linux/arch/arm64/mm/mmu.c

746 lines
19 KiB
C
Raw Normal View History

/*
* Based on arch/arm/mm/mmu.c
*
* Copyright (C) 1995-2005 Russell King
* Copyright (C) 2012 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/export.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/libfdt.h>
#include <linux/mman.h>
#include <linux/nodemask.h>
#include <linux/memblock.h>
#include <linux/fs.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/stop_machine.h>
#include <asm/cputype.h>
#include <asm/fixmap.h>
#include <asm/kernel-pgtable.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/sizes.h>
#include <asm/tlb.h>
arm64: mm: Implement 4 levels of translation tables This patch implements 4 levels of translation tables since 3 levels of page tables with 4KB pages cannot support 40-bit physical address space described in [1] due to the following issue. It is a restriction that kernel logical memory map with 4KB + 3 levels (0xffffffc000000000-0xffffffffffffffff) cannot cover RAM region from 544GB to 1024GB in [1]. Specifically, ARM64 kernel fails to create mapping for this region in map_mem function since __phys_to_virt for this region reaches to address overflow. If SoC design follows the document, [1], over 32GB RAM would be placed from 544GB. Even 64GB system is supposed to use the region from 544GB to 576GB for only 32GB RAM. Naturally, it would reach to enable 4 levels of page tables to avoid hacking __virt_to_phys and __phys_to_virt. However, it is recommended 4 levels of page table should be only enabled if memory map is too sparse or there is about 512GB RAM. References ---------- [1]: Principles of ARM Memory Maps, White Paper, Issue C Signed-off-by: Jungseok Lee <jays.lee@samsung.com> Reviewed-by: Sungjinn Chung <sungjinn.chung@samsung.com> Acked-by: Kukjin Kim <kgene.kim@samsung.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Steve Capper <steve.capper@linaro.org> [catalin.marinas@arm.com: MEMBLOCK_INITIAL_LIMIT removed, same as PUD_SIZE] [catalin.marinas@arm.com: early_ioremap_init() updated for 4 levels] [catalin.marinas@arm.com: 48-bit VA depends on BROKEN until KVM is fixed] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
2014-05-12 18:40:51 +09:00
#include <asm/memblock.h>
#include <asm/mmu_context.h>
#include "mm.h"
u64 idmap_t0sz = TCR_T0SZ(VA_BITS);
/*
* Empty_zero_page is a special page that is used for zero-initialized data
* and COW.
*/
struct page *empty_zero_page;
EXPORT_SYMBOL(empty_zero_page);
pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
unsigned long size, pgprot_t vma_prot)
{
if (!pfn_valid(pfn))
return pgprot_noncached(vma_prot);
else if (file->f_flags & O_SYNC)
return pgprot_writecombine(vma_prot);
return vma_prot;
}
EXPORT_SYMBOL(phys_mem_access_prot);
static void __init *early_alloc(unsigned long sz)
{
void *ptr = __va(memblock_alloc(sz, sz));
BUG_ON(!ptr);
memset(ptr, 0, sz);
return ptr;
}
/*
* remap a PMD into pages
*/
static void split_pmd(pmd_t *pmd, pte_t *pte)
{
unsigned long pfn = pmd_pfn(*pmd);
int i = 0;
do {
/*
* Need to have the least restrictive permissions available
* permissions will be fixed up later. Default the new page
* range as contiguous ptes.
*/
set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC_CONT));
pfn++;
} while (pte++, i++, i < PTRS_PER_PTE);
}
/*
* Given a PTE with the CONT bit set, determine where the CONT range
* starts, and clear the entire range of PTE CONT bits.
*/
static void clear_cont_pte_range(pte_t *pte, unsigned long addr)
{
int i;
pte -= CONT_RANGE_OFFSET(addr);
for (i = 0; i < CONT_PTES; i++) {
set_pte(pte, pte_mknoncont(*pte));
pte++;
}
flush_tlb_all();
}
/*
* Given a range of PTEs set the pfn and provided page protection flags
*/
static void __populate_init_pte(pte_t *pte, unsigned long addr,
unsigned long end, phys_addr_t phys,
pgprot_t prot)
{
unsigned long pfn = __phys_to_pfn(phys);
do {
/* clear all the bits except the pfn, then apply the prot */
set_pte(pte, pfn_pte(pfn, prot));
pte++;
pfn++;
addr += PAGE_SIZE;
} while (addr != end);
}
static void alloc_init_pte(pmd_t *pmd, unsigned long addr,
unsigned long end, phys_addr_t phys,
pgprot_t prot,
void *(*alloc)(unsigned long size))
{
pte_t *pte;
unsigned long next;
arm64: mm: use *_sect to check for section maps The {pgd,pud,pmd}_bad family of macros have slightly fuzzy cross-architecture semantics, and seem to imply a populated entry that is not a next-level table, rather than a particular type of entry (e.g. a section map). In arm64 code, for those cases where we care about whether an entry is a section mapping, we can instead use the {pud,pmd}_sect macros to explicitly check for this case. This helps to document precisely what we care about, making the code easier to read, and allows for future relaxation of the *_bad macros to check for other "bad" entries. To that end this patch updates the table dumping and initial table setup to check for section mappings with {pud,pmd}_sect, and adds/restores BUG_ON(*_bad((*p)) checks after we've handled the *_sect and *_none cases so as to catch remaining "bad" cases. In the fault handling code, show_pte is left with *_bad checks as it only cares about whether it can walk the next level table, and this path is used for both kernel and userspace fault handling. The former case will be followed by a die() where we'll report the address that triggered the fault, which can be useful context for debugging. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Steve Capper <steve.capper@linaro.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Kees Cook <keescook@chromium.org> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-27 16:36:30 +00:00
if (pmd_none(*pmd) || pmd_sect(*pmd)) {
pte = alloc(PTRS_PER_PTE * sizeof(pte_t));
if (pmd_sect(*pmd))
split_pmd(pmd, pte);
__pmd_populate(pmd, __pa(pte), PMD_TYPE_TABLE);
flush_tlb_all();
}
arm64: mm: use *_sect to check for section maps The {pgd,pud,pmd}_bad family of macros have slightly fuzzy cross-architecture semantics, and seem to imply a populated entry that is not a next-level table, rather than a particular type of entry (e.g. a section map). In arm64 code, for those cases where we care about whether an entry is a section mapping, we can instead use the {pud,pmd}_sect macros to explicitly check for this case. This helps to document precisely what we care about, making the code easier to read, and allows for future relaxation of the *_bad macros to check for other "bad" entries. To that end this patch updates the table dumping and initial table setup to check for section mappings with {pud,pmd}_sect, and adds/restores BUG_ON(*_bad((*p)) checks after we've handled the *_sect and *_none cases so as to catch remaining "bad" cases. In the fault handling code, show_pte is left with *_bad checks as it only cares about whether it can walk the next level table, and this path is used for both kernel and userspace fault handling. The former case will be followed by a die() where we'll report the address that triggered the fault, which can be useful context for debugging. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Steve Capper <steve.capper@linaro.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Kees Cook <keescook@chromium.org> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-27 16:36:30 +00:00
BUG_ON(pmd_bad(*pmd));
pte = pte_offset_kernel(pmd, addr);
do {
next = min(end, (addr + CONT_SIZE) & CONT_MASK);
if (((addr | next | phys) & ~CONT_MASK) == 0) {
/* a block of CONT_PTES */
__populate_init_pte(pte, addr, next, phys,
__pgprot(pgprot_val(prot) | PTE_CONT));
} else {
/*
* If the range being split is already inside of a
* contiguous range but this PTE isn't going to be
* contiguous, then we want to unmark the adjacent
* ranges, then update the portion of the range we
* are interrested in.
*/
clear_cont_pte_range(pte, addr);
__populate_init_pte(pte, addr, next, phys, prot);
}
pte += (next - addr) >> PAGE_SHIFT;
phys += next - addr;
addr = next;
} while (addr != end);
}
static void split_pud(pud_t *old_pud, pmd_t *pmd)
{
unsigned long addr = pud_pfn(*old_pud) << PAGE_SHIFT;
pgprot_t prot = __pgprot(pud_val(*old_pud) ^ addr);
int i = 0;
do {
set_pmd(pmd, __pmd(addr | pgprot_val(prot)));
addr += PMD_SIZE;
} while (pmd++, i++, i < PTRS_PER_PMD);
}
static void alloc_init_pmd(struct mm_struct *mm, pud_t *pud,
unsigned long addr, unsigned long end,
phys_addr_t phys, pgprot_t prot,
void *(*alloc)(unsigned long size))
{
pmd_t *pmd;
unsigned long next;
/*
* Check for initial section mappings in the pgd/pud and remove them.
*/
arm64: mm: use *_sect to check for section maps The {pgd,pud,pmd}_bad family of macros have slightly fuzzy cross-architecture semantics, and seem to imply a populated entry that is not a next-level table, rather than a particular type of entry (e.g. a section map). In arm64 code, for those cases where we care about whether an entry is a section mapping, we can instead use the {pud,pmd}_sect macros to explicitly check for this case. This helps to document precisely what we care about, making the code easier to read, and allows for future relaxation of the *_bad macros to check for other "bad" entries. To that end this patch updates the table dumping and initial table setup to check for section mappings with {pud,pmd}_sect, and adds/restores BUG_ON(*_bad((*p)) checks after we've handled the *_sect and *_none cases so as to catch remaining "bad" cases. In the fault handling code, show_pte is left with *_bad checks as it only cares about whether it can walk the next level table, and this path is used for both kernel and userspace fault handling. The former case will be followed by a die() where we'll report the address that triggered the fault, which can be useful context for debugging. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Steve Capper <steve.capper@linaro.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Kees Cook <keescook@chromium.org> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-27 16:36:30 +00:00
if (pud_none(*pud) || pud_sect(*pud)) {
pmd = alloc(PTRS_PER_PMD * sizeof(pmd_t));
if (pud_sect(*pud)) {
/*
* need to have the 1G of mappings continue to be
* present
*/
split_pud(pud, pmd);
}
pud_populate(mm, pud, pmd);
flush_tlb_all();
}
arm64: mm: use *_sect to check for section maps The {pgd,pud,pmd}_bad family of macros have slightly fuzzy cross-architecture semantics, and seem to imply a populated entry that is not a next-level table, rather than a particular type of entry (e.g. a section map). In arm64 code, for those cases where we care about whether an entry is a section mapping, we can instead use the {pud,pmd}_sect macros to explicitly check for this case. This helps to document precisely what we care about, making the code easier to read, and allows for future relaxation of the *_bad macros to check for other "bad" entries. To that end this patch updates the table dumping and initial table setup to check for section mappings with {pud,pmd}_sect, and adds/restores BUG_ON(*_bad((*p)) checks after we've handled the *_sect and *_none cases so as to catch remaining "bad" cases. In the fault handling code, show_pte is left with *_bad checks as it only cares about whether it can walk the next level table, and this path is used for both kernel and userspace fault handling. The former case will be followed by a die() where we'll report the address that triggered the fault, which can be useful context for debugging. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Steve Capper <steve.capper@linaro.org> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Kees Cook <keescook@chromium.org> Cc: Laura Abbott <lauraa@codeaurora.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-27 16:36:30 +00:00
BUG_ON(pud_bad(*pud));
pmd = pmd_offset(pud, addr);
do {
next = pmd_addr_end(addr, end);
/* try section mapping first */
if (((addr | next | phys) & ~SECTION_MASK) == 0) {
pmd_t old_pmd =*pmd;
set_pmd(pmd, __pmd(phys |
pgprot_val(mk_sect_prot(prot))));
/*
* Check for previous table entries created during
* boot (__create_page_tables) and flush them.
*/
if (!pmd_none(old_pmd)) {
flush_tlb_all();
if (pmd_table(old_pmd)) {
phys_addr_t table = __pa(pte_offset_map(&old_pmd, 0));
if (!WARN_ON_ONCE(slab_is_available()))
memblock_free(table, PAGE_SIZE);
}
}
} else {
alloc_init_pte(pmd, addr, next, phys, prot, alloc);
}
phys += next - addr;
} while (pmd++, addr = next, addr != end);
}
static inline bool use_1G_block(unsigned long addr, unsigned long next,
unsigned long phys)
{
if (PAGE_SHIFT != 12)
return false;
if (((addr | next | phys) & ~PUD_MASK) != 0)
return false;
return true;
}
static void alloc_init_pud(struct mm_struct *mm, pgd_t *pgd,
unsigned long addr, unsigned long end,
phys_addr_t phys, pgprot_t prot,
void *(*alloc)(unsigned long size))
{
arm64: mm: Implement 4 levels of translation tables This patch implements 4 levels of translation tables since 3 levels of page tables with 4KB pages cannot support 40-bit physical address space described in [1] due to the following issue. It is a restriction that kernel logical memory map with 4KB + 3 levels (0xffffffc000000000-0xffffffffffffffff) cannot cover RAM region from 544GB to 1024GB in [1]. Specifically, ARM64 kernel fails to create mapping for this region in map_mem function since __phys_to_virt for this region reaches to address overflow. If SoC design follows the document, [1], over 32GB RAM would be placed from 544GB. Even 64GB system is supposed to use the region from 544GB to 576GB for only 32GB RAM. Naturally, it would reach to enable 4 levels of page tables to avoid hacking __virt_to_phys and __phys_to_virt. However, it is recommended 4 levels of page table should be only enabled if memory map is too sparse or there is about 512GB RAM. References ---------- [1]: Principles of ARM Memory Maps, White Paper, Issue C Signed-off-by: Jungseok Lee <jays.lee@samsung.com> Reviewed-by: Sungjinn Chung <sungjinn.chung@samsung.com> Acked-by: Kukjin Kim <kgene.kim@samsung.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Steve Capper <steve.capper@linaro.org> [catalin.marinas@arm.com: MEMBLOCK_INITIAL_LIMIT removed, same as PUD_SIZE] [catalin.marinas@arm.com: early_ioremap_init() updated for 4 levels] [catalin.marinas@arm.com: 48-bit VA depends on BROKEN until KVM is fixed] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
2014-05-12 18:40:51 +09:00
pud_t *pud;
unsigned long next;
arm64: mm: Implement 4 levels of translation tables This patch implements 4 levels of translation tables since 3 levels of page tables with 4KB pages cannot support 40-bit physical address space described in [1] due to the following issue. It is a restriction that kernel logical memory map with 4KB + 3 levels (0xffffffc000000000-0xffffffffffffffff) cannot cover RAM region from 544GB to 1024GB in [1]. Specifically, ARM64 kernel fails to create mapping for this region in map_mem function since __phys_to_virt for this region reaches to address overflow. If SoC design follows the document, [1], over 32GB RAM would be placed from 544GB. Even 64GB system is supposed to use the region from 544GB to 576GB for only 32GB RAM. Naturally, it would reach to enable 4 levels of page tables to avoid hacking __virt_to_phys and __phys_to_virt. However, it is recommended 4 levels of page table should be only enabled if memory map is too sparse or there is about 512GB RAM. References ---------- [1]: Principles of ARM Memory Maps, White Paper, Issue C Signed-off-by: Jungseok Lee <jays.lee@samsung.com> Reviewed-by: Sungjinn Chung <sungjinn.chung@samsung.com> Acked-by: Kukjin Kim <kgene.kim@samsung.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Steve Capper <steve.capper@linaro.org> [catalin.marinas@arm.com: MEMBLOCK_INITIAL_LIMIT removed, same as PUD_SIZE] [catalin.marinas@arm.com: early_ioremap_init() updated for 4 levels] [catalin.marinas@arm.com: 48-bit VA depends on BROKEN until KVM is fixed] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
2014-05-12 18:40:51 +09:00
if (pgd_none(*pgd)) {
pud = alloc(PTRS_PER_PUD * sizeof(pud_t));
pgd_populate(mm, pgd, pud);
arm64: mm: Implement 4 levels of translation tables This patch implements 4 levels of translation tables since 3 levels of page tables with 4KB pages cannot support 40-bit physical address space described in [1] due to the following issue. It is a restriction that kernel logical memory map with 4KB + 3 levels (0xffffffc000000000-0xffffffffffffffff) cannot cover RAM region from 544GB to 1024GB in [1]. Specifically, ARM64 kernel fails to create mapping for this region in map_mem function since __phys_to_virt for this region reaches to address overflow. If SoC design follows the document, [1], over 32GB RAM would be placed from 544GB. Even 64GB system is supposed to use the region from 544GB to 576GB for only 32GB RAM. Naturally, it would reach to enable 4 levels of page tables to avoid hacking __virt_to_phys and __phys_to_virt. However, it is recommended 4 levels of page table should be only enabled if memory map is too sparse or there is about 512GB RAM. References ---------- [1]: Principles of ARM Memory Maps, White Paper, Issue C Signed-off-by: Jungseok Lee <jays.lee@samsung.com> Reviewed-by: Sungjinn Chung <sungjinn.chung@samsung.com> Acked-by: Kukjin Kim <kgene.kim@samsung.com> Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org> Reviewed-by: Steve Capper <steve.capper@linaro.org> [catalin.marinas@arm.com: MEMBLOCK_INITIAL_LIMIT removed, same as PUD_SIZE] [catalin.marinas@arm.com: early_ioremap_init() updated for 4 levels] [catalin.marinas@arm.com: 48-bit VA depends on BROKEN until KVM is fixed] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Jungseok Lee <jungseoklee85@gmail.com>
2014-05-12 18:40:51 +09:00
}
BUG_ON(pgd_bad(*pgd));
pud = pud_offset(pgd, addr);
do {
next = pud_addr_end(addr, end);
/*
* For 4K granule only, attempt to put down a 1GB block
*/
if (use_1G_block(addr, next, phys)) {
pud_t old_pud = *pud;
set_pud(pud, __pud(phys |
pgprot_val(mk_sect_prot(prot))));
/*
* If we have an old value for a pud, it will
* be pointing to a pmd table that we no longer
* need (from swapper_pg_dir).
*
* Look up the old pmd table and free it.
*/
if (!pud_none(old_pud)) {
flush_tlb_all();
if (pud_table(old_pud)) {
phys_addr_t table = __pa(pmd_offset(&old_pud, 0));
if (!WARN_ON_ONCE(slab_is_available()))
memblock_free(table, PAGE_SIZE);
}
}
} else {
alloc_init_pmd(mm, pud, addr, next, phys, prot, alloc);
}
phys += next - addr;
} while (pud++, addr = next, addr != end);
}
/*
* Create the page directory entries and any necessary page tables for the
* mapping specified by 'md'.
*/
static void __create_mapping(struct mm_struct *mm, pgd_t *pgd,
phys_addr_t phys, unsigned long virt,
phys_addr_t size, pgprot_t prot,
void *(*alloc)(unsigned long size))
{
unsigned long addr, length, end, next;
addr = virt & PAGE_MASK;
length = PAGE_ALIGN(size + (virt & ~PAGE_MASK));
end = addr + length;
do {
next = pgd_addr_end(addr, end);
alloc_init_pud(mm, pgd, addr, next, phys, prot, alloc);
phys += next - addr;
} while (pgd++, addr = next, addr != end);
}
static void *late_alloc(unsigned long size)
{
void *ptr;
BUG_ON(size > PAGE_SIZE);
ptr = (void *)__get_free_page(PGALLOC_GFP);
BUG_ON(!ptr);
return ptr;
}
static void __init create_mapping(phys_addr_t phys, unsigned long virt,
phys_addr_t size, pgprot_t prot)
{
if (virt < VMALLOC_START) {
pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
&phys, virt);
return;
}
__create_mapping(&init_mm, pgd_offset_k(virt & PAGE_MASK), phys, virt,
size, prot, early_alloc);
}
void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
unsigned long virt, phys_addr_t size,
pgprot_t prot)
{
__create_mapping(mm, pgd_offset(mm, virt), phys, virt, size, prot,
late_alloc);
}
static void create_mapping_late(phys_addr_t phys, unsigned long virt,
phys_addr_t size, pgprot_t prot)
{
if (virt < VMALLOC_START) {
pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
&phys, virt);
return;
}
return __create_mapping(&init_mm, pgd_offset_k(virt & PAGE_MASK),
phys, virt, size, prot, late_alloc);
}
#ifdef CONFIG_DEBUG_RODATA
static void __init __map_memblock(phys_addr_t start, phys_addr_t end)
{
/*
* Set up the executable regions using the existing section mappings
* for now. This will get more fine grained later once all memory
* is mapped
*/
arm64: mm: use correct mapping granularity under DEBUG_RODATA When booting a 64k pages kernel that is built with CONFIG_DEBUG_RODATA and resides at an offset that is not a multiple of 512 MB, the rounding that occurs in __map_memblock() and fixup_executable() results in incorrect regions being mapped. The following snippet from /sys/kernel/debug/kernel_page_tables shows how, when the kernel is loaded 2 MB above the base of DRAM at 0x40000000, the first 2 MB of memory (which may be inaccessible from non-secure EL1 or just reserved by the firmware) is inadvertently mapped into the end of the module region. ---[ Modules start ]--- 0xfffffdffffe00000-0xfffffe0000000000 2M RW NX ... UXN MEM/NORMAL ---[ Modules end ]--- ---[ Kernel Mapping ]--- 0xfffffe0000000000-0xfffffe0000090000 576K RW NX ... UXN MEM/NORMAL 0xfffffe0000090000-0xfffffe0000200000 1472K ro x ... UXN MEM/NORMAL 0xfffffe0000200000-0xfffffe0000800000 6M ro x ... UXN MEM/NORMAL 0xfffffe0000800000-0xfffffe0000810000 64K ro x ... UXN MEM/NORMAL 0xfffffe0000810000-0xfffffe0000a00000 1984K RW NX ... UXN MEM/NORMAL 0xfffffe0000a00000-0xfffffe00ffe00000 4084M RW NX ... UXN MEM/NORMAL The same issue is likely to occur on 16k pages kernels whose load address is not a multiple of 32 MB (i.e., SECTION_SIZE). So round to SWAPPER_BLOCK_SIZE instead of SECTION_SIZE. Fixes: da141706aea5 ("arm64: add better page protections to arm64") Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Laura Abbott <labbott@redhat.com> Cc: <stable@vger.kernel.org> # 4.0+ Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-16 11:18:14 +01:00
unsigned long kernel_x_start = round_down(__pa(_stext), SWAPPER_BLOCK_SIZE);
unsigned long kernel_x_end = round_up(__pa(__init_end), SWAPPER_BLOCK_SIZE);
if (end < kernel_x_start) {
create_mapping(start, __phys_to_virt(start),
end - start, PAGE_KERNEL);
} else if (start >= kernel_x_end) {
create_mapping(start, __phys_to_virt(start),
end - start, PAGE_KERNEL);
} else {
if (start < kernel_x_start)
create_mapping(start, __phys_to_virt(start),
kernel_x_start - start,
PAGE_KERNEL);
create_mapping(kernel_x_start,
__phys_to_virt(kernel_x_start),
kernel_x_end - kernel_x_start,
PAGE_KERNEL_EXEC);
if (kernel_x_end < end)
create_mapping(kernel_x_end,
__phys_to_virt(kernel_x_end),
end - kernel_x_end,
PAGE_KERNEL);
}
}
#else
static void __init __map_memblock(phys_addr_t start, phys_addr_t end)
{
create_mapping(start, __phys_to_virt(start), end - start,
PAGE_KERNEL_EXEC);
}
#endif
static void __init map_mem(void)
{
struct memblock_region *reg;
phys_addr_t limit;
/*
* Temporarily limit the memblock range. We need to do this as
* create_mapping requires puds, pmds and ptes to be allocated from
* memory addressable from the initial direct kernel mapping.
*
* The initial direct kernel mapping, located at swapper_pg_dir, gives
* us PUD_SIZE (with SECTION maps) or PMD_SIZE (without SECTION maps,
* memory starting from PHYS_OFFSET (which must be aligned to 2MB as
* per Documentation/arm64/booting.txt).
*/
limit = PHYS_OFFSET + SWAPPER_INIT_MAP_SIZE;
memblock_set_current_limit(limit);
/* map all the memory banks */
for_each_memblock(memory, reg) {
phys_addr_t start = reg->base;
phys_addr_t end = start + reg->size;
if (start >= end)
break;
if (ARM64_SWAPPER_USES_SECTION_MAPS) {
/*
* For the first memory bank align the start address and
* current memblock limit to prevent create_mapping() from
* allocating pte page tables from unmapped memory. With
* the section maps, if the first block doesn't end on section
* size boundary, create_mapping() will try to allocate a pte
* page, which may be returned from an unmapped area.
* When section maps are not used, the pte page table for the
* current limit is already present in swapper_pg_dir.
*/
if (start < limit)
start = ALIGN(start, SECTION_SIZE);
if (end < limit) {
limit = end & SECTION_MASK;
memblock_set_current_limit(limit);
}
}
__map_memblock(start, end);
}
/* Limit no longer required. */
memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
}
static void __init fixup_executable(void)
{
#ifdef CONFIG_DEBUG_RODATA
/* now that we are actually fully mapped, make the start/end more fine grained */
arm64: mm: use correct mapping granularity under DEBUG_RODATA When booting a 64k pages kernel that is built with CONFIG_DEBUG_RODATA and resides at an offset that is not a multiple of 512 MB, the rounding that occurs in __map_memblock() and fixup_executable() results in incorrect regions being mapped. The following snippet from /sys/kernel/debug/kernel_page_tables shows how, when the kernel is loaded 2 MB above the base of DRAM at 0x40000000, the first 2 MB of memory (which may be inaccessible from non-secure EL1 or just reserved by the firmware) is inadvertently mapped into the end of the module region. ---[ Modules start ]--- 0xfffffdffffe00000-0xfffffe0000000000 2M RW NX ... UXN MEM/NORMAL ---[ Modules end ]--- ---[ Kernel Mapping ]--- 0xfffffe0000000000-0xfffffe0000090000 576K RW NX ... UXN MEM/NORMAL 0xfffffe0000090000-0xfffffe0000200000 1472K ro x ... UXN MEM/NORMAL 0xfffffe0000200000-0xfffffe0000800000 6M ro x ... UXN MEM/NORMAL 0xfffffe0000800000-0xfffffe0000810000 64K ro x ... UXN MEM/NORMAL 0xfffffe0000810000-0xfffffe0000a00000 1984K RW NX ... UXN MEM/NORMAL 0xfffffe0000a00000-0xfffffe00ffe00000 4084M RW NX ... UXN MEM/NORMAL The same issue is likely to occur on 16k pages kernels whose load address is not a multiple of 32 MB (i.e., SECTION_SIZE). So round to SWAPPER_BLOCK_SIZE instead of SECTION_SIZE. Fixes: da141706aea5 ("arm64: add better page protections to arm64") Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Laura Abbott <labbott@redhat.com> Cc: <stable@vger.kernel.org> # 4.0+ Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-16 11:18:14 +01:00
if (!IS_ALIGNED((unsigned long)_stext, SWAPPER_BLOCK_SIZE)) {
unsigned long aligned_start = round_down(__pa(_stext),
arm64: mm: use correct mapping granularity under DEBUG_RODATA When booting a 64k pages kernel that is built with CONFIG_DEBUG_RODATA and resides at an offset that is not a multiple of 512 MB, the rounding that occurs in __map_memblock() and fixup_executable() results in incorrect regions being mapped. The following snippet from /sys/kernel/debug/kernel_page_tables shows how, when the kernel is loaded 2 MB above the base of DRAM at 0x40000000, the first 2 MB of memory (which may be inaccessible from non-secure EL1 or just reserved by the firmware) is inadvertently mapped into the end of the module region. ---[ Modules start ]--- 0xfffffdffffe00000-0xfffffe0000000000 2M RW NX ... UXN MEM/NORMAL ---[ Modules end ]--- ---[ Kernel Mapping ]--- 0xfffffe0000000000-0xfffffe0000090000 576K RW NX ... UXN MEM/NORMAL 0xfffffe0000090000-0xfffffe0000200000 1472K ro x ... UXN MEM/NORMAL 0xfffffe0000200000-0xfffffe0000800000 6M ro x ... UXN MEM/NORMAL 0xfffffe0000800000-0xfffffe0000810000 64K ro x ... UXN MEM/NORMAL 0xfffffe0000810000-0xfffffe0000a00000 1984K RW NX ... UXN MEM/NORMAL 0xfffffe0000a00000-0xfffffe00ffe00000 4084M RW NX ... UXN MEM/NORMAL The same issue is likely to occur on 16k pages kernels whose load address is not a multiple of 32 MB (i.e., SECTION_SIZE). So round to SWAPPER_BLOCK_SIZE instead of SECTION_SIZE. Fixes: da141706aea5 ("arm64: add better page protections to arm64") Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Laura Abbott <labbott@redhat.com> Cc: <stable@vger.kernel.org> # 4.0+ Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-16 11:18:14 +01:00
SWAPPER_BLOCK_SIZE);
create_mapping(aligned_start, __phys_to_virt(aligned_start),
__pa(_stext) - aligned_start,
PAGE_KERNEL);
}
arm64: mm: use correct mapping granularity under DEBUG_RODATA When booting a 64k pages kernel that is built with CONFIG_DEBUG_RODATA and resides at an offset that is not a multiple of 512 MB, the rounding that occurs in __map_memblock() and fixup_executable() results in incorrect regions being mapped. The following snippet from /sys/kernel/debug/kernel_page_tables shows how, when the kernel is loaded 2 MB above the base of DRAM at 0x40000000, the first 2 MB of memory (which may be inaccessible from non-secure EL1 or just reserved by the firmware) is inadvertently mapped into the end of the module region. ---[ Modules start ]--- 0xfffffdffffe00000-0xfffffe0000000000 2M RW NX ... UXN MEM/NORMAL ---[ Modules end ]--- ---[ Kernel Mapping ]--- 0xfffffe0000000000-0xfffffe0000090000 576K RW NX ... UXN MEM/NORMAL 0xfffffe0000090000-0xfffffe0000200000 1472K ro x ... UXN MEM/NORMAL 0xfffffe0000200000-0xfffffe0000800000 6M ro x ... UXN MEM/NORMAL 0xfffffe0000800000-0xfffffe0000810000 64K ro x ... UXN MEM/NORMAL 0xfffffe0000810000-0xfffffe0000a00000 1984K RW NX ... UXN MEM/NORMAL 0xfffffe0000a00000-0xfffffe00ffe00000 4084M RW NX ... UXN MEM/NORMAL The same issue is likely to occur on 16k pages kernels whose load address is not a multiple of 32 MB (i.e., SECTION_SIZE). So round to SWAPPER_BLOCK_SIZE instead of SECTION_SIZE. Fixes: da141706aea5 ("arm64: add better page protections to arm64") Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Laura Abbott <labbott@redhat.com> Cc: <stable@vger.kernel.org> # 4.0+ Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-16 11:18:14 +01:00
if (!IS_ALIGNED((unsigned long)__init_end, SWAPPER_BLOCK_SIZE)) {
unsigned long aligned_end = round_up(__pa(__init_end),
arm64: mm: use correct mapping granularity under DEBUG_RODATA When booting a 64k pages kernel that is built with CONFIG_DEBUG_RODATA and resides at an offset that is not a multiple of 512 MB, the rounding that occurs in __map_memblock() and fixup_executable() results in incorrect regions being mapped. The following snippet from /sys/kernel/debug/kernel_page_tables shows how, when the kernel is loaded 2 MB above the base of DRAM at 0x40000000, the first 2 MB of memory (which may be inaccessible from non-secure EL1 or just reserved by the firmware) is inadvertently mapped into the end of the module region. ---[ Modules start ]--- 0xfffffdffffe00000-0xfffffe0000000000 2M RW NX ... UXN MEM/NORMAL ---[ Modules end ]--- ---[ Kernel Mapping ]--- 0xfffffe0000000000-0xfffffe0000090000 576K RW NX ... UXN MEM/NORMAL 0xfffffe0000090000-0xfffffe0000200000 1472K ro x ... UXN MEM/NORMAL 0xfffffe0000200000-0xfffffe0000800000 6M ro x ... UXN MEM/NORMAL 0xfffffe0000800000-0xfffffe0000810000 64K ro x ... UXN MEM/NORMAL 0xfffffe0000810000-0xfffffe0000a00000 1984K RW NX ... UXN MEM/NORMAL 0xfffffe0000a00000-0xfffffe00ffe00000 4084M RW NX ... UXN MEM/NORMAL The same issue is likely to occur on 16k pages kernels whose load address is not a multiple of 32 MB (i.e., SECTION_SIZE). So round to SWAPPER_BLOCK_SIZE instead of SECTION_SIZE. Fixes: da141706aea5 ("arm64: add better page protections to arm64") Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Laura Abbott <labbott@redhat.com> Cc: <stable@vger.kernel.org> # 4.0+ Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-16 11:18:14 +01:00
SWAPPER_BLOCK_SIZE);
create_mapping(__pa(__init_end), (unsigned long)__init_end,
aligned_end - __pa(__init_end),
PAGE_KERNEL);
}
#endif
}
#ifdef CONFIG_DEBUG_RODATA
void mark_rodata_ro(void)
{
create_mapping_late(__pa(_stext), (unsigned long)_stext,
(unsigned long)_etext - (unsigned long)_stext,
PAGE_KERNEL_ROX);
}
#endif
void fixup_init(void)
{
create_mapping_late(__pa(__init_begin), (unsigned long)__init_begin,
(unsigned long)__init_end - (unsigned long)__init_begin,
PAGE_KERNEL);
}
/*
* paging_init() sets up the page tables, initialises the zone memory
* maps and sets up the zero page.
*/
void __init paging_init(void)
{
void *zero_page;
map_mem();
fixup_executable();
/* allocate the zero page. */
zero_page = early_alloc(PAGE_SIZE);
bootmem_init();
empty_zero_page = virt_to_page(zero_page);
/*
* TTBR0 is only used for the identity mapping at this stage. Make it
* point to zero page to avoid speculatively fetching new entries.
*/
cpu_set_reserved_ttbr0();
local_flush_tlb_all();
cpu_set_default_tcr_t0sz();
}
/*
* Check whether a kernel address is valid (derived from arch/x86/).
*/
int kern_addr_valid(unsigned long addr)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
if ((((long)addr) >> VA_BITS) != -1UL)
return 0;
pgd = pgd_offset_k(addr);
if (pgd_none(*pgd))
return 0;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
return 0;
if (pud_sect(*pud))
return pfn_valid(pud_pfn(*pud));
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
return 0;
if (pmd_sect(*pmd))
return pfn_valid(pmd_pfn(*pmd));
pte = pte_offset_kernel(pmd, addr);
if (pte_none(*pte))
return 0;
return pfn_valid(pte_pfn(*pte));
}
#ifdef CONFIG_SPARSEMEM_VMEMMAP
#if !ARM64_SWAPPER_USES_SECTION_MAPS
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:07:50 -07:00
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:07:50 -07:00
return vmemmap_populate_basepages(start, end, node);
}
#else /* !ARM64_SWAPPER_USES_SECTION_MAPS */
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:07:50 -07:00
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
{
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:07:50 -07:00
unsigned long addr = start;
unsigned long next;
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
do {
next = pmd_addr_end(addr, end);
pgd = vmemmap_pgd_populate(addr, node);
if (!pgd)
return -ENOMEM;
pud = vmemmap_pud_populate(pgd, addr, node);
if (!pud)
return -ENOMEM;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd)) {
void *p = NULL;
p = vmemmap_alloc_block_buf(PMD_SIZE, node);
if (!p)
return -ENOMEM;
set_pmd(pmd, __pmd(__pa(p) | PROT_SECT_NORMAL));
} else
vmemmap_verify((pte_t *)pmd, node, addr, next);
} while (addr = next, addr != end);
return 0;
}
#endif /* CONFIG_ARM64_64K_PAGES */
sparse-vmemmap: specify vmemmap population range in bytes The sparse code, when asking the architecture to populate the vmemmap, specifies the section range as a starting page and a number of pages. This is an awkward interface, because none of the arch-specific code actually thinks of the range in terms of 'struct page' units and always translates it to bytes first. In addition, later patches mix huge page and regular page backing for the vmemmap. For this, they need to call vmemmap_populate_basepages() on sub-section ranges with PAGE_SIZE and PMD_SIZE in mind. But these are not necessarily multiples of the 'struct page' size and so this unit is too coarse. Just translate the section range into bytes once in the generic sparse code, then pass byte ranges down the stack. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ben Hutchings <ben@decadent.org.uk> Cc: Bernhard Schmidt <Bernhard.Schmidt@lrz.de> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Ingo Molnar <mingo@elte.hu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: "Luck, Tony" <tony.luck@intel.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Acked-by: David S. Miller <davem@davemloft.net> Tested-by: David S. Miller <davem@davemloft.net> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-04-29 15:07:50 -07:00
void vmemmap_free(unsigned long start, unsigned long end)
{
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
#if CONFIG_PGTABLE_LEVELS > 2
static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss;
#endif
#if CONFIG_PGTABLE_LEVELS > 3
static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss;
#endif
static inline pud_t * fixmap_pud(unsigned long addr)
{
pgd_t *pgd = pgd_offset_k(addr);
BUG_ON(pgd_none(*pgd) || pgd_bad(*pgd));
return pud_offset(pgd, addr);
}
static inline pmd_t * fixmap_pmd(unsigned long addr)
{
pud_t *pud = fixmap_pud(addr);
BUG_ON(pud_none(*pud) || pud_bad(*pud));
return pmd_offset(pud, addr);
}
static inline pte_t * fixmap_pte(unsigned long addr)
{
pmd_t *pmd = fixmap_pmd(addr);
BUG_ON(pmd_none(*pmd) || pmd_bad(*pmd));
return pte_offset_kernel(pmd, addr);
}
void __init early_fixmap_init(void)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
unsigned long addr = FIXADDR_START;
pgd = pgd_offset_k(addr);
pgd_populate(&init_mm, pgd, bm_pud);
pud = pud_offset(pgd, addr);
pud_populate(&init_mm, pud, bm_pmd);
pmd = pmd_offset(pud, addr);
pmd_populate_kernel(&init_mm, pmd, bm_pte);
/*
* The boot-ioremap range spans multiple pmds, for which
* we are not preparted:
*/
BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
if ((pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
|| pmd != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
WARN_ON(1);
pr_warn("pmd %p != %p, %p\n",
pmd, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
fix_to_virt(FIX_BTMAP_BEGIN));
pr_warn("fix_to_virt(FIX_BTMAP_END): %08lx\n",
fix_to_virt(FIX_BTMAP_END));
pr_warn("FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
pr_warn("FIX_BTMAP_BEGIN: %d\n", FIX_BTMAP_BEGIN);
}
}
void __set_fixmap(enum fixed_addresses idx,
phys_addr_t phys, pgprot_t flags)
{
unsigned long addr = __fix_to_virt(idx);
pte_t *pte;
BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
pte = fixmap_pte(addr);
if (pgprot_val(flags)) {
set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
} else {
pte_clear(&init_mm, addr, pte);
flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
}
}
void *__init fixmap_remap_fdt(phys_addr_t dt_phys)
{
const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
pgprot_t prot = PAGE_KERNEL_RO;
int size, offset;
void *dt_virt;
/*
* Check whether the physical FDT address is set and meets the minimum
* alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
* at least 8 bytes so that we can always access the size field of the
* FDT header after mapping the first chunk, double check here if that
* is indeed the case.
*/
BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
return NULL;
/*
* Make sure that the FDT region can be mapped without the need to
* allocate additional translation table pages, so that it is safe
* to call create_mapping() this early.
*
* On 64k pages, the FDT will be mapped using PTEs, so we need to
* be in the same PMD as the rest of the fixmap.
* On 4k pages, we'll use section mappings for the FDT so we only
* have to be in the same PUD.
*/
BUILD_BUG_ON(dt_virt_base % SZ_2M);
BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
__fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
offset = dt_phys % SWAPPER_BLOCK_SIZE;
dt_virt = (void *)dt_virt_base + offset;
/* map the first chunk so we can read the size from the header */
create_mapping(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
SWAPPER_BLOCK_SIZE, prot);
if (fdt_check_header(dt_virt) != 0)
return NULL;
size = fdt_totalsize(dt_virt);
if (size > MAX_FDT_SIZE)
return NULL;
if (offset + size > SWAPPER_BLOCK_SIZE)
create_mapping(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
round_up(offset + size, SWAPPER_BLOCK_SIZE), prot);
memblock_reserve(dt_phys, size);
return dt_virt;
}