2012-11-29 13:28:09 +09:00
|
|
|
/*
|
2012-11-02 17:11:10 +09:00
|
|
|
* fs/f2fs/namei.c
|
|
|
|
*
|
|
|
|
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
|
|
|
|
* http://www.samsung.com/
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
|
|
* published by the Free Software Foundation.
|
|
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
|
|
#include <linux/f2fs_fs.h>
|
|
|
|
#include <linux/pagemap.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/ctype.h>
|
|
|
|
|
|
|
|
#include "f2fs.h"
|
2013-03-21 15:21:57 +09:00
|
|
|
#include "node.h"
|
2012-11-02 17:11:10 +09:00
|
|
|
#include "xattr.h"
|
|
|
|
#include "acl.h"
|
2013-04-20 01:28:40 +09:00
|
|
|
#include <trace/events/f2fs.h>
|
2012-11-02 17:11:10 +09:00
|
|
|
|
|
|
|
static struct inode *f2fs_new_inode(struct inode *dir, umode_t mode)
|
|
|
|
{
|
|
|
|
struct super_block *sb = dir->i_sb;
|
|
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
|
|
nid_t ino;
|
|
|
|
struct inode *inode;
|
|
|
|
bool nid_free = false;
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
int err, ilock;
|
2012-11-02 17:11:10 +09:00
|
|
|
|
|
|
|
inode = new_inode(sb);
|
|
|
|
if (!inode)
|
|
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
ilock = mutex_lock_op(sbi);
|
2012-11-02 17:11:10 +09:00
|
|
|
if (!alloc_nid(sbi, &ino)) {
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
mutex_unlock_op(sbi, ilock);
|
2012-11-02 17:11:10 +09:00
|
|
|
err = -ENOSPC;
|
|
|
|
goto fail;
|
|
|
|
}
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
mutex_unlock_op(sbi, ilock);
|
2012-11-02 17:11:10 +09:00
|
|
|
|
|
|
|
inode->i_uid = current_fsuid();
|
|
|
|
|
|
|
|
if (dir->i_mode & S_ISGID) {
|
|
|
|
inode->i_gid = dir->i_gid;
|
|
|
|
if (S_ISDIR(mode))
|
|
|
|
mode |= S_ISGID;
|
|
|
|
} else {
|
|
|
|
inode->i_gid = current_fsgid();
|
|
|
|
}
|
|
|
|
|
|
|
|
inode->i_ino = ino;
|
|
|
|
inode->i_mode = mode;
|
|
|
|
inode->i_blocks = 0;
|
|
|
|
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
|
|
|
|
inode->i_generation = sbi->s_next_generation++;
|
|
|
|
|
|
|
|
err = insert_inode_locked(inode);
|
|
|
|
if (err) {
|
|
|
|
err = -EINVAL;
|
|
|
|
nid_free = true;
|
|
|
|
goto out;
|
|
|
|
}
|
2013-04-25 13:24:33 +09:00
|
|
|
trace_f2fs_new_inode(inode, 0);
|
2012-11-02 17:11:10 +09:00
|
|
|
mark_inode_dirty(inode);
|
|
|
|
return inode;
|
|
|
|
|
|
|
|
out:
|
|
|
|
clear_nlink(inode);
|
|
|
|
unlock_new_inode(inode);
|
|
|
|
fail:
|
2013-04-25 13:24:33 +09:00
|
|
|
trace_f2fs_new_inode(inode, err);
|
2013-04-30 11:33:27 +09:00
|
|
|
make_bad_inode(inode);
|
2012-11-02 17:11:10 +09:00
|
|
|
iput(inode);
|
|
|
|
if (nid_free)
|
|
|
|
alloc_nid_failed(sbi, ino);
|
|
|
|
return ERR_PTR(err);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int is_multimedia_file(const unsigned char *s, const char *sub)
|
|
|
|
{
|
2012-12-27 19:55:46 +02:00
|
|
|
size_t slen = strlen(s);
|
|
|
|
size_t sublen = strlen(sub);
|
2012-11-02 17:11:10 +09:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (sublen > slen)
|
2013-04-20 01:27:21 +09:00
|
|
|
return 0;
|
2012-11-02 17:11:10 +09:00
|
|
|
|
|
|
|
ret = memcmp(s + slen - sublen, sub, sublen);
|
|
|
|
if (ret) { /* compare upper case */
|
|
|
|
int i;
|
|
|
|
char upper_sub[8];
|
|
|
|
for (i = 0; i < sublen && i < sizeof(upper_sub); i++)
|
|
|
|
upper_sub[i] = toupper(sub[i]);
|
2013-04-20 01:27:21 +09:00
|
|
|
return !memcmp(s + slen - sublen, upper_sub, sublen);
|
2012-11-02 17:11:10 +09:00
|
|
|
}
|
|
|
|
|
2013-04-20 01:27:21 +09:00
|
|
|
return !ret;
|
2012-11-02 17:11:10 +09:00
|
|
|
}
|
|
|
|
|
2012-11-29 13:28:09 +09:00
|
|
|
/*
|
2012-11-02 17:11:10 +09:00
|
|
|
* Set multimedia files as cold files for hot/cold data separation
|
|
|
|
*/
|
2013-03-21 15:21:57 +09:00
|
|
|
static inline void set_cold_files(struct f2fs_sb_info *sbi, struct inode *inode,
|
2012-11-02 17:11:10 +09:00
|
|
|
const unsigned char *name)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
__u8 (*extlist)[8] = sbi->raw_super->extension_list;
|
|
|
|
|
|
|
|
int count = le32_to_cpu(sbi->raw_super->extension_count);
|
|
|
|
for (i = 0; i < count; i++) {
|
2013-04-20 01:27:21 +09:00
|
|
|
if (is_multimedia_file(name, extlist[i])) {
|
2013-03-21 15:21:57 +09:00
|
|
|
set_cold_file(inode);
|
2012-11-02 17:11:10 +09:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int f2fs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
|
|
|
|
bool excl)
|
|
|
|
{
|
|
|
|
struct super_block *sb = dir->i_sb;
|
|
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
|
|
struct inode *inode;
|
|
|
|
nid_t ino = 0;
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
int err, ilock;
|
2012-11-02 17:11:10 +09:00
|
|
|
|
2012-12-19 16:25:21 +09:00
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
|
2012-11-02 17:11:10 +09:00
|
|
|
inode = f2fs_new_inode(dir, mode);
|
|
|
|
if (IS_ERR(inode))
|
|
|
|
return PTR_ERR(inode);
|
|
|
|
|
|
|
|
if (!test_opt(sbi, DISABLE_EXT_IDENTIFY))
|
2013-03-21 15:21:57 +09:00
|
|
|
set_cold_files(sbi, inode, dentry->d_name.name);
|
2012-11-02 17:11:10 +09:00
|
|
|
|
|
|
|
inode->i_op = &f2fs_file_inode_operations;
|
|
|
|
inode->i_fop = &f2fs_file_operations;
|
|
|
|
inode->i_mapping->a_ops = &f2fs_dblock_aops;
|
|
|
|
ino = inode->i_ino;
|
|
|
|
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
ilock = mutex_lock_op(sbi);
|
2012-11-02 17:11:10 +09:00
|
|
|
err = f2fs_add_link(dentry, inode);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
mutex_unlock_op(sbi, ilock);
|
2012-11-02 17:11:10 +09:00
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
alloc_nid_done(sbi, ino);
|
|
|
|
|
2013-05-16 08:57:43 +09:00
|
|
|
d_instantiate(dentry, inode);
|
2012-11-02 17:11:10 +09:00
|
|
|
unlock_new_inode(inode);
|
|
|
|
return 0;
|
|
|
|
out:
|
|
|
|
clear_nlink(inode);
|
|
|
|
unlock_new_inode(inode);
|
2013-04-30 11:33:27 +09:00
|
|
|
make_bad_inode(inode);
|
2012-11-02 17:11:10 +09:00
|
|
|
iput(inode);
|
|
|
|
alloc_nid_failed(sbi, ino);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int f2fs_link(struct dentry *old_dentry, struct inode *dir,
|
|
|
|
struct dentry *dentry)
|
|
|
|
{
|
|
|
|
struct inode *inode = old_dentry->d_inode;
|
|
|
|
struct super_block *sb = dir->i_sb;
|
|
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
int err, ilock;
|
2012-11-02 17:11:10 +09:00
|
|
|
|
2012-12-19 16:25:21 +09:00
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
|
2012-11-02 17:11:10 +09:00
|
|
|
inode->i_ctime = CURRENT_TIME;
|
2013-05-22 12:06:26 +09:00
|
|
|
ihold(inode);
|
2012-11-02 17:11:10 +09:00
|
|
|
|
|
|
|
set_inode_flag(F2FS_I(inode), FI_INC_LINK);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
ilock = mutex_lock_op(sbi);
|
2012-11-02 17:11:10 +09:00
|
|
|
err = f2fs_add_link(dentry, inode);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
mutex_unlock_op(sbi, ilock);
|
2012-11-02 17:11:10 +09:00
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
d_instantiate(dentry, inode);
|
|
|
|
return 0;
|
|
|
|
out:
|
|
|
|
clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
|
|
|
|
iput(inode);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct dentry *f2fs_get_parent(struct dentry *child)
|
|
|
|
{
|
|
|
|
struct qstr dotdot = QSTR_INIT("..", 2);
|
|
|
|
unsigned long ino = f2fs_inode_by_name(child->d_inode, &dotdot);
|
|
|
|
if (!ino)
|
|
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
return d_obtain_alias(f2fs_iget(child->d_inode->i_sb, ino));
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct dentry *f2fs_lookup(struct inode *dir, struct dentry *dentry,
|
|
|
|
unsigned int flags)
|
|
|
|
{
|
|
|
|
struct inode *inode = NULL;
|
|
|
|
struct f2fs_dir_entry *de;
|
|
|
|
struct page *page;
|
|
|
|
|
2013-03-03 13:58:05 +09:00
|
|
|
if (dentry->d_name.len > F2FS_NAME_LEN)
|
2012-11-02 17:11:10 +09:00
|
|
|
return ERR_PTR(-ENAMETOOLONG);
|
|
|
|
|
|
|
|
de = f2fs_find_entry(dir, &dentry->d_name, &page);
|
|
|
|
if (de) {
|
|
|
|
nid_t ino = le32_to_cpu(de->ino);
|
|
|
|
kunmap(page);
|
|
|
|
f2fs_put_page(page, 0);
|
|
|
|
|
|
|
|
inode = f2fs_iget(dir->i_sb, ino);
|
|
|
|
if (IS_ERR(inode))
|
|
|
|
return ERR_CAST(inode);
|
|
|
|
}
|
|
|
|
|
|
|
|
return d_splice_alias(inode, dentry);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int f2fs_unlink(struct inode *dir, struct dentry *dentry)
|
|
|
|
{
|
|
|
|
struct super_block *sb = dir->i_sb;
|
|
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
|
|
struct inode *inode = dentry->d_inode;
|
|
|
|
struct f2fs_dir_entry *de;
|
|
|
|
struct page *page;
|
|
|
|
int err = -ENOENT;
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
int ilock;
|
2012-11-02 17:11:10 +09:00
|
|
|
|
2013-04-20 01:28:40 +09:00
|
|
|
trace_f2fs_unlink_enter(dir, dentry);
|
2012-12-19 16:25:21 +09:00
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
|
2012-11-02 17:11:10 +09:00
|
|
|
de = f2fs_find_entry(dir, &dentry->d_name, &page);
|
|
|
|
if (!de)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
err = check_orphan_space(sbi);
|
|
|
|
if (err) {
|
|
|
|
kunmap(page);
|
|
|
|
f2fs_put_page(page, 0);
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
ilock = mutex_lock_op(sbi);
|
2012-11-02 17:11:10 +09:00
|
|
|
f2fs_delete_entry(de, page, inode);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
mutex_unlock_op(sbi, ilock);
|
2012-11-02 17:11:10 +09:00
|
|
|
|
|
|
|
/* In order to evict this inode, we set it dirty */
|
|
|
|
mark_inode_dirty(inode);
|
|
|
|
fail:
|
2013-04-20 01:28:40 +09:00
|
|
|
trace_f2fs_unlink_exit(inode, err);
|
2012-11-02 17:11:10 +09:00
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int f2fs_symlink(struct inode *dir, struct dentry *dentry,
|
|
|
|
const char *symname)
|
|
|
|
{
|
|
|
|
struct super_block *sb = dir->i_sb;
|
|
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
|
|
struct inode *inode;
|
2012-12-27 19:55:46 +02:00
|
|
|
size_t symlen = strlen(symname) + 1;
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
int err, ilock;
|
2012-11-02 17:11:10 +09:00
|
|
|
|
2012-12-19 16:25:21 +09:00
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
|
2012-11-02 17:11:10 +09:00
|
|
|
inode = f2fs_new_inode(dir, S_IFLNK | S_IRWXUGO);
|
|
|
|
if (IS_ERR(inode))
|
|
|
|
return PTR_ERR(inode);
|
|
|
|
|
|
|
|
inode->i_op = &f2fs_symlink_inode_operations;
|
|
|
|
inode->i_mapping->a_ops = &f2fs_dblock_aops;
|
|
|
|
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
ilock = mutex_lock_op(sbi);
|
2012-11-02 17:11:10 +09:00
|
|
|
err = f2fs_add_link(dentry, inode);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
mutex_unlock_op(sbi, ilock);
|
2012-11-02 17:11:10 +09:00
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
err = page_symlink(inode, symname, symlen);
|
|
|
|
alloc_nid_done(sbi, inode->i_ino);
|
|
|
|
|
|
|
|
d_instantiate(dentry, inode);
|
|
|
|
unlock_new_inode(inode);
|
|
|
|
return err;
|
|
|
|
out:
|
|
|
|
clear_nlink(inode);
|
|
|
|
unlock_new_inode(inode);
|
2013-04-30 11:33:27 +09:00
|
|
|
make_bad_inode(inode);
|
2012-11-02 17:11:10 +09:00
|
|
|
iput(inode);
|
|
|
|
alloc_nid_failed(sbi, inode->i_ino);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int f2fs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
|
|
|
|
{
|
|
|
|
struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
|
|
|
|
struct inode *inode;
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
int err, ilock;
|
2012-11-02 17:11:10 +09:00
|
|
|
|
2012-12-19 16:25:21 +09:00
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
|
2012-11-02 17:11:10 +09:00
|
|
|
inode = f2fs_new_inode(dir, S_IFDIR | mode);
|
|
|
|
if (IS_ERR(inode))
|
2012-12-01 10:56:25 +09:00
|
|
|
return PTR_ERR(inode);
|
2012-11-02 17:11:10 +09:00
|
|
|
|
|
|
|
inode->i_op = &f2fs_dir_inode_operations;
|
|
|
|
inode->i_fop = &f2fs_dir_operations;
|
|
|
|
inode->i_mapping->a_ops = &f2fs_dblock_aops;
|
2012-12-08 14:54:18 +09:00
|
|
|
mapping_set_gfp_mask(inode->i_mapping, GFP_F2FS_ZERO);
|
2012-11-02 17:11:10 +09:00
|
|
|
|
|
|
|
set_inode_flag(F2FS_I(inode), FI_INC_LINK);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
ilock = mutex_lock_op(sbi);
|
2012-11-02 17:11:10 +09:00
|
|
|
err = f2fs_add_link(dentry, inode);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
mutex_unlock_op(sbi, ilock);
|
2012-11-02 17:11:10 +09:00
|
|
|
if (err)
|
|
|
|
goto out_fail;
|
|
|
|
|
|
|
|
alloc_nid_done(sbi, inode->i_ino);
|
|
|
|
|
|
|
|
d_instantiate(dentry, inode);
|
|
|
|
unlock_new_inode(inode);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_fail:
|
|
|
|
clear_inode_flag(F2FS_I(inode), FI_INC_LINK);
|
|
|
|
clear_nlink(inode);
|
|
|
|
unlock_new_inode(inode);
|
2013-04-30 11:33:27 +09:00
|
|
|
make_bad_inode(inode);
|
2012-11-02 17:11:10 +09:00
|
|
|
iput(inode);
|
|
|
|
alloc_nid_failed(sbi, inode->i_ino);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int f2fs_rmdir(struct inode *dir, struct dentry *dentry)
|
|
|
|
{
|
|
|
|
struct inode *inode = dentry->d_inode;
|
|
|
|
if (f2fs_empty_dir(inode))
|
|
|
|
return f2fs_unlink(dir, dentry);
|
|
|
|
return -ENOTEMPTY;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int f2fs_mknod(struct inode *dir, struct dentry *dentry,
|
|
|
|
umode_t mode, dev_t rdev)
|
|
|
|
{
|
|
|
|
struct super_block *sb = dir->i_sb;
|
|
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
|
|
struct inode *inode;
|
|
|
|
int err = 0;
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
int ilock;
|
2012-11-02 17:11:10 +09:00
|
|
|
|
|
|
|
if (!new_valid_dev(rdev))
|
|
|
|
return -EINVAL;
|
|
|
|
|
2012-12-19 16:25:21 +09:00
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
|
2012-11-02 17:11:10 +09:00
|
|
|
inode = f2fs_new_inode(dir, mode);
|
|
|
|
if (IS_ERR(inode))
|
|
|
|
return PTR_ERR(inode);
|
|
|
|
|
|
|
|
init_special_inode(inode, inode->i_mode, rdev);
|
|
|
|
inode->i_op = &f2fs_special_inode_operations;
|
|
|
|
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
ilock = mutex_lock_op(sbi);
|
2012-11-02 17:11:10 +09:00
|
|
|
err = f2fs_add_link(dentry, inode);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
mutex_unlock_op(sbi, ilock);
|
2012-11-02 17:11:10 +09:00
|
|
|
if (err)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
alloc_nid_done(sbi, inode->i_ino);
|
|
|
|
d_instantiate(dentry, inode);
|
|
|
|
unlock_new_inode(inode);
|
|
|
|
return 0;
|
|
|
|
out:
|
|
|
|
clear_nlink(inode);
|
|
|
|
unlock_new_inode(inode);
|
2013-04-30 11:33:27 +09:00
|
|
|
make_bad_inode(inode);
|
2012-11-02 17:11:10 +09:00
|
|
|
iput(inode);
|
|
|
|
alloc_nid_failed(sbi, inode->i_ino);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int f2fs_rename(struct inode *old_dir, struct dentry *old_dentry,
|
|
|
|
struct inode *new_dir, struct dentry *new_dentry)
|
|
|
|
{
|
|
|
|
struct super_block *sb = old_dir->i_sb;
|
|
|
|
struct f2fs_sb_info *sbi = F2FS_SB(sb);
|
|
|
|
struct inode *old_inode = old_dentry->d_inode;
|
|
|
|
struct inode *new_inode = new_dentry->d_inode;
|
|
|
|
struct page *old_dir_page;
|
|
|
|
struct page *old_page;
|
|
|
|
struct f2fs_dir_entry *old_dir_entry = NULL;
|
|
|
|
struct f2fs_dir_entry *old_entry;
|
|
|
|
struct f2fs_dir_entry *new_entry;
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
int err = -ENOENT, ilock = -1;
|
2012-11-02 17:11:10 +09:00
|
|
|
|
2012-12-19 16:25:21 +09:00
|
|
|
f2fs_balance_fs(sbi);
|
|
|
|
|
2012-11-02 17:11:10 +09:00
|
|
|
old_entry = f2fs_find_entry(old_dir, &old_dentry->d_name, &old_page);
|
|
|
|
if (!old_entry)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (S_ISDIR(old_inode->i_mode)) {
|
|
|
|
err = -EIO;
|
|
|
|
old_dir_entry = f2fs_parent_dir(old_inode, &old_dir_page);
|
|
|
|
if (!old_dir_entry)
|
|
|
|
goto out_old;
|
|
|
|
}
|
|
|
|
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
ilock = mutex_lock_op(sbi);
|
2012-11-02 17:11:10 +09:00
|
|
|
|
|
|
|
if (new_inode) {
|
|
|
|
struct page *new_page;
|
|
|
|
|
|
|
|
err = -ENOTEMPTY;
|
|
|
|
if (old_dir_entry && !f2fs_empty_dir(new_inode))
|
|
|
|
goto out_dir;
|
|
|
|
|
|
|
|
err = -ENOENT;
|
|
|
|
new_entry = f2fs_find_entry(new_dir, &new_dentry->d_name,
|
|
|
|
&new_page);
|
|
|
|
if (!new_entry)
|
|
|
|
goto out_dir;
|
|
|
|
|
|
|
|
f2fs_set_link(new_dir, new_entry, new_page, old_inode);
|
|
|
|
|
|
|
|
new_inode->i_ctime = CURRENT_TIME;
|
|
|
|
if (old_dir_entry)
|
|
|
|
drop_nlink(new_inode);
|
|
|
|
drop_nlink(new_inode);
|
|
|
|
if (!new_inode->i_nlink)
|
|
|
|
add_orphan_inode(sbi, new_inode->i_ino);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
update_inode_page(new_inode);
|
2012-11-02 17:11:10 +09:00
|
|
|
} else {
|
|
|
|
err = f2fs_add_link(new_dentry, old_inode);
|
|
|
|
if (err)
|
|
|
|
goto out_dir;
|
|
|
|
|
|
|
|
if (old_dir_entry) {
|
|
|
|
inc_nlink(new_dir);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
update_inode_page(new_dir);
|
2012-11-02 17:11:10 +09:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
old_inode->i_ctime = CURRENT_TIME;
|
|
|
|
mark_inode_dirty(old_inode);
|
|
|
|
|
|
|
|
f2fs_delete_entry(old_entry, old_page, NULL);
|
|
|
|
|
|
|
|
if (old_dir_entry) {
|
|
|
|
if (old_dir != new_dir) {
|
|
|
|
f2fs_set_link(old_inode, old_dir_entry,
|
|
|
|
old_dir_page, new_dir);
|
|
|
|
} else {
|
|
|
|
kunmap(old_dir_page);
|
|
|
|
f2fs_put_page(old_dir_page, 0);
|
|
|
|
}
|
|
|
|
drop_nlink(old_dir);
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
update_inode_page(old_dir);
|
2012-11-02 17:11:10 +09:00
|
|
|
}
|
|
|
|
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
mutex_unlock_op(sbi, ilock);
|
2012-11-02 17:11:10 +09:00
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_dir:
|
|
|
|
if (old_dir_entry) {
|
|
|
|
kunmap(old_dir_page);
|
|
|
|
f2fs_put_page(old_dir_page, 0);
|
|
|
|
}
|
f2fs: introduce a new global lock scheme
In the previous version, f2fs uses global locks according to the usage types,
such as directory operations, block allocation, block write, and so on.
Reference the following lock types in f2fs.h.
enum lock_type {
RENAME, /* for renaming operations */
DENTRY_OPS, /* for directory operations */
DATA_WRITE, /* for data write */
DATA_NEW, /* for data allocation */
DATA_TRUNC, /* for data truncate */
NODE_NEW, /* for node allocation */
NODE_TRUNC, /* for node truncate */
NODE_WRITE, /* for node write */
NR_LOCK_TYPE,
};
In that case, we lose the performance under the multi-threading environment,
since every types of operations must be conducted one at a time.
In order to address the problem, let's share the locks globally with a mutex
array regardless of any types.
So, let users grab a mutex and perform their jobs in parallel as much as
possbile.
For this, I propose a new global lock scheme as follows.
0. Data structure
- f2fs_sb_info -> mutex_lock[NR_GLOBAL_LOCKS]
- f2fs_sb_info -> node_write
1. mutex_lock_op(sbi)
- try to get an avaiable lock from the array.
- returns the index of the gottern lock variable.
2. mutex_unlock_op(sbi, index of the lock)
- unlock the given index of the lock.
3. mutex_lock_all(sbi)
- grab all the locks in the array before the checkpoint.
4. mutex_unlock_all(sbi)
- release all the locks in the array after checkpoint.
5. block_operations()
- call mutex_lock_all()
- sync_dirty_dir_inodes()
- grab node_write
- sync_node_pages()
Note that,
the pairs of mutex_lock_op()/mutex_unlock_op() and
mutex_lock_all()/mutex_unlock_all() should be used together.
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
2012-11-22 16:21:29 +09:00
|
|
|
mutex_unlock_op(sbi, ilock);
|
2012-11-02 17:11:10 +09:00
|
|
|
out_old:
|
|
|
|
kunmap(old_page);
|
|
|
|
f2fs_put_page(old_page, 0);
|
|
|
|
out:
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
|
|
|
const struct inode_operations f2fs_dir_inode_operations = {
|
|
|
|
.create = f2fs_create,
|
|
|
|
.lookup = f2fs_lookup,
|
|
|
|
.link = f2fs_link,
|
|
|
|
.unlink = f2fs_unlink,
|
|
|
|
.symlink = f2fs_symlink,
|
|
|
|
.mkdir = f2fs_mkdir,
|
|
|
|
.rmdir = f2fs_rmdir,
|
|
|
|
.mknod = f2fs_mknod,
|
|
|
|
.rename = f2fs_rename,
|
2013-06-07 16:33:07 +09:00
|
|
|
.getattr = f2fs_getattr,
|
2012-11-02 17:11:10 +09:00
|
|
|
.setattr = f2fs_setattr,
|
|
|
|
.get_acl = f2fs_get_acl,
|
|
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
|
|
.setxattr = generic_setxattr,
|
|
|
|
.getxattr = generic_getxattr,
|
|
|
|
.listxattr = f2fs_listxattr,
|
|
|
|
.removexattr = generic_removexattr,
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
const struct inode_operations f2fs_symlink_inode_operations = {
|
|
|
|
.readlink = generic_readlink,
|
|
|
|
.follow_link = page_follow_link_light,
|
|
|
|
.put_link = page_put_link,
|
2013-06-07 16:33:07 +09:00
|
|
|
.getattr = f2fs_getattr,
|
2012-11-02 17:11:10 +09:00
|
|
|
.setattr = f2fs_setattr,
|
|
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
|
|
.setxattr = generic_setxattr,
|
|
|
|
.getxattr = generic_getxattr,
|
|
|
|
.listxattr = f2fs_listxattr,
|
|
|
|
.removexattr = generic_removexattr,
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
const struct inode_operations f2fs_special_inode_operations = {
|
2013-06-07 16:33:07 +09:00
|
|
|
.getattr = f2fs_getattr,
|
2012-11-02 17:11:10 +09:00
|
|
|
.setattr = f2fs_setattr,
|
|
|
|
.get_acl = f2fs_get_acl,
|
|
|
|
#ifdef CONFIG_F2FS_FS_XATTR
|
|
|
|
.setxattr = generic_setxattr,
|
|
|
|
.getxattr = generic_getxattr,
|
|
|
|
.listxattr = f2fs_listxattr,
|
|
|
|
.removexattr = generic_removexattr,
|
|
|
|
#endif
|
|
|
|
};
|