linux/drivers/pwm/pwm-lpss.c

278 lines
7.2 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* Intel Low Power Subsystem PWM controller driver
*
* Copyright (C) 2014, Intel Corporation
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
* Author: Chew Kean Ho <kean.ho.chew@intel.com>
* Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
* Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
* Author: Alan Cox <alan@linux.intel.com>
*/
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/time.h>
#include "pwm-lpss.h"
#define PWM 0x00000000
#define PWM_ENABLE BIT(31)
#define PWM_SW_UPDATE BIT(30)
#define PWM_BASE_UNIT_SHIFT 8
#define PWM_ON_TIME_DIV_MASK 0x000000ff
/* Size of each PWM register space if multiple */
#define PWM_SIZE 0x400
static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
{
return container_of(chip, struct pwm_lpss_chip, chip);
}
static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
{
struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
}
static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
{
struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
}
static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
{
struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
const unsigned int ms = 500 * USEC_PER_MSEC;
u32 val;
int err;
/*
* PWM Configuration register has SW_UPDATE bit that is set when a new
* configuration is written to the register. The bit is automatically
* cleared at the start of the next output cycle by the IP block.
*
* If one writes a new configuration to the register while it still has
* the bit enabled, PWM may freeze. That is, while one can still write
* to the register, it won't have an effect. Thus, we try to sleep long
* enough that the bit gets cleared and make sure the bit is not
* enabled while we update the configuration.
*/
err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
if (err)
dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
return err;
}
static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
{
return (pwm_lpss_read(pwm) & PWM_SW_UPDATE) ? -EBUSY : 0;
}
static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
int duty_ns, int period_ns)
{
unsigned long long on_time_div;
unsigned long c = lpwm->info->clk_rate, base_unit_range;
unsigned long long base_unit, freq = NSEC_PER_SEC;
pwm: lpss: Only set update bit if we are actually changing the settings According to the datasheet the update bit must be set if the on-time-div or the base-unit changes. Now that we properly order device resume on Cherry Trail so that the GFX0 _PS0 method no longer exits with an error, we end up with a sequence of events where we are writing the same values twice in a row. First the _PS0 method restores the duty cycle of 0% the GPU driver set on suspend and then the GPU driver first updates just the enabled bit in the pwm_state from 0 to 1, causing us to write the same values again, before restoring the pre-suspend duty-cycle in a separate pwm_apply call. When writing the update bit the second time, without changing any of the values the update bit clears immediately / instantly, instead of staying 1 for a while as usual. After this the next setting of the update bit seems to be ignored, causing the restoring of the pre-suspend duty-cycle to not get applied. This makes the backlight come up with a 0% dutycycle after suspend/resume. Any further brightness changes after this do work. This commit moves the setting of the update bit into pwm_lpss_prepare() and only sets the bit if we have actually changed any of the values. This avoids the setting of the update bit the second time we configure the PWM to 0% dutycycle, this fixes the backlight coming up with 0% duty-cycle after a suspend/resume. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2018-10-14 15:12:02 +00:00
u32 orig_ctrl, ctrl;
do_div(freq, period_ns);
/*
* The equation is:
* base_unit = round(base_unit_range * freq / c)
*/
base_unit_range = BIT(lpwm->info->base_unit_bits) - 1;
freq *= base_unit_range;
base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
on_time_div = 255ULL * duty_ns;
do_div(on_time_div, period_ns);
on_time_div = 255ULL - on_time_div;
pwm: lpss: Only set update bit if we are actually changing the settings According to the datasheet the update bit must be set if the on-time-div or the base-unit changes. Now that we properly order device resume on Cherry Trail so that the GFX0 _PS0 method no longer exits with an error, we end up with a sequence of events where we are writing the same values twice in a row. First the _PS0 method restores the duty cycle of 0% the GPU driver set on suspend and then the GPU driver first updates just the enabled bit in the pwm_state from 0 to 1, causing us to write the same values again, before restoring the pre-suspend duty-cycle in a separate pwm_apply call. When writing the update bit the second time, without changing any of the values the update bit clears immediately / instantly, instead of staying 1 for a while as usual. After this the next setting of the update bit seems to be ignored, causing the restoring of the pre-suspend duty-cycle to not get applied. This makes the backlight come up with a 0% dutycycle after suspend/resume. Any further brightness changes after this do work. This commit moves the setting of the update bit into pwm_lpss_prepare() and only sets the bit if we have actually changed any of the values. This avoids the setting of the update bit the second time we configure the PWM to 0% dutycycle, this fixes the backlight coming up with 0% duty-cycle after a suspend/resume. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2018-10-14 15:12:02 +00:00
orig_ctrl = ctrl = pwm_lpss_read(pwm);
ctrl &= ~PWM_ON_TIME_DIV_MASK;
ctrl &= ~(base_unit_range << PWM_BASE_UNIT_SHIFT);
base_unit &= base_unit_range;
ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
ctrl |= on_time_div;
pwm: lpss: Only set update bit if we are actually changing the settings According to the datasheet the update bit must be set if the on-time-div or the base-unit changes. Now that we properly order device resume on Cherry Trail so that the GFX0 _PS0 method no longer exits with an error, we end up with a sequence of events where we are writing the same values twice in a row. First the _PS0 method restores the duty cycle of 0% the GPU driver set on suspend and then the GPU driver first updates just the enabled bit in the pwm_state from 0 to 1, causing us to write the same values again, before restoring the pre-suspend duty-cycle in a separate pwm_apply call. When writing the update bit the second time, without changing any of the values the update bit clears immediately / instantly, instead of staying 1 for a while as usual. After this the next setting of the update bit seems to be ignored, causing the restoring of the pre-suspend duty-cycle to not get applied. This makes the backlight come up with a 0% dutycycle after suspend/resume. Any further brightness changes after this do work. This commit moves the setting of the update bit into pwm_lpss_prepare() and only sets the bit if we have actually changed any of the values. This avoids the setting of the update bit the second time we configure the PWM to 0% dutycycle, this fixes the backlight coming up with 0% duty-cycle after a suspend/resume. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2018-10-14 15:12:02 +00:00
if (orig_ctrl != ctrl) {
pwm_lpss_write(pwm, ctrl);
pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
}
}
static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
{
if (cond)
pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
}
static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct pwm_lpss_chip *lpwm = to_lpwm(chip);
int ret;
if (state->enabled) {
if (!pwm_is_enabled(pwm)) {
pm_runtime_get_sync(chip->dev);
ret = pwm_lpss_is_updating(pwm);
if (ret) {
pm_runtime_put(chip->dev);
return ret;
}
pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
ret = pwm_lpss_wait_for_update(pwm);
if (ret) {
pm_runtime_put(chip->dev);
return ret;
}
pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
} else {
ret = pwm_lpss_is_updating(pwm);
if (ret)
return ret;
pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
return pwm_lpss_wait_for_update(pwm);
}
} else if (pwm_is_enabled(pwm)) {
pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
pm_runtime_put(chip->dev);
}
return 0;
}
/* This function gets called once from pwmchip_add to get the initial state */
static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct pwm_lpss_chip *lpwm = to_lpwm(chip);
unsigned long base_unit_range;
unsigned long long base_unit, freq, on_time_div;
u32 ctrl;
base_unit_range = BIT(lpwm->info->base_unit_bits);
ctrl = pwm_lpss_read(pwm);
on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
freq = base_unit * lpwm->info->clk_rate;
do_div(freq, base_unit_range);
if (freq == 0)
state->period = NSEC_PER_SEC;
else
state->period = NSEC_PER_SEC / (unsigned long)freq;
on_time_div *= state->period;
do_div(on_time_div, 255);
state->duty_cycle = on_time_div;
state->polarity = PWM_POLARITY_NORMAL;
state->enabled = !!(ctrl & PWM_ENABLE);
if (state->enabled)
pm_runtime_get(chip->dev);
}
static const struct pwm_ops pwm_lpss_ops = {
.apply = pwm_lpss_apply,
.get_state = pwm_lpss_get_state,
.owner = THIS_MODULE,
};
struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
const struct pwm_lpss_boardinfo *info)
{
struct pwm_lpss_chip *lpwm;
unsigned long c;
int ret;
if (WARN_ON(info->npwm > MAX_PWMS))
return ERR_PTR(-ENODEV);
lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
if (!lpwm)
return ERR_PTR(-ENOMEM);
lpwm->regs = devm_ioremap_resource(dev, r);
if (IS_ERR(lpwm->regs))
pwm: lpss: Fix const qualifier and sparse warnings Fixes the following warnings reported by the 0-DAY kernel build testing backend: drivers/pwm/pwm-lpss.c: In function 'pwm_lpss_probe_pci': >> drivers/pwm/pwm-lpss.c:192:2: warning: passing argument 3 of 'pwm_lpss_probe' discards 'const' qualifier from pointer target type [enabled by default] lpwm = pwm_lpss_probe(&pdev->dev, &pdev->resource[0], info); ^ drivers/pwm/pwm-lpss.c:130:30: note: expected 'struct pwm_lpss_boardinfo *' but argument is of type 'const struct pwm_lpss_boardinfo *' static struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, ^ >> drivers/pwm/pwm-lpss.c:143:28: sparse: incorrect type in return expression (different address spaces) drivers/pwm/pwm-lpss.c:143:28: expected struct pwm_lpss_chip * drivers/pwm/pwm-lpss.c:143:28: got void [noderef] <asn:2>*regs >> drivers/pwm/pwm-lpss.c:192:63: sparse: incorrect type in argument 3 (different modifiers) drivers/pwm/pwm-lpss.c:192:63: expected struct pwm_lpss_boardinfo *info drivers/pwm/pwm-lpss.c:192:63: got struct pwm_lpss_boardinfo const *[assigned] info drivers/pwm/pwm-lpss.c: In function 'pwm_lpss_probe_pci': drivers/pwm/pwm-lpss.c:192:2: warning: passing argument 3 of 'pwm_lpss_probe' discards 'const' qualifier from pointer target type [enabled by default] lpwm = pwm_lpss_probe(&pdev->dev, &pdev->resource[0], info); ^ drivers/pwm/pwm-lpss.c:130:30: note: expected 'struct pwm_lpss_boardinfo *' but argument is of type 'const struct pwm_lpss_boardinfo *' static struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, ^ Reported-by: kbuild test robot <fengguang.wu@intel.com> Signed-off-by: Thierry Reding <thierry.reding@gmail.com>
2014-05-07 08:27:57 +00:00
return ERR_CAST(lpwm->regs);
lpwm->info = info;
c = lpwm->info->clk_rate;
if (!c)
return ERR_PTR(-EINVAL);
lpwm->chip.dev = dev;
lpwm->chip.ops = &pwm_lpss_ops;
lpwm->chip.base = -1;
lpwm->chip.npwm = info->npwm;
ret = pwmchip_add(&lpwm->chip);
if (ret) {
dev_err(dev, "failed to add PWM chip: %d\n", ret);
return ERR_PTR(ret);
}
return lpwm;
}
EXPORT_SYMBOL_GPL(pwm_lpss_probe);
int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
{
int i;
for (i = 0; i < lpwm->info->npwm; i++) {
if (pwm_is_enabled(&lpwm->chip.pwms[i]))
pm_runtime_put(lpwm->chip.dev);
}
return pwmchip_remove(&lpwm->chip);
}
EXPORT_SYMBOL_GPL(pwm_lpss_remove);
int pwm_lpss_suspend(struct device *dev)
{
struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
int i;
for (i = 0; i < lpwm->info->npwm; i++)
lpwm->saved_ctrl[i] = readl(lpwm->regs + i * PWM_SIZE + PWM);
return 0;
}
EXPORT_SYMBOL_GPL(pwm_lpss_suspend);
int pwm_lpss_resume(struct device *dev)
{
struct pwm_lpss_chip *lpwm = dev_get_drvdata(dev);
int i;
for (i = 0; i < lpwm->info->npwm; i++)
writel(lpwm->saved_ctrl[i], lpwm->regs + i * PWM_SIZE + PWM);
return 0;
}
EXPORT_SYMBOL_GPL(pwm_lpss_resume);
MODULE_DESCRIPTION("PWM driver for Intel LPSS");
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
MODULE_LICENSE("GPL v2");