linux/fs/btrfs/defrag.c

1498 lines
40 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/sched.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "locking.h"
#include "accessors.h"
#include "messages.h"
#include "delalloc-space.h"
#include "subpage.h"
#include "defrag.h"
#include "file-item.h"
#include "super.h"
static struct kmem_cache *btrfs_inode_defrag_cachep;
/*
* When auto defrag is enabled we queue up these defrag structs to remember
* which inodes need defragging passes.
*/
struct inode_defrag {
struct rb_node rb_node;
/* Inode number */
u64 ino;
/*
* Transid where the defrag was added, we search for extents newer than
* this.
*/
u64 transid;
/* Root objectid */
u64 root;
/*
* The extent size threshold for autodefrag.
*
* This value is different for compressed/non-compressed extents, thus
* needs to be passed from higher layer.
* (aka, inode_should_defrag())
*/
u32 extent_thresh;
};
static int compare_inode_defrag(const struct inode_defrag *defrag1,
const struct inode_defrag *defrag2)
{
if (defrag1->root > defrag2->root)
return 1;
else if (defrag1->root < defrag2->root)
return -1;
else if (defrag1->ino > defrag2->ino)
return 1;
else if (defrag1->ino < defrag2->ino)
return -1;
else
return 0;
}
/*
* Insert a record for an inode into the defrag tree. The lock must be held
* already.
*
* If you're inserting a record for an older transid than an existing record,
* the transid already in the tree is lowered.
*/
static int btrfs_insert_inode_defrag(struct btrfs_inode *inode,
struct inode_defrag *defrag)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct inode_defrag *entry;
struct rb_node **p;
struct rb_node *parent = NULL;
int ret;
p = &fs_info->defrag_inodes.rb_node;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct inode_defrag, rb_node);
ret = compare_inode_defrag(defrag, entry);
if (ret < 0)
p = &parent->rb_left;
else if (ret > 0)
p = &parent->rb_right;
else {
/*
* If we're reinserting an entry for an old defrag run,
* make sure to lower the transid of our existing
* record.
*/
if (defrag->transid < entry->transid)
entry->transid = defrag->transid;
entry->extent_thresh = min(defrag->extent_thresh,
entry->extent_thresh);
return -EEXIST;
}
}
set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
rb_link_node(&defrag->rb_node, parent, p);
rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
return 0;
}
static inline int need_auto_defrag(struct btrfs_fs_info *fs_info)
{
if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
return 0;
if (btrfs_fs_closing(fs_info))
return 0;
return 1;
}
/*
* Insert a defrag record for this inode if auto defrag is enabled. No errors
* returned as they're not considered fatal.
*/
void btrfs_add_inode_defrag(struct btrfs_inode *inode, u32 extent_thresh)
{
struct btrfs_root *root = inode->root;
struct btrfs_fs_info *fs_info = root->fs_info;
struct inode_defrag *defrag;
int ret;
if (!need_auto_defrag(fs_info))
return;
if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
return;
defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
if (!defrag)
return;
defrag->ino = btrfs_ino(inode);
defrag->transid = btrfs_get_root_last_trans(root);
defrag->root = btrfs_root_id(root);
defrag->extent_thresh = extent_thresh;
spin_lock(&fs_info->defrag_inodes_lock);
if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
/*
* If we set IN_DEFRAG flag and evict the inode from memory,
* and then re-read this inode, this new inode doesn't have
* IN_DEFRAG flag. At the case, we may find the existed defrag.
*/
ret = btrfs_insert_inode_defrag(inode, defrag);
if (ret)
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
} else {
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
}
spin_unlock(&fs_info->defrag_inodes_lock);
}
/*
* Pick the defragable inode that we want, if it doesn't exist, we will get the
* next one.
*/
static struct inode_defrag *btrfs_pick_defrag_inode(
struct btrfs_fs_info *fs_info, u64 root, u64 ino)
{
struct inode_defrag *entry = NULL;
struct inode_defrag tmp;
struct rb_node *p;
struct rb_node *parent = NULL;
int ret;
tmp.ino = ino;
tmp.root = root;
spin_lock(&fs_info->defrag_inodes_lock);
p = fs_info->defrag_inodes.rb_node;
while (p) {
parent = p;
entry = rb_entry(parent, struct inode_defrag, rb_node);
ret = compare_inode_defrag(&tmp, entry);
if (ret < 0)
p = parent->rb_left;
else if (ret > 0)
p = parent->rb_right;
else
goto out;
}
if (parent && compare_inode_defrag(&tmp, entry) > 0) {
parent = rb_next(parent);
if (parent)
entry = rb_entry(parent, struct inode_defrag, rb_node);
else
entry = NULL;
}
out:
if (entry)
rb_erase(parent, &fs_info->defrag_inodes);
spin_unlock(&fs_info->defrag_inodes_lock);
return entry;
}
void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
{
struct inode_defrag *defrag, *next;
spin_lock(&fs_info->defrag_inodes_lock);
rbtree_postorder_for_each_entry_safe(defrag, next,
&fs_info->defrag_inodes, rb_node)
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
fs_info->defrag_inodes = RB_ROOT;
spin_unlock(&fs_info->defrag_inodes_lock);
}
#define BTRFS_DEFRAG_BATCH 1024
static int btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
struct inode_defrag *defrag,
struct file_ra_state *ra)
{
struct btrfs_root *inode_root;
struct inode *inode;
struct btrfs_ioctl_defrag_range_args range;
int ret = 0;
u64 cur = 0;
again:
if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
goto cleanup;
if (!need_auto_defrag(fs_info))
goto cleanup;
/* Get the inode */
inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
if (IS_ERR(inode_root)) {
ret = PTR_ERR(inode_root);
goto cleanup;
}
inode = btrfs_iget(defrag->ino, inode_root);
btrfs_put_root(inode_root);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
goto cleanup;
}
if (cur >= i_size_read(inode)) {
iput(inode);
goto cleanup;
}
/* Do a chunk of defrag */
clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
memset(&range, 0, sizeof(range));
range.len = (u64)-1;
range.start = cur;
range.extent_thresh = defrag->extent_thresh;
file_ra_state_init(ra, inode->i_mapping);
sb_start_write(fs_info->sb);
ret = btrfs_defrag_file(inode, ra, &range, defrag->transid,
BTRFS_DEFRAG_BATCH);
sb_end_write(fs_info->sb);
iput(inode);
if (ret < 0)
goto cleanup;
cur = max(cur + fs_info->sectorsize, range.start);
goto again;
cleanup:
kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
return ret;
}
/*
* Run through the list of inodes in the FS that need defragging.
*/
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
{
struct inode_defrag *defrag;
u64 first_ino = 0;
u64 root_objectid = 0;
atomic_inc(&fs_info->defrag_running);
while (1) {
struct file_ra_state ra = { 0 };
/* Pause the auto defragger. */
if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
break;
if (!need_auto_defrag(fs_info))
break;
/* find an inode to defrag */
defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
if (!defrag) {
if (root_objectid || first_ino) {
root_objectid = 0;
first_ino = 0;
continue;
} else {
break;
}
}
first_ino = defrag->ino + 1;
root_objectid = defrag->root;
btrfs_run_defrag_inode(fs_info, defrag, &ra);
}
atomic_dec(&fs_info->defrag_running);
/*
* During unmount, we use the transaction_wait queue to wait for the
* defragger to stop.
*/
wake_up(&fs_info->transaction_wait);
return 0;
}
/*
* Check if two blocks addresses are close, used by defrag.
*/
static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
{
if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
return true;
if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
return true;
return false;
}
/*
* Go through all the leaves pointed to by a node and reallocate them so that
* disk order is close to key order.
*/
static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct extent_buffer *parent,
int start_slot, u64 *last_ret,
struct btrfs_key *progress)
{
struct btrfs_fs_info *fs_info = root->fs_info;
const u32 blocksize = fs_info->nodesize;
const int end_slot = btrfs_header_nritems(parent) - 1;
u64 search_start = *last_ret;
u64 last_block = 0;
int ret = 0;
bool progress_passed = false;
/*
* COWing must happen through a running transaction, which always
* matches the current fs generation (it's a transaction with a state
* less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
* into error state to prevent the commit of any transaction.
*/
if (unlikely(trans->transaction != fs_info->running_transaction ||
trans->transid != fs_info->generation)) {
btrfs_abort_transaction(trans, -EUCLEAN);
btrfs_crit(fs_info,
"unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
parent->start, btrfs_root_id(root), trans->transid,
fs_info->running_transaction->transid,
fs_info->generation);
return -EUCLEAN;
}
if (btrfs_header_nritems(parent) <= 1)
return 0;
for (int i = start_slot; i <= end_slot; i++) {
struct extent_buffer *cur;
struct btrfs_disk_key disk_key;
u64 blocknr;
u64 other;
bool close = true;
btrfs_node_key(parent, &disk_key, i);
if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
continue;
progress_passed = true;
blocknr = btrfs_node_blockptr(parent, i);
if (last_block == 0)
last_block = blocknr;
if (i > 0) {
other = btrfs_node_blockptr(parent, i - 1);
close = close_blocks(blocknr, other, blocksize);
}
if (!close && i < end_slot) {
other = btrfs_node_blockptr(parent, i + 1);
close = close_blocks(blocknr, other, blocksize);
}
if (close) {
last_block = blocknr;
continue;
}
cur = btrfs_read_node_slot(parent, i);
if (IS_ERR(cur))
return PTR_ERR(cur);
if (search_start == 0)
search_start = last_block;
btrfs_tree_lock(cur);
ret = btrfs_force_cow_block(trans, root, cur, parent, i,
&cur, search_start,
min(16 * blocksize,
(end_slot - i) * blocksize),
BTRFS_NESTING_COW);
if (ret) {
btrfs_tree_unlock(cur);
free_extent_buffer(cur);
break;
}
search_start = cur->start;
last_block = cur->start;
*last_ret = search_start;
btrfs_tree_unlock(cur);
free_extent_buffer(cur);
}
return ret;
}
/*
* Defrag all the leaves in a given btree.
* Read all the leaves and try to get key order to
* better reflect disk order
*/
static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_path *path = NULL;
struct btrfs_key key;
int ret = 0;
int wret;
int level;
int next_key_ret = 0;
u64 last_ret = 0;
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
goto out;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
level = btrfs_header_level(root->node);
if (level == 0)
goto out;
if (root->defrag_progress.objectid == 0) {
struct extent_buffer *root_node;
u32 nritems;
root_node = btrfs_lock_root_node(root);
nritems = btrfs_header_nritems(root_node);
root->defrag_max.objectid = 0;
/* from above we know this is not a leaf */
btrfs_node_key_to_cpu(root_node, &root->defrag_max,
nritems - 1);
btrfs_tree_unlock(root_node);
free_extent_buffer(root_node);
memset(&key, 0, sizeof(key));
} else {
memcpy(&key, &root->defrag_progress, sizeof(key));
}
path->keep_locks = 1;
ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
if (ret < 0)
goto out;
if (ret > 0) {
ret = 0;
goto out;
}
btrfs_release_path(path);
Btrfs: fix locking bugs when defragging leaves When running fstests btrfs/070, with a higher number of fsstress operations, I ran frequently into two different locking bugs when defragging directories. The first bug produced the following traces: [133860.229792] ------------[ cut here ]------------ [133860.251062] WARNING: CPU: 2 PID: 26057 at fs/btrfs/locking.c:46 btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs]() [133860.253576] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 psmouse parport [133860.282566] CPU: 2 PID: 26057 Comm: btrfs Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1 [133860.284393] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [133860.286827] 0000000000000000 ffff880207697b78 ffffffff812566f4 0000000000000000 [133860.288341] ffff880207697bb0 ffffffff8104d0a6 ffffffffa052d4c1 ffff880178f60e00 [133860.294219] ffff880178f60e00 0000000000000000 00000000000000f6 ffff880207697bc0 [133860.295831] Call Trace: [133860.306518] [<ffffffff812566f4>] dump_stack+0x4e/0x79 [133860.307473] [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8 [133860.308619] [<ffffffffa052d4c1>] ? btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs] [133860.310068] [<ffffffff8104d172>] warn_slowpath_null+0x1a/0x1c [133860.312552] [<ffffffffa052d4c1>] btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs] [133860.314630] [<ffffffffa04d5787>] btrfs_set_lock_blocking+0xe/0x10 [btrfs] [133860.323596] [<ffffffffa04d99cb>] btrfs_realloc_node+0xb3/0x341 [btrfs] [133860.325233] [<ffffffffa050e396>] btrfs_defrag_leaves+0x239/0x2fa [btrfs] [133860.332427] [<ffffffffa04fc2ce>] btrfs_defrag_root+0x63/0xca [btrfs] [133860.337259] [<ffffffffa052a34e>] btrfs_ioctl_defrag+0x78/0x14e [btrfs] [133860.340147] [<ffffffffa052b00b>] btrfs_ioctl+0x746/0x24c6 [btrfs] [133860.344833] [<ffffffff81087481>] ? arch_local_irq_save+0x9/0xc [133860.346343] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.353248] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.354242] [<ffffffff8113adba>] ? __might_fault+0xa5/0xa7 [133860.355232] [<ffffffff81171139>] ? cp_new_stat+0x15d/0x174 [133860.356237] [<ffffffff8117c610>] do_vfs_ioctl+0x427/0x4e6 [133860.358587] [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e [133860.360195] [<ffffffff8118574d>] ? __fget_light+0x4d/0x71 [133860.361380] [<ffffffff8117c726>] SyS_ioctl+0x57/0x79 [133860.363578] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f [133860.366217] ---[ end trace 2cadb2f653437e49 ]--- [133860.367399] ------------[ cut here ]------------ [133860.368162] kernel BUG at fs/btrfs/locking.c:307! [133860.369430] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [133860.370205] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 psmouse parport [133860.370205] CPU: 2 PID: 26057 Comm: btrfs Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1 [133860.370205] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [133860.370205] task: ffff8800aec6db40 ti: ffff880207694000 task.ti: ffff880207694000 [133860.370205] RIP: 0010:[<ffffffffa052d466>] [<ffffffffa052d466>] btrfs_assert_tree_locked+0x10/0x14 [btrfs] [133860.370205] RSP: 0018:ffff880207697bc0 EFLAGS: 00010246 [133860.370205] RAX: 0000000000000000 RBX: ffff880178f60e00 RCX: 0000000000000000 [133860.370205] RDX: ffff88023ec4fb50 RSI: 00000000ffffffff RDI: ffff880178f60e00 [133860.370205] RBP: ffff880207697bc0 R08: 0000000000000001 R09: 0000000000000000 [133860.370205] R10: 0000160000000000 R11: ffffffff81651000 R12: ffff880178f60e00 [133860.370205] R13: 0000000000000000 R14: 00000000000000f6 R15: ffff8801ff409000 [133860.370205] FS: 00007f763efd48c0(0000) GS:ffff88023ec40000(0000) knlGS:0000000000000000 [133860.370205] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [133860.370205] CR2: 0000000002158048 CR3: 000000003fd6c000 CR4: 00000000000006e0 [133860.370205] Stack: [133860.370205] ffff880207697bd8 ffffffffa052d4d0 0000000000000000 ffff880207697be8 [133860.370205] ffffffffa04d5787 ffff880207697c80 ffffffffa04d99cb ffff8801ff409590 [133860.370205] ffff880207697ca8 000000f507697c80 ffff880183c11bb8 0000000000000000 [133860.370205] Call Trace: [133860.370205] [<ffffffffa052d4d0>] btrfs_set_lock_blocking_rw+0x66/0xbd [btrfs] [133860.370205] [<ffffffffa04d5787>] btrfs_set_lock_blocking+0xe/0x10 [btrfs] [133860.370205] [<ffffffffa04d99cb>] btrfs_realloc_node+0xb3/0x341 [btrfs] [133860.370205] [<ffffffffa050e396>] btrfs_defrag_leaves+0x239/0x2fa [btrfs] [133860.370205] [<ffffffffa04fc2ce>] btrfs_defrag_root+0x63/0xca [btrfs] [133860.370205] [<ffffffffa052a34e>] btrfs_ioctl_defrag+0x78/0x14e [btrfs] [133860.370205] [<ffffffffa052b00b>] btrfs_ioctl+0x746/0x24c6 [btrfs] [133860.370205] [<ffffffff81087481>] ? arch_local_irq_save+0x9/0xc [133860.370205] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.370205] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.370205] [<ffffffff8113adba>] ? __might_fault+0xa5/0xa7 [133860.370205] [<ffffffff81171139>] ? cp_new_stat+0x15d/0x174 [133860.370205] [<ffffffff8117c610>] do_vfs_ioctl+0x427/0x4e6 [133860.370205] [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e [133860.370205] [<ffffffff8118574d>] ? __fget_light+0x4d/0x71 [133860.370205] [<ffffffff8117c726>] SyS_ioctl+0x57/0x79 [133860.370205] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f This bug happened because we assumed that by setting keep_locks to 1 in our search path, our path after a call to btrfs_search_slot() would have all nodes locked, which is not always true because unlock_up() (called by btrfs_search_slot()) will unlock a node in a path if the slot of the node below it doesn't point to the last item or beyond the last item. For example, when the tree has a heigth of 2 and path->slots[0] has a value smaller than btrfs_header_nritems(path->nodes[0]) - 1, the node at level 2 will be unlocked (also because lowest_unlock is set to 1 due to the fact that the value passed as ins_len to btrfs_search_slot is 0). This resulted in btrfs_find_next_key(), called before btrfs_realloc_node(), to release out path and call again btrfs_search_slot(), but this time with the cow parameter set to 0, meaning the resulting path got only read locks. Therefore when we called btrfs_realloc_node(), with path->nodes[1] having a read lock, it resulted in the warning and BUG_ON when calling btrfs_set_lock_blocking() against the node, as that function expects the node to have a write lock. The second bug happened often when the first bug didn't happen, and made us hang and hitting the following warning at fs/btrfs/locking.c: 251 void btrfs_tree_lock(struct extent_buffer *eb) 252 { 253 WARN_ON(eb->lock_owner == current->pid); This happened because the tree search we made at btrfs_defrag_leaves() before calling btrfs_find_next_key() locked a leaf and all the other nodes in the path, so btrfs_find_next_key() had no need to release the path and make a new search (with path->lowest_level set to 1). This made btrfs_realloc_node() attempt to write lock the same leaf again, resulting in a hang/deadlock. So fix these issues by calling btrfs_find_next_key() after calling btrfs_realloc_node() and setting the search path's lowest_level to 1 to avoid the hang/deadlock when attempting to write lock the leaves at btrfs_realloc_node(). Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-18 01:57:29 +00:00
/*
* We don't need a lock on a leaf. btrfs_realloc_node() will lock all
* leafs from path->nodes[1], so set lowest_level to 1 to avoid later
* a deadlock (attempting to write lock an already write locked leaf).
*/
path->lowest_level = 1;
wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
if (wret < 0) {
ret = wret;
goto out;
}
if (!path->nodes[1]) {
ret = 0;
goto out;
}
Btrfs: fix locking bugs when defragging leaves When running fstests btrfs/070, with a higher number of fsstress operations, I ran frequently into two different locking bugs when defragging directories. The first bug produced the following traces: [133860.229792] ------------[ cut here ]------------ [133860.251062] WARNING: CPU: 2 PID: 26057 at fs/btrfs/locking.c:46 btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs]() [133860.253576] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 psmouse parport [133860.282566] CPU: 2 PID: 26057 Comm: btrfs Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1 [133860.284393] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [133860.286827] 0000000000000000 ffff880207697b78 ffffffff812566f4 0000000000000000 [133860.288341] ffff880207697bb0 ffffffff8104d0a6 ffffffffa052d4c1 ffff880178f60e00 [133860.294219] ffff880178f60e00 0000000000000000 00000000000000f6 ffff880207697bc0 [133860.295831] Call Trace: [133860.306518] [<ffffffff812566f4>] dump_stack+0x4e/0x79 [133860.307473] [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8 [133860.308619] [<ffffffffa052d4c1>] ? btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs] [133860.310068] [<ffffffff8104d172>] warn_slowpath_null+0x1a/0x1c [133860.312552] [<ffffffffa052d4c1>] btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs] [133860.314630] [<ffffffffa04d5787>] btrfs_set_lock_blocking+0xe/0x10 [btrfs] [133860.323596] [<ffffffffa04d99cb>] btrfs_realloc_node+0xb3/0x341 [btrfs] [133860.325233] [<ffffffffa050e396>] btrfs_defrag_leaves+0x239/0x2fa [btrfs] [133860.332427] [<ffffffffa04fc2ce>] btrfs_defrag_root+0x63/0xca [btrfs] [133860.337259] [<ffffffffa052a34e>] btrfs_ioctl_defrag+0x78/0x14e [btrfs] [133860.340147] [<ffffffffa052b00b>] btrfs_ioctl+0x746/0x24c6 [btrfs] [133860.344833] [<ffffffff81087481>] ? arch_local_irq_save+0x9/0xc [133860.346343] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.353248] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.354242] [<ffffffff8113adba>] ? __might_fault+0xa5/0xa7 [133860.355232] [<ffffffff81171139>] ? cp_new_stat+0x15d/0x174 [133860.356237] [<ffffffff8117c610>] do_vfs_ioctl+0x427/0x4e6 [133860.358587] [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e [133860.360195] [<ffffffff8118574d>] ? __fget_light+0x4d/0x71 [133860.361380] [<ffffffff8117c726>] SyS_ioctl+0x57/0x79 [133860.363578] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f [133860.366217] ---[ end trace 2cadb2f653437e49 ]--- [133860.367399] ------------[ cut here ]------------ [133860.368162] kernel BUG at fs/btrfs/locking.c:307! [133860.369430] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [133860.370205] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 psmouse parport [133860.370205] CPU: 2 PID: 26057 Comm: btrfs Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1 [133860.370205] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [133860.370205] task: ffff8800aec6db40 ti: ffff880207694000 task.ti: ffff880207694000 [133860.370205] RIP: 0010:[<ffffffffa052d466>] [<ffffffffa052d466>] btrfs_assert_tree_locked+0x10/0x14 [btrfs] [133860.370205] RSP: 0018:ffff880207697bc0 EFLAGS: 00010246 [133860.370205] RAX: 0000000000000000 RBX: ffff880178f60e00 RCX: 0000000000000000 [133860.370205] RDX: ffff88023ec4fb50 RSI: 00000000ffffffff RDI: ffff880178f60e00 [133860.370205] RBP: ffff880207697bc0 R08: 0000000000000001 R09: 0000000000000000 [133860.370205] R10: 0000160000000000 R11: ffffffff81651000 R12: ffff880178f60e00 [133860.370205] R13: 0000000000000000 R14: 00000000000000f6 R15: ffff8801ff409000 [133860.370205] FS: 00007f763efd48c0(0000) GS:ffff88023ec40000(0000) knlGS:0000000000000000 [133860.370205] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [133860.370205] CR2: 0000000002158048 CR3: 000000003fd6c000 CR4: 00000000000006e0 [133860.370205] Stack: [133860.370205] ffff880207697bd8 ffffffffa052d4d0 0000000000000000 ffff880207697be8 [133860.370205] ffffffffa04d5787 ffff880207697c80 ffffffffa04d99cb ffff8801ff409590 [133860.370205] ffff880207697ca8 000000f507697c80 ffff880183c11bb8 0000000000000000 [133860.370205] Call Trace: [133860.370205] [<ffffffffa052d4d0>] btrfs_set_lock_blocking_rw+0x66/0xbd [btrfs] [133860.370205] [<ffffffffa04d5787>] btrfs_set_lock_blocking+0xe/0x10 [btrfs] [133860.370205] [<ffffffffa04d99cb>] btrfs_realloc_node+0xb3/0x341 [btrfs] [133860.370205] [<ffffffffa050e396>] btrfs_defrag_leaves+0x239/0x2fa [btrfs] [133860.370205] [<ffffffffa04fc2ce>] btrfs_defrag_root+0x63/0xca [btrfs] [133860.370205] [<ffffffffa052a34e>] btrfs_ioctl_defrag+0x78/0x14e [btrfs] [133860.370205] [<ffffffffa052b00b>] btrfs_ioctl+0x746/0x24c6 [btrfs] [133860.370205] [<ffffffff81087481>] ? arch_local_irq_save+0x9/0xc [133860.370205] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.370205] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.370205] [<ffffffff8113adba>] ? __might_fault+0xa5/0xa7 [133860.370205] [<ffffffff81171139>] ? cp_new_stat+0x15d/0x174 [133860.370205] [<ffffffff8117c610>] do_vfs_ioctl+0x427/0x4e6 [133860.370205] [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e [133860.370205] [<ffffffff8118574d>] ? __fget_light+0x4d/0x71 [133860.370205] [<ffffffff8117c726>] SyS_ioctl+0x57/0x79 [133860.370205] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f This bug happened because we assumed that by setting keep_locks to 1 in our search path, our path after a call to btrfs_search_slot() would have all nodes locked, which is not always true because unlock_up() (called by btrfs_search_slot()) will unlock a node in a path if the slot of the node below it doesn't point to the last item or beyond the last item. For example, when the tree has a heigth of 2 and path->slots[0] has a value smaller than btrfs_header_nritems(path->nodes[0]) - 1, the node at level 2 will be unlocked (also because lowest_unlock is set to 1 due to the fact that the value passed as ins_len to btrfs_search_slot is 0). This resulted in btrfs_find_next_key(), called before btrfs_realloc_node(), to release out path and call again btrfs_search_slot(), but this time with the cow parameter set to 0, meaning the resulting path got only read locks. Therefore when we called btrfs_realloc_node(), with path->nodes[1] having a read lock, it resulted in the warning and BUG_ON when calling btrfs_set_lock_blocking() against the node, as that function expects the node to have a write lock. The second bug happened often when the first bug didn't happen, and made us hang and hitting the following warning at fs/btrfs/locking.c: 251 void btrfs_tree_lock(struct extent_buffer *eb) 252 { 253 WARN_ON(eb->lock_owner == current->pid); This happened because the tree search we made at btrfs_defrag_leaves() before calling btrfs_find_next_key() locked a leaf and all the other nodes in the path, so btrfs_find_next_key() had no need to release the path and make a new search (with path->lowest_level set to 1). This made btrfs_realloc_node() attempt to write lock the same leaf again, resulting in a hang/deadlock. So fix these issues by calling btrfs_find_next_key() after calling btrfs_realloc_node() and setting the search path's lowest_level to 1 to avoid the hang/deadlock when attempting to write lock the leaves at btrfs_realloc_node(). Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-18 01:57:29 +00:00
/*
* The node at level 1 must always be locked when our path has
* keep_locks set and lowest_level is 1, regardless of the value of
* path->slots[1].
*/
ASSERT(path->locks[1] != 0);
ret = btrfs_realloc_node(trans, root,
path->nodes[1], 0,
&last_ret,
&root->defrag_progress);
if (ret) {
WARN_ON(ret == -EAGAIN);
goto out;
}
Btrfs: fix locking bugs when defragging leaves When running fstests btrfs/070, with a higher number of fsstress operations, I ran frequently into two different locking bugs when defragging directories. The first bug produced the following traces: [133860.229792] ------------[ cut here ]------------ [133860.251062] WARNING: CPU: 2 PID: 26057 at fs/btrfs/locking.c:46 btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs]() [133860.253576] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 psmouse parport [133860.282566] CPU: 2 PID: 26057 Comm: btrfs Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1 [133860.284393] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [133860.286827] 0000000000000000 ffff880207697b78 ffffffff812566f4 0000000000000000 [133860.288341] ffff880207697bb0 ffffffff8104d0a6 ffffffffa052d4c1 ffff880178f60e00 [133860.294219] ffff880178f60e00 0000000000000000 00000000000000f6 ffff880207697bc0 [133860.295831] Call Trace: [133860.306518] [<ffffffff812566f4>] dump_stack+0x4e/0x79 [133860.307473] [<ffffffff8104d0a6>] warn_slowpath_common+0x9f/0xb8 [133860.308619] [<ffffffffa052d4c1>] ? btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs] [133860.310068] [<ffffffff8104d172>] warn_slowpath_null+0x1a/0x1c [133860.312552] [<ffffffffa052d4c1>] btrfs_set_lock_blocking_rw+0x57/0xbd [btrfs] [133860.314630] [<ffffffffa04d5787>] btrfs_set_lock_blocking+0xe/0x10 [btrfs] [133860.323596] [<ffffffffa04d99cb>] btrfs_realloc_node+0xb3/0x341 [btrfs] [133860.325233] [<ffffffffa050e396>] btrfs_defrag_leaves+0x239/0x2fa [btrfs] [133860.332427] [<ffffffffa04fc2ce>] btrfs_defrag_root+0x63/0xca [btrfs] [133860.337259] [<ffffffffa052a34e>] btrfs_ioctl_defrag+0x78/0x14e [btrfs] [133860.340147] [<ffffffffa052b00b>] btrfs_ioctl+0x746/0x24c6 [btrfs] [133860.344833] [<ffffffff81087481>] ? arch_local_irq_save+0x9/0xc [133860.346343] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.353248] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.354242] [<ffffffff8113adba>] ? __might_fault+0xa5/0xa7 [133860.355232] [<ffffffff81171139>] ? cp_new_stat+0x15d/0x174 [133860.356237] [<ffffffff8117c610>] do_vfs_ioctl+0x427/0x4e6 [133860.358587] [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e [133860.360195] [<ffffffff8118574d>] ? __fget_light+0x4d/0x71 [133860.361380] [<ffffffff8117c726>] SyS_ioctl+0x57/0x79 [133860.363578] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f [133860.366217] ---[ end trace 2cadb2f653437e49 ]--- [133860.367399] ------------[ cut here ]------------ [133860.368162] kernel BUG at fs/btrfs/locking.c:307! [133860.369430] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [133860.370205] Modules linked in: btrfs crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 psmouse parport [133860.370205] CPU: 2 PID: 26057 Comm: btrfs Tainted: G W 4.3.0-rc5-btrfs-next-17+ #1 [133860.370205] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [133860.370205] task: ffff8800aec6db40 ti: ffff880207694000 task.ti: ffff880207694000 [133860.370205] RIP: 0010:[<ffffffffa052d466>] [<ffffffffa052d466>] btrfs_assert_tree_locked+0x10/0x14 [btrfs] [133860.370205] RSP: 0018:ffff880207697bc0 EFLAGS: 00010246 [133860.370205] RAX: 0000000000000000 RBX: ffff880178f60e00 RCX: 0000000000000000 [133860.370205] RDX: ffff88023ec4fb50 RSI: 00000000ffffffff RDI: ffff880178f60e00 [133860.370205] RBP: ffff880207697bc0 R08: 0000000000000001 R09: 0000000000000000 [133860.370205] R10: 0000160000000000 R11: ffffffff81651000 R12: ffff880178f60e00 [133860.370205] R13: 0000000000000000 R14: 00000000000000f6 R15: ffff8801ff409000 [133860.370205] FS: 00007f763efd48c0(0000) GS:ffff88023ec40000(0000) knlGS:0000000000000000 [133860.370205] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [133860.370205] CR2: 0000000002158048 CR3: 000000003fd6c000 CR4: 00000000000006e0 [133860.370205] Stack: [133860.370205] ffff880207697bd8 ffffffffa052d4d0 0000000000000000 ffff880207697be8 [133860.370205] ffffffffa04d5787 ffff880207697c80 ffffffffa04d99cb ffff8801ff409590 [133860.370205] ffff880207697ca8 000000f507697c80 ffff880183c11bb8 0000000000000000 [133860.370205] Call Trace: [133860.370205] [<ffffffffa052d4d0>] btrfs_set_lock_blocking_rw+0x66/0xbd [btrfs] [133860.370205] [<ffffffffa04d5787>] btrfs_set_lock_blocking+0xe/0x10 [btrfs] [133860.370205] [<ffffffffa04d99cb>] btrfs_realloc_node+0xb3/0x341 [btrfs] [133860.370205] [<ffffffffa050e396>] btrfs_defrag_leaves+0x239/0x2fa [btrfs] [133860.370205] [<ffffffffa04fc2ce>] btrfs_defrag_root+0x63/0xca [btrfs] [133860.370205] [<ffffffffa052a34e>] btrfs_ioctl_defrag+0x78/0x14e [btrfs] [133860.370205] [<ffffffffa052b00b>] btrfs_ioctl+0x746/0x24c6 [btrfs] [133860.370205] [<ffffffff81087481>] ? arch_local_irq_save+0x9/0xc [133860.370205] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.370205] [<ffffffff8113ad61>] ? __might_fault+0x4c/0xa7 [133860.370205] [<ffffffff8113adba>] ? __might_fault+0xa5/0xa7 [133860.370205] [<ffffffff81171139>] ? cp_new_stat+0x15d/0x174 [133860.370205] [<ffffffff8117c610>] do_vfs_ioctl+0x427/0x4e6 [133860.370205] [<ffffffff81171175>] ? SYSC_newfstat+0x25/0x2e [133860.370205] [<ffffffff8118574d>] ? __fget_light+0x4d/0x71 [133860.370205] [<ffffffff8117c726>] SyS_ioctl+0x57/0x79 [133860.370205] [<ffffffff8147cd97>] entry_SYSCALL_64_fastpath+0x12/0x6f This bug happened because we assumed that by setting keep_locks to 1 in our search path, our path after a call to btrfs_search_slot() would have all nodes locked, which is not always true because unlock_up() (called by btrfs_search_slot()) will unlock a node in a path if the slot of the node below it doesn't point to the last item or beyond the last item. For example, when the tree has a heigth of 2 and path->slots[0] has a value smaller than btrfs_header_nritems(path->nodes[0]) - 1, the node at level 2 will be unlocked (also because lowest_unlock is set to 1 due to the fact that the value passed as ins_len to btrfs_search_slot is 0). This resulted in btrfs_find_next_key(), called before btrfs_realloc_node(), to release out path and call again btrfs_search_slot(), but this time with the cow parameter set to 0, meaning the resulting path got only read locks. Therefore when we called btrfs_realloc_node(), with path->nodes[1] having a read lock, it resulted in the warning and BUG_ON when calling btrfs_set_lock_blocking() against the node, as that function expects the node to have a write lock. The second bug happened often when the first bug didn't happen, and made us hang and hitting the following warning at fs/btrfs/locking.c: 251 void btrfs_tree_lock(struct extent_buffer *eb) 252 { 253 WARN_ON(eb->lock_owner == current->pid); This happened because the tree search we made at btrfs_defrag_leaves() before calling btrfs_find_next_key() locked a leaf and all the other nodes in the path, so btrfs_find_next_key() had no need to release the path and make a new search (with path->lowest_level set to 1). This made btrfs_realloc_node() attempt to write lock the same leaf again, resulting in a hang/deadlock. So fix these issues by calling btrfs_find_next_key() after calling btrfs_realloc_node() and setting the search path's lowest_level to 1 to avoid the hang/deadlock when attempting to write lock the leaves at btrfs_realloc_node(). Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-12-18 01:57:29 +00:00
/*
* Now that we reallocated the node we can find the next key. Note that
* btrfs_find_next_key() can release our path and do another search
* without COWing, this is because even with path->keep_locks = 1,
* btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
* node when path->slots[node_level - 1] does not point to the last
* item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
* we search for the next key after reallocating our node.
*/
path->slots[1] = btrfs_header_nritems(path->nodes[1]);
next_key_ret = btrfs_find_next_key(root, path, &key, 1,
BTRFS_OLDEST_GENERATION);
if (next_key_ret == 0) {
memcpy(&root->defrag_progress, &key, sizeof(key));
ret = -EAGAIN;
}
out:
btrfs_free_path(path);
if (ret == -EAGAIN) {
if (root->defrag_max.objectid > root->defrag_progress.objectid)
goto done;
if (root->defrag_max.type > root->defrag_progress.type)
goto done;
if (root->defrag_max.offset > root->defrag_progress.offset)
goto done;
ret = 0;
}
done:
if (ret != -EAGAIN)
memset(&root->defrag_progress, 0,
sizeof(root->defrag_progress));
return ret;
}
/*
* Defrag a given btree. Every leaf in the btree is read and defragmented.
*/
int btrfs_defrag_root(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
int ret;
if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
return 0;
while (1) {
struct btrfs_trans_handle *trans;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
break;
}
ret = btrfs_defrag_leaves(trans, root);
btrfs_end_transaction(trans);
btrfs_btree_balance_dirty(fs_info);
cond_resched();
if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
break;
if (btrfs_defrag_cancelled(fs_info)) {
btrfs_debug(fs_info, "defrag_root cancelled");
ret = -EAGAIN;
break;
}
}
clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
return ret;
}
/*
* Defrag specific helper to get an extent map.
*
* Differences between this and btrfs_get_extent() are:
*
* - No extent_map will be added to inode->extent_tree
* To reduce memory usage in the long run.
*
* - Extra optimization to skip file extents older than @newer_than
* By using btrfs_search_forward() we can skip entire file ranges that
* have extents created in past transactions, because btrfs_search_forward()
* will not visit leaves and nodes with a generation smaller than given
* minimal generation threshold (@newer_than).
*
* Return valid em if we find a file extent matching the requirement.
* Return NULL if we can not find a file extent matching the requirement.
*
* Return ERR_PTR() for error.
*/
static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
u64 start, u64 newer_than)
{
struct btrfs_root *root = inode->root;
struct btrfs_file_extent_item *fi;
struct btrfs_path path = { 0 };
struct extent_map *em;
struct btrfs_key key;
u64 ino = btrfs_ino(inode);
int ret;
em = alloc_extent_map();
if (!em) {
ret = -ENOMEM;
goto err;
}
key.objectid = ino;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = start;
if (newer_than) {
ret = btrfs_search_forward(root, &key, &path, newer_than);
if (ret < 0)
goto err;
/* Can't find anything newer */
if (ret > 0)
goto not_found;
} else {
ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
if (ret < 0)
goto err;
}
if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
/*
* If btrfs_search_slot() makes path to point beyond nritems,
* we should not have an empty leaf, as this inode must at
* least have its INODE_ITEM.
*/
ASSERT(btrfs_header_nritems(path.nodes[0]));
path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
}
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
/* Perfect match, no need to go one slot back */
if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
key.offset == start)
goto iterate;
/* We didn't find a perfect match, needs to go one slot back */
if (path.slots[0] > 0) {
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
path.slots[0]--;
}
iterate:
/* Iterate through the path to find a file extent covering @start */
while (true) {
u64 extent_end;
if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
goto next;
btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
/*
* We may go one slot back to INODE_REF/XATTR item, then
* need to go forward until we reach an EXTENT_DATA.
* But we should still has the correct ino as key.objectid.
*/
if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
goto next;
/* It's beyond our target range, definitely not extent found */
if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
goto not_found;
/*
* | |<- File extent ->|
* \- start
*
* This means there is a hole between start and key.offset.
*/
if (key.offset > start) {
em->start = start;
btrfs: introduce new members for extent_map Introduce two new members for extent_map: - disk_bytenr - offset Both are matching the members with the same name inside btrfs_file_extent_items. For now this patch only touches those members when: - Reading btrfs_file_extent_items from disk - Inserting new holes - Merging two extent maps With the new disk_bytenr and disk_num_bytes, doing merging would be a little more complex, as we have 3 different cases: * Both extent maps are referring to the same data extents |<----- data extent A ----->| |<- em 1 ->|<- em 2 ->| * Both extent maps are referring to different data extents |<-- data extent A -->|<-- data extent B -->| |<- em 1 ->|<- em 2 ->| * One of the extent maps is referring to a merged and larger data extent that covers both extent maps This is not really valid case other than some selftests. So this test case would be removed. A new helper merge_ondisk_extents() is introduced to handle the above valid cases. To properly assign values for those new members, a new btrfs_file_extent parameter is introduced to all the involved call sites. - For NOCOW writes the btrfs_file_extent would be exposed from can_nocow_file_extent(). - For other writes, the members can be easily calculated As most of them have 0 offset and utilizing the whole on-disk data extent. The exception is encoded write, but thankfully that interface provided offset directly and all other needed info. For now, both the old members (block_start/block_len/orig_start) are co-existing with the new members (disk_bytenr/offset), meanwhile all the critical code is still using the old members only. The cleanup will happen later after all the old and new members are properly validated. There would be some re-ordering for the assignment of the extent_map members, now we follow the new ordering: - start and len Or file_pos and num_bytes for other structures. - disk_bytenr and disk_num_bytes - offset and ram_bytes - compression So expect some seemingly unrelated line movement. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-04-29 22:23:02 +00:00
em->disk_bytenr = EXTENT_MAP_HOLE;
em->disk_num_bytes = 0;
em->ram_bytes = 0;
em->offset = 0;
em->len = key.offset - start;
break;
}
fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
struct btrfs_file_extent_item);
extent_end = btrfs_file_extent_end(&path);
/*
* |<- file extent ->| |
* \- start
*
* We haven't reached start, search next slot.
*/
if (extent_end <= start)
goto next;
/* Now this extent covers @start, convert it to em */
btrfs_extent_item_to_extent_map(inode, &path, fi, em);
break;
next:
ret = btrfs_next_item(root, &path);
if (ret < 0)
goto err;
if (ret > 0)
goto not_found;
}
btrfs_release_path(&path);
return em;
not_found:
btrfs_release_path(&path);
free_extent_map(em);
return NULL;
err:
btrfs_release_path(&path);
free_extent_map(em);
return ERR_PTR(ret);
}
static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
u64 newer_than, bool locked)
{
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
struct extent_map *em;
const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
/*
* Hopefully we have this extent in the tree already, try without the
* full extent lock.
*/
read_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, sectorsize);
read_unlock(&em_tree->lock);
/*
* We can get a merged extent, in that case, we need to re-search
* tree to get the original em for defrag.
*
btrfs: fix defrag not merging contiguous extents due to merged extent maps When running defrag (manual defrag) against a file that has extents that are contiguous and we already have the respective extent maps loaded and merged, we end up not defragging the range covered by those contiguous extents. This happens when we have an extent map that was the result of merging multiple extent maps for contiguous extents and the length of the merged extent map is greater than or equals to the defrag threshold length. The script below reproduces this scenario: $ cat test.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi mkfs.btrfs -f $DEV mount $DEV $MNT # Create a 256K file with 4 extents of 64K each. xfs_io -f -c "falloc 0 64K" \ -c "pwrite 0 64K" \ -c "falloc 64K 64K" \ -c "pwrite 64K 64K" \ -c "falloc 128K 64K" \ -c "pwrite 128K 64K" \ -c "falloc 192K 64K" \ -c "pwrite 192K 64K" \ $MNT/foo umount $MNT echo -n "Initial number of file extent items: " btrfs inspect-internal dump-tree -t 5 $DEV | grep EXTENT_DATA | wc -l mount $DEV $MNT # Read the whole file in order to load and merge extent maps. cat $MNT/foo > /dev/null btrfs filesystem defragment -t 128K $MNT/foo umount $MNT echo -n "Number of file extent items after defrag with 128K threshold: " btrfs inspect-internal dump-tree -t 5 $DEV | grep EXTENT_DATA | wc -l mount $DEV $MNT # Read the whole file in order to load and merge extent maps. cat $MNT/foo > /dev/null btrfs filesystem defragment -t 256K $MNT/foo umount $MNT echo -n "Number of file extent items after defrag with 256K threshold: " btrfs inspect-internal dump-tree -t 5 $DEV | grep EXTENT_DATA | wc -l Running it: $ ./test.sh Initial number of file extent items: 4 Number of file extent items after defrag with 128K threshold: 4 Number of file extent items after defrag with 256K threshold: 4 The 4 extents don't get merged because we have an extent map with a size of 256K that is the result of merging the individual extent maps for each of the four 64K extents and at defrag_lookup_extent() we have a value of zero for the generation threshold ('newer_than' argument) since this is a manual defrag. As a consequence we don't call defrag_get_extent() to get an extent map representing a single file extent item in the inode's subvolume tree, so we end up using the merged extent map at defrag_collect_targets() and decide not to defrag. Fix this by updating defrag_lookup_extent() to always discard extent maps that were merged and call defrag_get_extent() regardless of the minimum generation threshold ('newer_than' argument). A test case for fstests will be sent along soon. CC: stable@vger.kernel.org # 6.1+ Fixes: 199257a78bb0 ("btrfs: defrag: don't use merged extent map for their generation check") Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-29 15:18:45 +00:00
* This is because even if we have adjacent extents that are contiguous
* and compatible (same type and flags), we still want to defrag them
* so that we use less metadata (extent items in the extent tree and
* file extent items in the inode's subvolume tree).
*/
btrfs: fix defrag not merging contiguous extents due to merged extent maps When running defrag (manual defrag) against a file that has extents that are contiguous and we already have the respective extent maps loaded and merged, we end up not defragging the range covered by those contiguous extents. This happens when we have an extent map that was the result of merging multiple extent maps for contiguous extents and the length of the merged extent map is greater than or equals to the defrag threshold length. The script below reproduces this scenario: $ cat test.sh #!/bin/bash DEV=/dev/sdi MNT=/mnt/sdi mkfs.btrfs -f $DEV mount $DEV $MNT # Create a 256K file with 4 extents of 64K each. xfs_io -f -c "falloc 0 64K" \ -c "pwrite 0 64K" \ -c "falloc 64K 64K" \ -c "pwrite 64K 64K" \ -c "falloc 128K 64K" \ -c "pwrite 128K 64K" \ -c "falloc 192K 64K" \ -c "pwrite 192K 64K" \ $MNT/foo umount $MNT echo -n "Initial number of file extent items: " btrfs inspect-internal dump-tree -t 5 $DEV | grep EXTENT_DATA | wc -l mount $DEV $MNT # Read the whole file in order to load and merge extent maps. cat $MNT/foo > /dev/null btrfs filesystem defragment -t 128K $MNT/foo umount $MNT echo -n "Number of file extent items after defrag with 128K threshold: " btrfs inspect-internal dump-tree -t 5 $DEV | grep EXTENT_DATA | wc -l mount $DEV $MNT # Read the whole file in order to load and merge extent maps. cat $MNT/foo > /dev/null btrfs filesystem defragment -t 256K $MNT/foo umount $MNT echo -n "Number of file extent items after defrag with 256K threshold: " btrfs inspect-internal dump-tree -t 5 $DEV | grep EXTENT_DATA | wc -l Running it: $ ./test.sh Initial number of file extent items: 4 Number of file extent items after defrag with 128K threshold: 4 Number of file extent items after defrag with 256K threshold: 4 The 4 extents don't get merged because we have an extent map with a size of 256K that is the result of merging the individual extent maps for each of the four 64K extents and at defrag_lookup_extent() we have a value of zero for the generation threshold ('newer_than' argument) since this is a manual defrag. As a consequence we don't call defrag_get_extent() to get an extent map representing a single file extent item in the inode's subvolume tree, so we end up using the merged extent map at defrag_collect_targets() and decide not to defrag. Fix this by updating defrag_lookup_extent() to always discard extent maps that were merged and call defrag_get_extent() regardless of the minimum generation threshold ('newer_than' argument). A test case for fstests will be sent along soon. CC: stable@vger.kernel.org # 6.1+ Fixes: 199257a78bb0 ("btrfs: defrag: don't use merged extent map for their generation check") Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-10-29 15:18:45 +00:00
if (em && (em->flags & EXTENT_FLAG_MERGED)) {
free_extent_map(em);
em = NULL;
}
if (!em) {
struct extent_state *cached = NULL;
u64 end = start + sectorsize - 1;
/* Get the big lock and read metadata off disk. */
if (!locked)
lock_extent(io_tree, start, end, &cached);
em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
if (!locked)
unlock_extent(io_tree, start, end, &cached);
if (IS_ERR(em))
return NULL;
}
return em;
}
static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
const struct extent_map *em)
{
btrfs: use the flags of an extent map to identify the compression type Currently, in struct extent_map, we use an unsigned int (32 bits) to identify the compression type of an extent and an unsigned long (64 bits on a 64 bits platform, 32 bits otherwise) for flags. We are only using 6 different flags, so an unsigned long is excessive and we can use flags to identify the compression type instead of using a dedicated 32 bits field. We can easily have tens or hundreds of thousands (or more) of extent maps on busy and large filesystems, specially with compression enabled or many or large files with tons of small extents. So it's convenient to have the extent_map structure as small as possible in order to use less memory. So remove the compression type field from struct extent_map, use flags to identify the compression type and shorten the flags field from an unsigned long to a u32. This saves 8 bytes (on 64 bits platforms) and reduces the size of the structure from 136 bytes down to 128 bytes, using now only two cache lines, and increases the number of extent maps we can have per 4K page from 30 to 32. By using a u32 for the flags instead of an unsigned long, we no longer use test_bit(), set_bit() and clear_bit(), but that level of atomicity is not needed as most flags are never cleared once set (before adding an extent map to the tree), and the ones that can be cleared or set after an extent map is added to the tree, are always performed while holding the write lock on the extent map tree, while the reader holds a lock on the tree or tests for a flag that never changes once the extent map is in the tree (such as compression flags). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-04 16:20:33 +00:00
if (extent_map_is_compressed(em))
return BTRFS_MAX_COMPRESSED;
return fs_info->max_extent_size;
}
static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
u32 extent_thresh, u64 newer_than, bool locked)
{
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
struct extent_map *next;
bool ret = false;
/* This is the last extent */
if (em->start + em->len >= i_size_read(inode))
return false;
/*
* Here we need to pass @newer_then when checking the next extent, or
* we will hit a case we mark current extent for defrag, but the next
* one will not be a target.
* This will just cause extra IO without really reducing the fragments.
*/
next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
/* No more em or hole */
if (!next || next->disk_bytenr >= EXTENT_MAP_LAST_BYTE)
goto out;
btrfs: use the flags of an extent map to identify the compression type Currently, in struct extent_map, we use an unsigned int (32 bits) to identify the compression type of an extent and an unsigned long (64 bits on a 64 bits platform, 32 bits otherwise) for flags. We are only using 6 different flags, so an unsigned long is excessive and we can use flags to identify the compression type instead of using a dedicated 32 bits field. We can easily have tens or hundreds of thousands (or more) of extent maps on busy and large filesystems, specially with compression enabled or many or large files with tons of small extents. So it's convenient to have the extent_map structure as small as possible in order to use less memory. So remove the compression type field from struct extent_map, use flags to identify the compression type and shorten the flags field from an unsigned long to a u32. This saves 8 bytes (on 64 bits platforms) and reduces the size of the structure from 136 bytes down to 128 bytes, using now only two cache lines, and increases the number of extent maps we can have per 4K page from 30 to 32. By using a u32 for the flags instead of an unsigned long, we no longer use test_bit(), set_bit() and clear_bit(), but that level of atomicity is not needed as most flags are never cleared once set (before adding an extent map to the tree), and the ones that can be cleared or set after an extent map is added to the tree, are always performed while holding the write lock on the extent map tree, while the reader holds a lock on the tree or tests for a flag that never changes once the extent map is in the tree (such as compression flags). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-04 16:20:33 +00:00
if (next->flags & EXTENT_FLAG_PREALLOC)
goto out;
/*
* If the next extent is at its max capacity, defragging current extent
* makes no sense, as the total number of extents won't change.
*/
if (next->len >= get_extent_max_capacity(fs_info, em))
goto out;
/* Skip older extent */
if (next->generation < newer_than)
goto out;
/* Also check extent size */
if (next->len >= extent_thresh)
goto out;
ret = true;
out:
free_extent_map(next);
return ret;
}
/*
* Prepare one page to be defragged.
*
* This will ensure:
*
* - Returned page is locked and has been set up properly.
* - No ordered extent exists in the page.
* - The page is uptodate.
*
* NOTE: Caller should also wait for page writeback after the cluster is
* prepared, here we don't do writeback wait for each page.
*/
static struct folio *defrag_prepare_one_folio(struct btrfs_inode *inode, pgoff_t index)
{
struct address_space *mapping = inode->vfs_inode.i_mapping;
gfp_t mask = btrfs_alloc_write_mask(mapping);
u64 page_start = (u64)index << PAGE_SHIFT;
u64 page_end = page_start + PAGE_SIZE - 1;
struct extent_state *cached_state = NULL;
struct folio *folio;
int ret;
again:
folio = __filemap_get_folio(mapping, index,
FGP_LOCK | FGP_ACCESSED | FGP_CREAT, mask);
if (IS_ERR(folio))
return folio;
/*
* Since we can defragment files opened read-only, we can encounter
* transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
* can't do I/O using huge pages yet, so return an error for now.
* Filesystem transparent huge pages are typically only used for
* executables that explicitly enable them, so this isn't very
* restrictive.
*/
if (folio_test_large(folio)) {
folio_unlock(folio);
folio_put(folio);
return ERR_PTR(-ETXTBSY);
}
ret = set_folio_extent_mapped(folio);
if (ret < 0) {
folio_unlock(folio);
folio_put(folio);
return ERR_PTR(ret);
}
/* Wait for any existing ordered extent in the range */
while (1) {
struct btrfs_ordered_extent *ordered;
lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
unlock_extent(&inode->io_tree, page_start, page_end,
&cached_state);
if (!ordered)
break;
folio_unlock(folio);
btrfs_start_ordered_extent(ordered);
btrfs_put_ordered_extent(ordered);
folio_lock(folio);
/*
* We unlocked the folio above, so we need check if it was
* released or not.
*/
if (folio->mapping != mapping || !folio->private) {
folio_unlock(folio);
folio_put(folio);
goto again;
}
}
/*
* Now the page range has no ordered extent any more. Read the page to
* make it uptodate.
*/
if (!folio_test_uptodate(folio)) {
btrfs_read_folio(NULL, folio);
folio_lock(folio);
if (folio->mapping != mapping || !folio->private) {
folio_unlock(folio);
folio_put(folio);
goto again;
}
if (!folio_test_uptodate(folio)) {
folio_unlock(folio);
folio_put(folio);
return ERR_PTR(-EIO);
}
}
return folio;
}
struct defrag_target_range {
struct list_head list;
u64 start;
u64 len;
};
/*
* Collect all valid target extents.
*
* @start: file offset to lookup
* @len: length to lookup
* @extent_thresh: file extent size threshold, any extent size >= this value
* will be ignored
* @newer_than: only defrag extents newer than this value
* @do_compress: whether the defrag is doing compression
* if true, @extent_thresh will be ignored and all regular
* file extents meeting @newer_than will be targets.
* @locked: if the range has already held extent lock
* @target_list: list of targets file extents
*/
static int defrag_collect_targets(struct btrfs_inode *inode,
u64 start, u64 len, u32 extent_thresh,
u64 newer_than, bool do_compress,
bool locked, struct list_head *target_list,
u64 *last_scanned_ret)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
bool last_is_target = false;
u64 cur = start;
int ret = 0;
while (cur < start + len) {
struct extent_map *em;
struct defrag_target_range *new;
bool next_mergeable = true;
u64 range_len;
last_is_target = false;
em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
if (!em)
break;
/*
* If the file extent is an inlined one, we may still want to
* defrag it (fallthrough) if it will cause a regular extent.
* This is for users who want to convert inline extents to
* regular ones through max_inline= mount option.
*/
if (em->disk_bytenr == EXTENT_MAP_INLINE &&
em->len <= inode->root->fs_info->max_inline)
goto next;
/* Skip holes and preallocated extents. */
if (em->disk_bytenr == EXTENT_MAP_HOLE ||
btrfs: use the flags of an extent map to identify the compression type Currently, in struct extent_map, we use an unsigned int (32 bits) to identify the compression type of an extent and an unsigned long (64 bits on a 64 bits platform, 32 bits otherwise) for flags. We are only using 6 different flags, so an unsigned long is excessive and we can use flags to identify the compression type instead of using a dedicated 32 bits field. We can easily have tens or hundreds of thousands (or more) of extent maps on busy and large filesystems, specially with compression enabled or many or large files with tons of small extents. So it's convenient to have the extent_map structure as small as possible in order to use less memory. So remove the compression type field from struct extent_map, use flags to identify the compression type and shorten the flags field from an unsigned long to a u32. This saves 8 bytes (on 64 bits platforms) and reduces the size of the structure from 136 bytes down to 128 bytes, using now only two cache lines, and increases the number of extent maps we can have per 4K page from 30 to 32. By using a u32 for the flags instead of an unsigned long, we no longer use test_bit(), set_bit() and clear_bit(), but that level of atomicity is not needed as most flags are never cleared once set (before adding an extent map to the tree), and the ones that can be cleared or set after an extent map is added to the tree, are always performed while holding the write lock on the extent map tree, while the reader holds a lock on the tree or tests for a flag that never changes once the extent map is in the tree (such as compression flags). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-04 16:20:33 +00:00
(em->flags & EXTENT_FLAG_PREALLOC))
goto next;
/* Skip older extent */
if (em->generation < newer_than)
goto next;
/* This em is under writeback, no need to defrag */
if (em->generation == (u64)-1)
goto next;
/*
* Our start offset might be in the middle of an existing extent
* map, so take that into account.
*/
range_len = em->len - (cur - em->start);
/*
* If this range of the extent map is already flagged for delalloc,
* skip it, because:
*
* 1) We could deadlock later, when trying to reserve space for
* delalloc, because in case we can't immediately reserve space
* the flusher can start delalloc and wait for the respective
* ordered extents to complete. The deadlock would happen
* because we do the space reservation while holding the range
* locked, and starting writeback, or finishing an ordered
* extent, requires locking the range;
*
* 2) If there's delalloc there, it means there's dirty pages for
* which writeback has not started yet (we clean the delalloc
* flag when starting writeback and after creating an ordered
* extent). If we mark pages in an adjacent range for defrag,
* then we will have a larger contiguous range for delalloc,
* very likely resulting in a larger extent after writeback is
* triggered (except in a case of free space fragmentation).
*/
if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
EXTENT_DELALLOC))
goto next;
/*
* For do_compress case, we want to compress all valid file
* extents, thus no @extent_thresh or mergeable check.
*/
if (do_compress)
goto add;
/* Skip too large extent */
btrfs: defrag: avoid unnecessary defrag caused by incorrect extent size [BUG] With the following file extent layout, defrag would do unnecessary IO and result more on-disk space usage. # mkfs.btrfs -f $dev # mount $dev $mnt # xfs_io -f -c "pwrite 0 40m" $mnt/foobar # sync # xfs_io -f -c "pwrite 40m 16k" $mnt/foobar # sync Above command would lead to the following file extent layout: item 6 key (257 EXTENT_DATA 0) itemoff 15816 itemsize 53 generation 7 type 1 (regular) extent data disk byte 298844160 nr 41943040 extent data offset 0 nr 41943040 ram 41943040 extent compression 0 (none) item 7 key (257 EXTENT_DATA 41943040) itemoff 15763 itemsize 53 generation 8 type 1 (regular) extent data disk byte 13631488 nr 16384 extent data offset 0 nr 16384 ram 16384 extent compression 0 (none) Which is mostly fine. We can allow the final 16K to be merged with the previous 40M, but it's upon the end users' preference. But if we defrag the file using the default parameters, it would result worse file layout: # btrfs filesystem defrag $mnt/foobar # sync item 6 key (257 EXTENT_DATA 0) itemoff 15816 itemsize 53 generation 7 type 1 (regular) extent data disk byte 298844160 nr 41943040 extent data offset 0 nr 8650752 ram 41943040 extent compression 0 (none) item 7 key (257 EXTENT_DATA 8650752) itemoff 15763 itemsize 53 generation 9 type 1 (regular) extent data disk byte 340787200 nr 33292288 extent data offset 0 nr 33292288 ram 33292288 extent compression 0 (none) item 8 key (257 EXTENT_DATA 41943040) itemoff 15710 itemsize 53 generation 8 type 1 (regular) extent data disk byte 13631488 nr 16384 extent data offset 0 nr 16384 ram 16384 extent compression 0 (none) Note the original 40M extent is still there, but a new 32M extent is created for no benefit at all. [CAUSE] There is an existing check to make sure we won't defrag a large enough extent (the threshold is by default 32M). But the check is using the length to the end of the extent: range_len = em->len - (cur - em->start); /* Skip too large extent */ if (range_len >= extent_thresh) goto next; This means, for the first 8MiB of the extent, the range_len is always smaller than the default threshold, and would not be defragged. But after the first 8MiB, the remaining part would fit the requirement, and be defragged. Such different behavior inside the same extent caused the above problem, and we should avoid different defrag decision inside the same extent. [FIX] Instead of using @range_len, just use @em->len, so that we have a consistent decision among the same file extent. Now with this fix, we won't touch the extent, thus not making it any worse. Reported-by: Filipe Manana <fdmanana@suse.com> Fixes: 0cb5950f3f3b ("btrfs: fix deadlock when reserving space during defrag") CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Boris Burkov <boris@bur.io> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-02-06 23:30:42 +00:00
if (em->len >= extent_thresh)
goto next;
/*
* Skip extents already at its max capacity, this is mostly for
* compressed extents, which max cap is only 128K.
*/
if (em->len >= get_extent_max_capacity(fs_info, em))
goto next;
/*
* Normally there are no more extents after an inline one, thus
* @next_mergeable will normally be false and not defragged.
* So if an inline extent passed all above checks, just add it
* for defrag, and be converted to regular extents.
*/
if (em->disk_bytenr == EXTENT_MAP_INLINE)
goto add;
next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
extent_thresh, newer_than, locked);
if (!next_mergeable) {
struct defrag_target_range *last;
/* Empty target list, no way to merge with last entry */
if (list_empty(target_list))
goto next;
last = list_entry(target_list->prev,
struct defrag_target_range, list);
/* Not mergeable with last entry */
if (last->start + last->len != cur)
goto next;
/* Mergeable, fall through to add it to @target_list. */
}
add:
last_is_target = true;
range_len = min(extent_map_end(em), start + len) - cur;
/*
* This one is a good target, check if it can be merged into
* last range of the target list.
*/
if (!list_empty(target_list)) {
struct defrag_target_range *last;
last = list_entry(target_list->prev,
struct defrag_target_range, list);
ASSERT(last->start + last->len <= cur);
if (last->start + last->len == cur) {
/* Mergeable, enlarge the last entry */
last->len += range_len;
goto next;
}
/* Fall through to allocate a new entry */
}
/* Allocate new defrag_target_range */
new = kmalloc(sizeof(*new), GFP_NOFS);
if (!new) {
free_extent_map(em);
ret = -ENOMEM;
break;
}
new->start = cur;
new->len = range_len;
list_add_tail(&new->list, target_list);
next:
cur = extent_map_end(em);
free_extent_map(em);
}
if (ret < 0) {
struct defrag_target_range *entry;
struct defrag_target_range *tmp;
list_for_each_entry_safe(entry, tmp, target_list, list) {
list_del_init(&entry->list);
kfree(entry);
}
}
if (!ret && last_scanned_ret) {
/*
* If the last extent is not a target, the caller can skip to
* the end of that extent.
* Otherwise, we can only go the end of the specified range.
*/
if (!last_is_target)
*last_scanned_ret = max(cur, *last_scanned_ret);
else
*last_scanned_ret = max(start + len, *last_scanned_ret);
}
return ret;
}
#define CLUSTER_SIZE (SZ_256K)
static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
/*
* Defrag one contiguous target range.
*
* @inode: target inode
* @target: target range to defrag
* @pages: locked pages covering the defrag range
* @nr_pages: number of locked pages
*
* Caller should ensure:
*
* - Pages are prepared
* Pages should be locked, no ordered extent in the pages range,
* no writeback.
*
* - Extent bits are locked
*/
static int defrag_one_locked_target(struct btrfs_inode *inode,
struct defrag_target_range *target,
struct folio **folios, int nr_pages,
struct extent_state **cached_state)
{
struct btrfs_fs_info *fs_info = inode->root->fs_info;
struct extent_changeset *data_reserved = NULL;
const u64 start = target->start;
const u64 len = target->len;
unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
unsigned long start_index = start >> PAGE_SHIFT;
unsigned long first_index = folios[0]->index;
int ret = 0;
int i;
ASSERT(last_index - first_index + 1 <= nr_pages);
ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
if (ret < 0)
return ret;
clear_extent_bit(&inode->io_tree, start, start + len - 1,
EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
EXTENT_DEFRAG, cached_state);
set_extent_bit(&inode->io_tree, start, start + len - 1,
EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
/* Update the page status */
for (i = start_index - first_index; i <= last_index - first_index; i++) {
folio_clear_checked(folios[i]);
btrfs_folio_clamp_set_dirty(fs_info, folios[i], start, len);
}
btrfs_delalloc_release_extents(inode, len);
extent_changeset_free(data_reserved);
return ret;
}
static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
u32 extent_thresh, u64 newer_than, bool do_compress,
u64 *last_scanned_ret)
{
struct extent_state *cached_state = NULL;
struct defrag_target_range *entry;
struct defrag_target_range *tmp;
LIST_HEAD(target_list);
struct folio **folios;
const u32 sectorsize = inode->root->fs_info->sectorsize;
u64 last_index = (start + len - 1) >> PAGE_SHIFT;
u64 start_index = start >> PAGE_SHIFT;
unsigned int nr_pages = last_index - start_index + 1;
int ret = 0;
int i;
ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
folios = kcalloc(nr_pages, sizeof(struct folio *), GFP_NOFS);
if (!folios)
return -ENOMEM;
/* Prepare all pages */
for (i = 0; i < nr_pages; i++) {
folios[i] = defrag_prepare_one_folio(inode, start_index + i);
if (IS_ERR(folios[i])) {
ret = PTR_ERR(folios[i]);
nr_pages = i;
goto free_folios;
}
}
for (i = 0; i < nr_pages; i++)
folio_wait_writeback(folios[i]);
/* Lock the pages range */
lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
(last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
&cached_state);
/*
* Now we have a consistent view about the extent map, re-check
* which range really needs to be defragged.
*
* And this time we have extent locked already, pass @locked = true
* so that we won't relock the extent range and cause deadlock.
*/
ret = defrag_collect_targets(inode, start, len, extent_thresh,
newer_than, do_compress, true,
&target_list, last_scanned_ret);
if (ret < 0)
goto unlock_extent;
list_for_each_entry(entry, &target_list, list) {
ret = defrag_one_locked_target(inode, entry, folios, nr_pages,
&cached_state);
if (ret < 0)
break;
}
list_for_each_entry_safe(entry, tmp, &target_list, list) {
list_del_init(&entry->list);
kfree(entry);
}
unlock_extent:
unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
(last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
&cached_state);
free_folios:
for (i = 0; i < nr_pages; i++) {
folio_unlock(folios[i]);
folio_put(folios[i]);
}
kfree(folios);
return ret;
}
static int defrag_one_cluster(struct btrfs_inode *inode,
struct file_ra_state *ra,
u64 start, u32 len, u32 extent_thresh,
u64 newer_than, bool do_compress,
unsigned long *sectors_defragged,
unsigned long max_sectors,
u64 *last_scanned_ret)
{
const u32 sectorsize = inode->root->fs_info->sectorsize;
struct defrag_target_range *entry;
struct defrag_target_range *tmp;
LIST_HEAD(target_list);
int ret;
ret = defrag_collect_targets(inode, start, len, extent_thresh,
newer_than, do_compress, false,
&target_list, NULL);
if (ret < 0)
goto out;
list_for_each_entry(entry, &target_list, list) {
u32 range_len = entry->len;
/* Reached or beyond the limit */
if (max_sectors && *sectors_defragged >= max_sectors) {
ret = 1;
break;
}
if (max_sectors)
range_len = min_t(u32, range_len,
(max_sectors - *sectors_defragged) * sectorsize);
/*
* If defrag_one_range() has updated last_scanned_ret,
* our range may already be invalid (e.g. hole punched).
* Skip if our range is before last_scanned_ret, as there is
* no need to defrag the range anymore.
*/
if (entry->start + range_len <= *last_scanned_ret)
continue;
page_cache_sync_readahead(inode->vfs_inode.i_mapping,
ra, NULL, entry->start >> PAGE_SHIFT,
((entry->start + range_len - 1) >> PAGE_SHIFT) -
(entry->start >> PAGE_SHIFT) + 1);
/*
* Here we may not defrag any range if holes are punched before
* we locked the pages.
* But that's fine, it only affects the @sectors_defragged
* accounting.
*/
ret = defrag_one_range(inode, entry->start, range_len,
extent_thresh, newer_than, do_compress,
last_scanned_ret);
if (ret < 0)
break;
*sectors_defragged += range_len >>
inode->root->fs_info->sectorsize_bits;
}
out:
list_for_each_entry_safe(entry, tmp, &target_list, list) {
list_del_init(&entry->list);
kfree(entry);
}
if (ret >= 0)
*last_scanned_ret = max(*last_scanned_ret, start + len);
return ret;
}
/*
* Entry point to file defragmentation.
*
* @inode: inode to be defragged
* @ra: readahead state
* @range: defrag options including range and flags
* @newer_than: minimum transid to defrag
* @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
* will be defragged.
*
* Return <0 for error.
* Return >=0 for the number of sectors defragged, and range->start will be updated
* to indicate the file offset where next defrag should be started at.
* (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
* defragging all the range).
*/
int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
struct btrfs_ioctl_defrag_range_args *range,
u64 newer_than, unsigned long max_to_defrag)
{
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
unsigned long sectors_defragged = 0;
u64 isize = i_size_read(inode);
u64 cur;
u64 last_byte;
bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
int compress_type = BTRFS_COMPRESS_ZLIB;
int ret = 0;
u32 extent_thresh = range->extent_thresh;
pgoff_t start_index;
ASSERT(ra);
if (isize == 0)
return 0;
if (range->start >= isize)
return -EINVAL;
if (do_compress) {
if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
return -EINVAL;
if (range->compress_type)
compress_type = range->compress_type;
}
if (extent_thresh == 0)
extent_thresh = SZ_256K;
if (range->start + range->len > range->start) {
/* Got a specific range */
last_byte = min(isize, range->start + range->len);
} else {
/* Defrag until file end */
last_byte = isize;
}
/* Align the range */
cur = round_down(range->start, fs_info->sectorsize);
last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
/*
* Make writeback start from the beginning of the range, so that the
* defrag range can be written sequentially.
*/
start_index = cur >> PAGE_SHIFT;
if (start_index < inode->i_mapping->writeback_index)
inode->i_mapping->writeback_index = start_index;
while (cur < last_byte) {
const unsigned long prev_sectors_defragged = sectors_defragged;
u64 last_scanned = cur;
u64 cluster_end;
if (btrfs_defrag_cancelled(fs_info)) {
ret = -EAGAIN;
break;
}
/* We want the cluster end at page boundary when possible */
cluster_end = (((cur >> PAGE_SHIFT) +
(SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
cluster_end = min(cluster_end, last_byte);
btrfs_inode_lock(BTRFS_I(inode), 0);
if (IS_SWAPFILE(inode)) {
ret = -ETXTBSY;
btrfs_inode_unlock(BTRFS_I(inode), 0);
break;
}
if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
btrfs_inode_unlock(BTRFS_I(inode), 0);
break;
}
if (do_compress)
BTRFS_I(inode)->defrag_compress = compress_type;
ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
cluster_end + 1 - cur, extent_thresh,
newer_than, do_compress, &sectors_defragged,
max_to_defrag, &last_scanned);
if (sectors_defragged > prev_sectors_defragged)
balance_dirty_pages_ratelimited(inode->i_mapping);
btrfs_inode_unlock(BTRFS_I(inode), 0);
if (ret < 0)
break;
cur = max(cluster_end + 1, last_scanned);
if (ret > 0) {
ret = 0;
break;
}
cond_resched();
}
/*
* Update range.start for autodefrag, this will indicate where to start
* in next run.
*/
range->start = cur;
if (sectors_defragged) {
/*
* We have defragged some sectors, for compression case they
* need to be written back immediately.
*/
if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
filemap_flush(inode->i_mapping);
if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
&BTRFS_I(inode)->runtime_flags))
filemap_flush(inode->i_mapping);
}
if (range->compress_type == BTRFS_COMPRESS_LZO)
btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
ret = sectors_defragged;
}
if (do_compress) {
btrfs_inode_lock(BTRFS_I(inode), 0);
BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
btrfs_inode_unlock(BTRFS_I(inode), 0);
}
return ret;
}
void __cold btrfs_auto_defrag_exit(void)
{
kmem_cache_destroy(btrfs_inode_defrag_cachep);
}
int __init btrfs_auto_defrag_init(void)
{
btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
sizeof(struct inode_defrag), 0, 0, NULL);
if (!btrfs_inode_defrag_cachep)
return -ENOMEM;
return 0;
}