands[band->index].capability;
band->rangelow = bands[band->index].rangelow;
band->rangehigh = bands[band->index].rangehigh;
return 0;
}
static const struct v4l2_subdev_tuner_ops e4000_subdev_tuner_ops = {
.g_tuner = e4000_g_tuner,
.s_tuner = e4000_s_tuner,
.g_frequency = e4000_g_frequency,
.s_frequency = e4000_s_frequency,
.enum_freq_bands = e4000_enum_freq_bands,
};
static const struct v4l2_subdev_ops e4000_subdev_ops = {
.core = &e4000_subdev_core_ops,
.tuner = &e4000_subdev_tuner_ops,
};
static int e4000_set_lna_gain(struct dvb_frontend *fe)
{
struct e4000_dev *dev = fe->tuner_priv;
struct i2c_client *client = dev->client;
int ret;
u8 u8tmp;
dev_dbg(&client->dev, "lna auto=%d->%d val=%d->%d\n",
dev->lna_gain_auto->cur.val, dev->lna_gain_auto->val,
dev->lna_gain->cur.val, dev->lna_gain->val);
if (dev->lna_gain_auto->val && dev->if_gain_auto->cur.val)
u8tmp = 0x17;
else if (dev->lna_gain_auto->val)
u8tmp = 0x19;
else if (dev->if_gain_auto->cur.val)
u8tmp = 0x16;
else
u8tmp = 0x10;
ret = regmap_write(dev->regmap, 0x1a, u8tmp);
if (ret)
goto err;
if (dev->lna_gain_auto->val == false) {
ret = regmap_write(dev->regmap, 0x14, dev->lna_gain->val);
if (ret)
goto err;
}
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int e4000_set_mixer_gain(struct dvb_frontend *fe)
{
struct e4000_dev *dev = fe->tuner_priv;
struct i2c_client *client = dev->client;
int ret;
u8 u8tmp;
dev_dbg(&client->dev, "mixer auto=%d->%d val=%d->%d\n",
dev->mixer_gain_auto->cur.val, dev->mixer_gain_auto->val,
dev->mixer_gain->cur.val, dev->mixer_gain->val);
if (dev->mixer_gain_auto->val)
u8tmp = 0x15;
else
u8tmp = 0x14;
ret = regmap_write(dev->regmap, 0x20, u8tmp);
if (ret)
goto err;
if (dev->mixer_gain_auto->val == false) {
ret = regmap_write(dev->regmap, 0x15, dev->mixer_gain->val);
if (ret)
goto err;
}
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int e4000_set_if_gain(struct dvb_frontend *fe)
{
struct e4000_dev *dev = fe->tuner_priv;
struct i2c_client *client = dev->client;
int ret;
u8 buf[2];
u8 u8tmp;
dev_dbg(&client->dev, "if auto=%d->%d val=%d->%d\n",
dev->if_gain_auto->cur.val, dev->if_gain_auto->val,
dev->if_gain->cur.val, dev->if_gain->val);
if (dev->if_gain_auto->val && dev->lna_gain_auto->cur.val)
u8tmp = 0x17;
else if (dev->lna_gain_auto->cur.val)
u8tmp = 0x19;
else if (dev->if_gain_auto->val)
u8tmp = 0x16;
else
u8tmp = 0x10;
ret = regmap_write(dev->regmap, 0x1a, u8tmp);
if (ret)
goto err;
if (dev->if_gain_auto->val == false) {
buf[0] = e4000_if_gain_lut[dev->if_gain->val].reg16_val;
buf[1] = e4000_if_gain_lut[dev->if_gain->val].reg17_val;
ret = regmap_bulk_write(dev->regmap, 0x16, buf, 2);
if (ret)
goto err;
}
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int e4000_pll_lock(struct dvb_frontend *fe)
{
struct e4000_dev *dev = fe->tuner_priv;
struct i2c_client *client = dev->client;
int ret;
unsigned int uitmp;
ret = regmap_read(dev->regmap, 0x07, &uitmp);
if (ret)
goto err;
dev->pll_lock->val = (uitmp & 0x01);
return 0;
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int e4000_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
{
struct e4000_dev *dev = container_of(ctrl->handler, struct e4000_dev, hdl);
struct i2c_client *client = dev->client;
int ret;
if (!dev->active)
return 0;
switch (ctrl->id) {
case V4L2_CID_RF_TUNER_PLL_LOCK:
ret = e4000_pll_lock(dev->fe);
break;
default:
dev_dbg(&client->dev, "unknown ctrl: id=%d name=%s\n",
ctrl->id, ctrl->name);
ret = -EINVAL;
}
return ret;
}
static int e4000_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct e4000_dev *dev = container_of(ctrl->handler, struct e4000_dev, hdl);
struct i2c_client *client = dev->client;
int ret;
if (!dev->active)
return 0;
switch (ctrl->id) {
case V4L2_CID_RF_TUNER_BANDWIDTH_AUTO:
case V4L2_CID_RF_TUNER_BANDWIDTH:
/*
* TODO: Auto logic does not work 100% correctly as tuner driver
* do not have information to calculate maximum suitable
* bandwidth. Calculating it is responsible of master driver.
*/
dev->f_bandwidth = dev->bandwidth->val;
ret = e4000_set_params(dev);
break;
case V4L2_CID_RF_TUNER_LNA_GAIN_AUTO:
case V4L2_CID_RF_TUNER_LNA_GAIN:
ret = e4000_set_lna_gain(dev->fe);
break;
case V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO:
case V4L2_CID_RF_TUNER_MIXER_GAIN:
ret = e4000_set_mixer_gain(dev->fe);
break;
case V4L2_CID_RF_TUNER_IF_GAIN_AUTO:
case V4L2_CID_RF_TUNER_IF_GAIN:
ret = e4000_set_if_gain(dev->fe);
break;
default:
dev_dbg(&client->dev, "unknown ctrl: id=%d name=%s\n",
ctrl->id, ctrl->name);
ret = -EINVAL;
}
return ret;
}
static const struct v4l2_ctrl_ops e4000_ctrl_ops = {
.g_volatile_ctrl = e4000_g_volatile_ctrl,
.s_ctrl = e4000_s_ctrl,
};
#endif
/*
* DVB API
*/
static int e4000_dvb_set_params(struct dvb_frontend *fe)
{
struct e4000_dev *dev = fe->tuner_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
dev->f_frequency = c->frequency;
dev->f_bandwidth = c->bandwidth_hz;
return e4000_set_params(dev);
}
static int e4000_dvb_init(struct dvb_frontend *fe)
{
return e4000_init(fe->tuner_priv);
}
static int e4000_dvb_sleep(struct dvb_frontend *fe)
{
return e4000_sleep(fe->tuner_priv);
}
static int e4000_dvb_get_if_frequency(struct dvb_frontend *fe, u32 *frequency)
{
*frequency = 0; /* Zero-IF */
return 0;
}
static const struct dvb_tuner_ops e4000_dvb_tuner_ops = {
.info = {
.name = "Elonics E4000",
.frequency_min = 174000000,
.frequency_max = 862000000,
},
.init = e4000_dvb_init,
.sleep = e4000_dvb_sleep,
.set_params = e4000_dvb_set_params,
.get_if_frequency = e4000_dvb_get_if_frequency,
};
static int e4000_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct e4000_dev *dev;
struct e4000_config *cfg = client->dev.platform_data;
struct dvb_frontend *fe = cfg->fe;
int ret;
unsigned int uitmp;
static const struct regmap_config regmap_config = {
.reg_bits = 8,
.val_bits = 8,
};
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
goto err;
}
dev->clk = cfg->clock;
dev->client = client;
dev->fe = cfg->fe;
dev->regmap = devm_regmap_init_i2c(client, &regmap_config);
if (IS_ERR(dev->regmap)) {
ret = PTR_ERR(dev->regmap);
goto err_kfree;
}
/* check if the tuner is there */
ret = regmap_read(dev->regmap, 0x02, &uitmp);
if (ret)
goto err_kfree;
dev_dbg(&client->dev, "chip id=%02x\n", uitmp);
if (uitmp != 0x40) {
ret = -ENODEV;
goto err_kfree;
}
/* put sleep as chip seems to be in normal mode by default */
ret = regmap_write(dev->regmap, 0x00, 0x00);
if (ret)
goto err_kfree;
#if IS_ENABLED(CONFIG_VIDEO_V4L2)
/* Register controls */
v4l2_ctrl_handler_init(&dev->hdl, 9);
dev->bandwidth_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_BANDWIDTH_AUTO, 0, 1, 1, 1);
dev->bandwidth = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_BANDWIDTH, 4300000, 11000000, 100000, 4300000);
v4l2_ctrl_auto_cluster(2, &dev->bandwidth_auto, 0, false);
dev->lna_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_LNA_GAIN_AUTO, 0, 1, 1, 1);
dev->lna_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_LNA_GAIN, 0, 15, 1, 10);
v4l2_ctrl_auto_cluster(2, &dev->lna_gain_auto, 0, false);
dev->mixer_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_MIXER_GAIN_AUTO, 0, 1, 1, 1);
dev->mixer_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_MIXER_GAIN, 0, 1, 1, 1);
v4l2_ctrl_auto_cluster(2, &dev->mixer_gain_auto, 0, false);
dev->if_gain_auto = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_IF_GAIN_AUTO, 0, 1, 1, 1);
dev->if_gain = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_IF_GAIN, 0, 54, 1, 0);
v4l2_ctrl_auto_cluster(2, &dev->if_gain_auto, 0, false);
dev->pll_lock = v4l2_ctrl_new_std(&dev->hdl, &e4000_ctrl_ops,
V4L2_CID_RF_TUNER_PLL_LOCK, 0, 1, 1, 0);
if (dev->hdl.error) {
ret = dev->hdl.error;
dev_err(&client->dev, "Could not initialize controls\n");
v4l2_ctrl_handler_free(&dev->hdl);
goto err_kfree;
}
dev->sd.ctrl_handler = &dev->hdl;
dev->f_frequency = bands[0].rangelow;
dev->f_bandwidth = dev->bandwidth->val;
v4l2_i2c_subdev_init(&dev->sd, client, &e4000_subdev_ops);
#endif
fe->tuner_priv = dev;
memcpy(&fe->ops.tuner_ops, &e4000_dvb_tuner_ops,
sizeof(fe->ops.tuner_ops));
v4l2_set_subdevdata(&dev->sd, client);
i2c_set_clientdata(client, &dev->sd);
dev_info(&client->dev, "Elonics E4000 successfully identified\n");
return 0;
err_kfree:
kfree(dev);
err:
dev_dbg(&client->dev, "failed=%d\n", ret);
return ret;
}
static int e4000_remove(struct i2c_client *client)
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct e4000_dev *dev = container_of(sd, struct e4000_dev, sd);
dev_dbg(&client->dev, "\n");
#if IS_ENABLED(CONFIG_VIDEO_V4L2)
v4l2_ctrl_handler_free(&dev->hdl);
#endif
kfree(dev);
return 0;
}
static const struct i2c_device_id e4000_id_table[] = {
{"e4000", 0},
{}
};
MODULE_DEVICE_TABLE(i2c, e4000_id_table);
static struct i2c_driver e4000_driver = {
.driver = {
.name = "e4000",
.suppress_bind_attrs = true,
},
.probe = e4000_probe,
.remove = e4000_remove,
.id_table = e4000_id_table,
};
module_i2c_driver(e4000_driver);
MODULE_DESCRIPTION("Elonics E4000 silicon tuner driver");
MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
MODULE_LICENSE("GPL");