linux/fs/btrfs/relocation.c

4524 lines
116 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* Copyright (C) 2009 Oracle. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/pagemap.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/rbtree.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/error-injection.h>
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "volumes.h"
#include "locking.h"
#include "btrfs_inode.h"
#include "async-thread.h"
#include "free-space-cache.h"
2016-08-15 02:36:51 +00:00
#include "qgroup.h"
#include "print-tree.h"
#include "delalloc-space.h"
#include "block-group.h"
#include "backref.h"
#include "misc.h"
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
#include "subpage.h"
#include "zoned.h"
#include "inode-item.h"
#include "space-info.h"
#include "fs.h"
#include "accessors.h"
#include "extent-tree.h"
#include "root-tree.h"
#include "file-item.h"
#include "relocation.h"
#include "super.h"
#include "tree-checker.h"
btrfs: don't readahead the relocation inode on RST On relocation we're doing readahead on the relocation inode, but if the filesystem is backed by a RAID stripe tree we can get ENOENT (e.g. due to preallocated extents not being mapped in the RST) from the lookup. But readahead doesn't handle the error and submits invalid reads to the device, causing an assertion in the scatter-gather list code: BTRFS info (device nvme1n1): balance: start -d -m -s BTRFS info (device nvme1n1): relocating block group 6480920576 flags data|raid0 BTRFS error (device nvme1n1): cannot find raid-stripe for logical [6481928192, 6481969152] devid 2, profile raid0 ------------[ cut here ]------------ kernel BUG at include/linux/scatterlist.h:115! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1012 Comm: btrfs Not tainted 6.10.0-rc7+ #567 RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000002cd11000 CR3: 00000001109ea001 CR4: 0000000000370eb0 Call Trace: <TASK> ? __die_body.cold+0x14/0x25 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x65/0x80 ? __blk_rq_map_sg+0x339/0x4a0 ? exc_invalid_op+0x50/0x70 ? __blk_rq_map_sg+0x339/0x4a0 ? asm_exc_invalid_op+0x1a/0x20 ? __blk_rq_map_sg+0x339/0x4a0 nvme_prep_rq.part.0+0x9d/0x770 nvme_queue_rq+0x7d/0x1e0 __blk_mq_issue_directly+0x2a/0x90 ? blk_mq_get_budget_and_tag+0x61/0x90 blk_mq_try_issue_list_directly+0x56/0xf0 blk_mq_flush_plug_list.part.0+0x52b/0x5d0 __blk_flush_plug+0xc6/0x110 blk_finish_plug+0x28/0x40 read_pages+0x160/0x1c0 page_cache_ra_unbounded+0x109/0x180 relocate_file_extent_cluster+0x611/0x6a0 ? btrfs_search_slot+0xba4/0xd20 ? balance_dirty_pages_ratelimited_flags+0x26/0xb00 relocate_data_extent.constprop.0+0x134/0x160 relocate_block_group+0x3f2/0x500 btrfs_relocate_block_group+0x250/0x430 btrfs_relocate_chunk+0x3f/0x130 btrfs_balance+0x71b/0xef0 ? kmalloc_trace_noprof+0x13b/0x280 btrfs_ioctl+0x2c2e/0x3030 ? kvfree_call_rcu+0x1e6/0x340 ? list_lru_add_obj+0x66/0x80 ? mntput_no_expire+0x3a/0x220 __x64_sys_ioctl+0x96/0xc0 do_syscall_64+0x54/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fcc04514f9b Code: Unable to access opcode bytes at 0x7fcc04514f71. RSP: 002b:00007ffeba923370 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fcc04514f9b RDX: 00007ffeba923460 RSI: 00000000c4009420 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000013 R09: 0000000000000001 R10: 00007fcc043fbba8 R11: 0000000000000246 R12: 00007ffeba924fc5 R13: 00007ffeba923460 R14: 0000000000000002 R15: 00000000004d4bb0 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fcc04514f71 CR3: 00000001109ea001 CR4: 0000000000370eb0 Kernel panic - not syncing: Fatal exception Kernel Offset: disabled ---[ end Kernel panic - not syncing: Fatal exception ]--- So in case of a relocation on a RAID stripe-tree based file system, skip the readahead. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-31 20:43:06 +00:00
#include "raid-stripe-tree.h"
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* Relocation overview
*
* [What does relocation do]
*
* The objective of relocation is to relocate all extents of the target block
* group to other block groups.
* This is utilized by resize (shrink only), profile converting, compacting
* space, or balance routine to spread chunks over devices.
*
* Before | After
* ------------------------------------------------------------------
* BG A: 10 data extents | BG A: deleted
* BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
* BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
*
* [How does relocation work]
*
* 1. Mark the target block group read-only
* New extents won't be allocated from the target block group.
*
* 2.1 Record each extent in the target block group
* To build a proper map of extents to be relocated.
*
* 2.2 Build data reloc tree and reloc trees
* Data reloc tree will contain an inode, recording all newly relocated
* data extents.
* There will be only one data reloc tree for one data block group.
*
* Reloc tree will be a special snapshot of its source tree, containing
* relocated tree blocks.
* Each tree referring to a tree block in target block group will get its
* reloc tree built.
*
* 2.3 Swap source tree with its corresponding reloc tree
* Each involved tree only refers to new extents after swap.
*
* 3. Cleanup reloc trees and data reloc tree.
* As old extents in the target block group are still referenced by reloc
* trees, we need to clean them up before really freeing the target block
* group.
*
* The main complexity is in steps 2.2 and 2.3.
*
* The entry point of relocation is relocate_block_group() function.
*/
#define RELOCATION_RESERVED_NODES 256
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* map address of tree root to tree
*/
struct mapping_node {
struct {
struct rb_node rb_node;
u64 bytenr;
}; /* Use rb_simle_node for search/insert */
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
void *data;
};
struct mapping_tree {
struct rb_root rb_root;
spinlock_t lock;
};
/*
* present a tree block to process
*/
struct tree_block {
struct {
struct rb_node rb_node;
u64 bytenr;
}; /* Use rb_simple_node for search/insert */
btrfs: keep track of the root owner for relocation reads While testing the error paths in relocation, I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc3+ #206 Not tainted ------------------------------------------------------ btrfs-balance/1571 is trying to acquire lock: ffff8cdbcc8f77d0 (&head_ref->mutex){+.+.}-{3:3}, at: btrfs_lookup_extent_info+0x156/0x3b0 but task is already holding lock: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-00){++++}-{3:3}: down_write_nested+0x43/0x80 __btrfs_tree_lock+0x27/0x100 btrfs_search_slot+0x248/0x890 relocate_tree_blocks+0x490/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 -> #1 (btrfs-csum-01){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x5ab/0x890 btrfs_del_csums+0x10b/0x3c0 __btrfs_free_extent+0x49d/0x8e0 __btrfs_run_delayed_refs+0x283/0x11f0 btrfs_run_delayed_refs+0x86/0x220 btrfs_start_dirty_block_groups+0x2ba/0x520 kretprobe_trampoline+0x0/0x50 -> #0 (&head_ref->mutex){+.+.}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 __mutex_lock+0x7e/0x7b0 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 other info that might help us debug this: Chain exists of: &head_ref->mutex --> btrfs-csum-01 --> btrfs-tree-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(btrfs-csum-01); lock(btrfs-tree-00); lock(&head_ref->mutex); *** DEADLOCK *** 5 locks held by btrfs-balance/1571: #0: ffff8cdb89749ff8 (&fs_info->delete_unused_bgs_mutex){+.+.}-{3:3}, at: btrfs_balance+0x563/0xf40 #1: ffff8cdb89748838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x156/0x300 #2: ffff8cdbc2c16650 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x413/0x5c0 #3: ffff8cdbc135f538 (btrfs-treloc-01){+.+.}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 #4: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 stack backtrace: CPU: 1 PID: 1571 Comm: btrfs-balance Not tainted 5.10.0-rc3+ #206 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 ? btrfs_lookup_extent_info+0x156/0x3b0 __mutex_lock+0x7e/0x7b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? release_extent_buffer+0x124/0x170 ? _raw_spin_unlock+0x1f/0x30 ? release_extent_buffer+0x124/0x170 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 ? add_tree_block+0x149/0x1b0 relocate_block_group+0x1ba/0x5d0 elfcorehdr_read+0x40/0x40 ? elfcorehdr_read+0x40/0x40 ? btrfs_balance+0x796/0xf40 ? __kthread_parkme+0x66/0x90 ? btrfs_balance+0xf40/0xf40 ? balance_kthread+0x37/0x50 ? kthread+0x137/0x150 ? __kthread_bind_mask+0x60/0x60 ? ret_from_fork+0x1f/0x30 As you can see this is bogus, we never take another tree's lock under the csum lock. This happens because sometimes we have to read tree blocks from disk without knowing which root they belong to during relocation. We defaulted to an owner of 0, which translates to an fs tree. This is fine as all fs trees have the same class, but obviously isn't fine if the block belongs to a COW only tree. Thankfully COW only trees only have their owners root as a reference to them, and since we already look up the extent information during relocation, go ahead and check and see if this block might belong to a COW only tree, and if so save the owner in the tree_block struct. This allows us to read_tree_block with the proper owner, which gets rid of this lockdep splat. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-16 16:22:15 +00:00
u64 owner;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_key key;
u8 level;
bool key_ready;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
};
#define MAX_EXTENTS 128
struct file_extent_cluster {
u64 start;
u64 end;
u64 boundary[MAX_EXTENTS];
unsigned int nr;
btrfs: track data relocation with simple quota Relocation data allocations are quite tricky for simple quotas. The basic data relocation sequence is (ignoring details that aren't relevant to this fix): - create a fake relocation data fs root - create a fake relocation inode in that root - for each data extent: - preallocate a data extent on behalf of the fake inode - copy over the data - for each extent - swap the refs so that the original file extent now refers to the new extent item - drop the fake root, dropping its refs on the old extents, which lets us delete them. Done naively, this results in storing an extent item in the extent tree whose owner_ref points at the relocation data root and a no-op squota recording, since the reloc root is not a legit fstree. So far, that's OK. The problem comes when you do the swap, and leave an extent item owned by this bogus root as the real permanent extents of the file. If the file then drops that ref, we free it and no-op account that against the fake relocation root. Essentially, this means that relocation is simple quota "extent laundering", since we re-own the extents into a fake root. Simple quotas very intentionally doesn't have a mechanism for transferring ownership of extents, as that is exactly the complicated thing we are trying to avoid with the new design. Further, it cannot be correctly done in this case, since at the time you create the new "real" refs, there is no way to know which was the original owner before relocation unless we track it. Therefore, it makes more sense to trick the preallocation to handle relocation as a special case and note the proper owner ref from the beginning. That way, we never write out an extent item without the correct owner ref that it will eventually have. This could be done by wiring a special root parameter all the way through the allocation code path, but to avoid that special case touching all the code, take advantage of the serial nature of relocation to store the src root on the relocation root object. Then when we finish the prealloc, if it happens to be this case, prepare the delayed ref appropriately. We must also add logic to handle relocating adjacent extents with different owning roots. Those cannot be preallocated together in a cluster as it would lose the separate ownership information. This is obviously a smelly bit of code, but I think it is the best solution to the problem, given the relocation implementation. Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-28 21:00:09 +00:00
u64 owning_root;
};
/* Stages of data relocation. */
enum reloc_stage {
MOVE_DATA_EXTENTS,
UPDATE_DATA_PTRS
};
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct reloc_control {
/* block group to relocate */
struct btrfs_block_group *block_group;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/* extent tree */
struct btrfs_root *extent_root;
/* inode for moving data */
struct inode *data_inode;
struct btrfs_block_rsv *block_rsv;
struct btrfs_backref_cache backref_cache;
struct file_extent_cluster cluster;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/* tree blocks have been processed */
struct extent_io_tree processed_blocks;
/* map start of tree root to corresponding reloc tree */
struct mapping_tree reloc_root_tree;
/* list of reloc trees */
struct list_head reloc_roots;
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
/* list of subvolume trees that get relocated */
struct list_head dirty_subvol_roots;
/* size of metadata reservation for merging reloc trees */
u64 merging_rsv_size;
/* size of relocated tree nodes */
u64 nodes_relocated;
/* reserved size for block group relocation*/
u64 reserved_bytes;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
u64 search_start;
u64 extents_found;
enum reloc_stage stage;
bool create_reloc_tree;
bool merge_reloc_tree;
bool found_file_extent;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
};
static void mark_block_processed(struct reloc_control *rc,
struct btrfs_backref_node *node)
{
u32 blocksize;
if (node->level == 0 ||
in_range(node->bytenr, rc->block_group->start,
rc->block_group->length)) {
blocksize = rc->extent_root->fs_info->nodesize;
set_extent_bit(&rc->processed_blocks, node->bytenr,
node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
}
node->processed = 1;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* walk up backref nodes until reach node presents tree root
*/
static struct btrfs_backref_node *walk_up_backref(
struct btrfs_backref_node *node,
struct btrfs_backref_edge *edges[], int *index)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_backref_edge *edge;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
int idx = *index;
while (!list_empty(&node->upper)) {
edge = list_entry(node->upper.next,
struct btrfs_backref_edge, list[LOWER]);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
edges[idx++] = edge;
node = edge->node[UPPER];
}
BUG_ON(node->detached);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
*index = idx;
return node;
}
/*
* walk down backref nodes to find start of next reference path
*/
static struct btrfs_backref_node *walk_down_backref(
struct btrfs_backref_edge *edges[], int *index)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_backref_edge *edge;
struct btrfs_backref_node *lower;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
int idx = *index;
while (idx > 0) {
edge = edges[idx - 1];
lower = edge->node[LOWER];
if (list_is_last(&edge->list[LOWER], &lower->upper)) {
idx--;
continue;
}
edge = list_entry(edge->list[LOWER].next,
struct btrfs_backref_edge, list[LOWER]);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
edges[idx - 1] = edge;
*index = idx;
return edge->node[UPPER];
}
*index = 0;
return NULL;
}
static bool reloc_root_is_dead(const struct btrfs_root *root)
btrfs: relocation: fix reloc_root lifespan and access [BUG] There are several different KASAN reports for balance + snapshot workloads. Involved call paths include: should_ignore_root+0x54/0xb0 [btrfs] build_backref_tree+0x11af/0x2280 [btrfs] relocate_tree_blocks+0x391/0xb80 [btrfs] relocate_block_group+0x3e5/0xa00 [btrfs] btrfs_relocate_block_group+0x240/0x4d0 [btrfs] btrfs_relocate_chunk+0x53/0xf0 [btrfs] btrfs_balance+0xc91/0x1840 [btrfs] btrfs_ioctl_balance+0x416/0x4e0 [btrfs] btrfs_ioctl+0x8af/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 create_reloc_root+0x9f/0x460 [btrfs] btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs] create_pending_snapshot+0xa9b/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs] create_pending_snapshot+0x209/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 [CAUSE] All these call sites are only relying on root->reloc_root, which can undergo btrfs_drop_snapshot(), and since we don't have real refcount based protection to reloc roots, we can reach already dropped reloc root, triggering KASAN. [FIX] To avoid such access to unstable root->reloc_root, we should check BTRFS_ROOT_DEAD_RELOC_TREE bit first. This patch introduces wrappers that provide the correct way to check the bit with memory barriers protection. Most callers don't distinguish merged reloc tree and no reloc tree. The only exception is should_ignore_root(), as merged reloc tree can be ignored, while no reloc tree shouldn't. [CRITICAL SECTION ANALYSIS] Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the DEAD_RELOC_TREE bit has extra help from transaction as a higher level barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are: NULL: reloc_root is NULL PTR: reloc_root is not NULL 0: DEAD_RELOC_ROOT bit not set DEAD: DEAD_RELOC_ROOT bit set (NULL, 0) Initial state __ | /\ Section A btrfs_init_reloc_root() \/ | __ (PTR, 0) reloc_root initialized /\ | | btrfs_update_reloc_root() | Section B | | (PTR, DEAD) reloc_root has been merged \/ | __ === btrfs_commit_transaction() ==================== | /\ clean_dirty_subvols() | | | Section C (NULL, DEAD) reloc_root cleanup starts \/ | __ btrfs_drop_snapshot() /\ | | Section D (NULL, 0) Back to initial state \/ Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds transaction handle, so none of such caller can cross transaction boundary. In Section A, every caller just found no DEAD bit, and grab reloc_root. In the cross section A-B, caller may get no DEAD bit, but since reloc_root is still completely valid thus accessing reloc_root is completely safe. No test_bit() caller can cross the boundary of Section B and Section C. In Section C, every caller found the DEAD bit, so no one will access reloc_root. In the cross section C-D, either caller gets the DEAD bit set, avoiding access reloc_root no matter if it's safe or not. Or caller get the DEAD bit cleared, then access reloc_root, which is already NULL, nothing will be wrong. The memory write barriers are between the reloc_root updates and bit set/clear, the pairing read side is before test_bit. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ barriers ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 05:12:00 +00:00
{
/*
* Pair with set_bit/clear_bit in clean_dirty_subvols and
* btrfs_update_reloc_root. We need to see the updated bit before
* trying to access reloc_root
*/
smp_rmb();
if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
return true;
return false;
}
/*
* Check if this subvolume tree has valid reloc tree.
*
* Reloc tree after swap is considered dead, thus not considered as valid.
* This is enough for most callers, as they don't distinguish dead reloc root
* from no reloc root. But btrfs_should_ignore_reloc_root() below is a
* special case.
btrfs: relocation: fix reloc_root lifespan and access [BUG] There are several different KASAN reports for balance + snapshot workloads. Involved call paths include: should_ignore_root+0x54/0xb0 [btrfs] build_backref_tree+0x11af/0x2280 [btrfs] relocate_tree_blocks+0x391/0xb80 [btrfs] relocate_block_group+0x3e5/0xa00 [btrfs] btrfs_relocate_block_group+0x240/0x4d0 [btrfs] btrfs_relocate_chunk+0x53/0xf0 [btrfs] btrfs_balance+0xc91/0x1840 [btrfs] btrfs_ioctl_balance+0x416/0x4e0 [btrfs] btrfs_ioctl+0x8af/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 create_reloc_root+0x9f/0x460 [btrfs] btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs] create_pending_snapshot+0xa9b/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs] create_pending_snapshot+0x209/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 [CAUSE] All these call sites are only relying on root->reloc_root, which can undergo btrfs_drop_snapshot(), and since we don't have real refcount based protection to reloc roots, we can reach already dropped reloc root, triggering KASAN. [FIX] To avoid such access to unstable root->reloc_root, we should check BTRFS_ROOT_DEAD_RELOC_TREE bit first. This patch introduces wrappers that provide the correct way to check the bit with memory barriers protection. Most callers don't distinguish merged reloc tree and no reloc tree. The only exception is should_ignore_root(), as merged reloc tree can be ignored, while no reloc tree shouldn't. [CRITICAL SECTION ANALYSIS] Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the DEAD_RELOC_TREE bit has extra help from transaction as a higher level barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are: NULL: reloc_root is NULL PTR: reloc_root is not NULL 0: DEAD_RELOC_ROOT bit not set DEAD: DEAD_RELOC_ROOT bit set (NULL, 0) Initial state __ | /\ Section A btrfs_init_reloc_root() \/ | __ (PTR, 0) reloc_root initialized /\ | | btrfs_update_reloc_root() | Section B | | (PTR, DEAD) reloc_root has been merged \/ | __ === btrfs_commit_transaction() ==================== | /\ clean_dirty_subvols() | | | Section C (NULL, DEAD) reloc_root cleanup starts \/ | __ btrfs_drop_snapshot() /\ | | Section D (NULL, 0) Back to initial state \/ Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds transaction handle, so none of such caller can cross transaction boundary. In Section A, every caller just found no DEAD bit, and grab reloc_root. In the cross section A-B, caller may get no DEAD bit, but since reloc_root is still completely valid thus accessing reloc_root is completely safe. No test_bit() caller can cross the boundary of Section B and Section C. In Section C, every caller found the DEAD bit, so no one will access reloc_root. In the cross section C-D, either caller gets the DEAD bit set, avoiding access reloc_root no matter if it's safe or not. Or caller get the DEAD bit cleared, then access reloc_root, which is already NULL, nothing will be wrong. The memory write barriers are between the reloc_root updates and bit set/clear, the pairing read side is before test_bit. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ barriers ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 05:12:00 +00:00
*/
static bool have_reloc_root(const struct btrfs_root *root)
btrfs: relocation: fix reloc_root lifespan and access [BUG] There are several different KASAN reports for balance + snapshot workloads. Involved call paths include: should_ignore_root+0x54/0xb0 [btrfs] build_backref_tree+0x11af/0x2280 [btrfs] relocate_tree_blocks+0x391/0xb80 [btrfs] relocate_block_group+0x3e5/0xa00 [btrfs] btrfs_relocate_block_group+0x240/0x4d0 [btrfs] btrfs_relocate_chunk+0x53/0xf0 [btrfs] btrfs_balance+0xc91/0x1840 [btrfs] btrfs_ioctl_balance+0x416/0x4e0 [btrfs] btrfs_ioctl+0x8af/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 create_reloc_root+0x9f/0x460 [btrfs] btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs] create_pending_snapshot+0xa9b/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs] create_pending_snapshot+0x209/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 [CAUSE] All these call sites are only relying on root->reloc_root, which can undergo btrfs_drop_snapshot(), and since we don't have real refcount based protection to reloc roots, we can reach already dropped reloc root, triggering KASAN. [FIX] To avoid such access to unstable root->reloc_root, we should check BTRFS_ROOT_DEAD_RELOC_TREE bit first. This patch introduces wrappers that provide the correct way to check the bit with memory barriers protection. Most callers don't distinguish merged reloc tree and no reloc tree. The only exception is should_ignore_root(), as merged reloc tree can be ignored, while no reloc tree shouldn't. [CRITICAL SECTION ANALYSIS] Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the DEAD_RELOC_TREE bit has extra help from transaction as a higher level barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are: NULL: reloc_root is NULL PTR: reloc_root is not NULL 0: DEAD_RELOC_ROOT bit not set DEAD: DEAD_RELOC_ROOT bit set (NULL, 0) Initial state __ | /\ Section A btrfs_init_reloc_root() \/ | __ (PTR, 0) reloc_root initialized /\ | | btrfs_update_reloc_root() | Section B | | (PTR, DEAD) reloc_root has been merged \/ | __ === btrfs_commit_transaction() ==================== | /\ clean_dirty_subvols() | | | Section C (NULL, DEAD) reloc_root cleanup starts \/ | __ btrfs_drop_snapshot() /\ | | Section D (NULL, 0) Back to initial state \/ Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds transaction handle, so none of such caller can cross transaction boundary. In Section A, every caller just found no DEAD bit, and grab reloc_root. In the cross section A-B, caller may get no DEAD bit, but since reloc_root is still completely valid thus accessing reloc_root is completely safe. No test_bit() caller can cross the boundary of Section B and Section C. In Section C, every caller found the DEAD bit, so no one will access reloc_root. In the cross section C-D, either caller gets the DEAD bit set, avoiding access reloc_root no matter if it's safe or not. Or caller get the DEAD bit cleared, then access reloc_root, which is already NULL, nothing will be wrong. The memory write barriers are between the reloc_root updates and bit set/clear, the pairing read side is before test_bit. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ barriers ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 05:12:00 +00:00
{
if (reloc_root_is_dead(root))
return false;
if (!root->reloc_root)
return false;
return true;
}
bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
{
struct btrfs_root *reloc_root;
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
return false;
btrfs: relocation: fix reloc_root lifespan and access [BUG] There are several different KASAN reports for balance + snapshot workloads. Involved call paths include: should_ignore_root+0x54/0xb0 [btrfs] build_backref_tree+0x11af/0x2280 [btrfs] relocate_tree_blocks+0x391/0xb80 [btrfs] relocate_block_group+0x3e5/0xa00 [btrfs] btrfs_relocate_block_group+0x240/0x4d0 [btrfs] btrfs_relocate_chunk+0x53/0xf0 [btrfs] btrfs_balance+0xc91/0x1840 [btrfs] btrfs_ioctl_balance+0x416/0x4e0 [btrfs] btrfs_ioctl+0x8af/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 create_reloc_root+0x9f/0x460 [btrfs] btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs] create_pending_snapshot+0xa9b/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs] create_pending_snapshot+0x209/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 [CAUSE] All these call sites are only relying on root->reloc_root, which can undergo btrfs_drop_snapshot(), and since we don't have real refcount based protection to reloc roots, we can reach already dropped reloc root, triggering KASAN. [FIX] To avoid such access to unstable root->reloc_root, we should check BTRFS_ROOT_DEAD_RELOC_TREE bit first. This patch introduces wrappers that provide the correct way to check the bit with memory barriers protection. Most callers don't distinguish merged reloc tree and no reloc tree. The only exception is should_ignore_root(), as merged reloc tree can be ignored, while no reloc tree shouldn't. [CRITICAL SECTION ANALYSIS] Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the DEAD_RELOC_TREE bit has extra help from transaction as a higher level barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are: NULL: reloc_root is NULL PTR: reloc_root is not NULL 0: DEAD_RELOC_ROOT bit not set DEAD: DEAD_RELOC_ROOT bit set (NULL, 0) Initial state __ | /\ Section A btrfs_init_reloc_root() \/ | __ (PTR, 0) reloc_root initialized /\ | | btrfs_update_reloc_root() | Section B | | (PTR, DEAD) reloc_root has been merged \/ | __ === btrfs_commit_transaction() ==================== | /\ clean_dirty_subvols() | | | Section C (NULL, DEAD) reloc_root cleanup starts \/ | __ btrfs_drop_snapshot() /\ | | Section D (NULL, 0) Back to initial state \/ Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds transaction handle, so none of such caller can cross transaction boundary. In Section A, every caller just found no DEAD bit, and grab reloc_root. In the cross section A-B, caller may get no DEAD bit, but since reloc_root is still completely valid thus accessing reloc_root is completely safe. No test_bit() caller can cross the boundary of Section B and Section C. In Section C, every caller found the DEAD bit, so no one will access reloc_root. In the cross section C-D, either caller gets the DEAD bit set, avoiding access reloc_root no matter if it's safe or not. Or caller get the DEAD bit cleared, then access reloc_root, which is already NULL, nothing will be wrong. The memory write barriers are between the reloc_root updates and bit set/clear, the pairing read side is before test_bit. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ barriers ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 05:12:00 +00:00
/* This root has been merged with its reloc tree, we can ignore it */
if (reloc_root_is_dead(root))
return true;
btrfs: relocation: fix reloc_root lifespan and access [BUG] There are several different KASAN reports for balance + snapshot workloads. Involved call paths include: should_ignore_root+0x54/0xb0 [btrfs] build_backref_tree+0x11af/0x2280 [btrfs] relocate_tree_blocks+0x391/0xb80 [btrfs] relocate_block_group+0x3e5/0xa00 [btrfs] btrfs_relocate_block_group+0x240/0x4d0 [btrfs] btrfs_relocate_chunk+0x53/0xf0 [btrfs] btrfs_balance+0xc91/0x1840 [btrfs] btrfs_ioctl_balance+0x416/0x4e0 [btrfs] btrfs_ioctl+0x8af/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 create_reloc_root+0x9f/0x460 [btrfs] btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs] create_pending_snapshot+0xa9b/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs] create_pending_snapshot+0x209/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 [CAUSE] All these call sites are only relying on root->reloc_root, which can undergo btrfs_drop_snapshot(), and since we don't have real refcount based protection to reloc roots, we can reach already dropped reloc root, triggering KASAN. [FIX] To avoid such access to unstable root->reloc_root, we should check BTRFS_ROOT_DEAD_RELOC_TREE bit first. This patch introduces wrappers that provide the correct way to check the bit with memory barriers protection. Most callers don't distinguish merged reloc tree and no reloc tree. The only exception is should_ignore_root(), as merged reloc tree can be ignored, while no reloc tree shouldn't. [CRITICAL SECTION ANALYSIS] Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the DEAD_RELOC_TREE bit has extra help from transaction as a higher level barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are: NULL: reloc_root is NULL PTR: reloc_root is not NULL 0: DEAD_RELOC_ROOT bit not set DEAD: DEAD_RELOC_ROOT bit set (NULL, 0) Initial state __ | /\ Section A btrfs_init_reloc_root() \/ | __ (PTR, 0) reloc_root initialized /\ | | btrfs_update_reloc_root() | Section B | | (PTR, DEAD) reloc_root has been merged \/ | __ === btrfs_commit_transaction() ==================== | /\ clean_dirty_subvols() | | | Section C (NULL, DEAD) reloc_root cleanup starts \/ | __ btrfs_drop_snapshot() /\ | | Section D (NULL, 0) Back to initial state \/ Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds transaction handle, so none of such caller can cross transaction boundary. In Section A, every caller just found no DEAD bit, and grab reloc_root. In the cross section A-B, caller may get no DEAD bit, but since reloc_root is still completely valid thus accessing reloc_root is completely safe. No test_bit() caller can cross the boundary of Section B and Section C. In Section C, every caller found the DEAD bit, so no one will access reloc_root. In the cross section C-D, either caller gets the DEAD bit set, avoiding access reloc_root no matter if it's safe or not. Or caller get the DEAD bit cleared, then access reloc_root, which is already NULL, nothing will be wrong. The memory write barriers are between the reloc_root updates and bit set/clear, the pairing read side is before test_bit. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ barriers ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 05:12:00 +00:00
reloc_root = root->reloc_root;
if (!reloc_root)
return false;
if (btrfs_header_generation(reloc_root->commit_root) ==
root->fs_info->running_transaction->transid)
return false;
/*
* If there is reloc tree and it was created in previous transaction
* backref lookup can find the reloc tree, so backref node for the fs
* tree root is useless for relocation.
*/
return true;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* find reloc tree by address of tree root
*/
struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct reloc_control *rc = fs_info->reloc_ctl;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct rb_node *rb_node;
struct mapping_node *node;
struct btrfs_root *root = NULL;
ASSERT(rc);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
spin_lock(&rc->reloc_root_tree.lock);
rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (rb_node) {
node = rb_entry(rb_node, struct mapping_node, rb_node);
root = node->data;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
spin_unlock(&rc->reloc_root_tree.lock);
return btrfs_grab_root(root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
/*
* For useless nodes, do two major clean ups:
*
* - Cleanup the children edges and nodes
* If child node is also orphan (no parent) during cleanup, then the child
* node will also be cleaned up.
*
* - Freeing up leaves (level 0), keeps nodes detached
* For nodes, the node is still cached as "detached"
*
* Return false if @node is not in the @useless_nodes list.
* Return true if @node is in the @useless_nodes list.
*/
static bool handle_useless_nodes(struct reloc_control *rc,
struct btrfs_backref_node *node)
{
struct btrfs_backref_cache *cache = &rc->backref_cache;
struct list_head *useless_node = &cache->useless_node;
bool ret = false;
while (!list_empty(useless_node)) {
struct btrfs_backref_node *cur;
cur = list_first_entry(useless_node, struct btrfs_backref_node,
list);
list_del_init(&cur->list);
/* Only tree root nodes can be added to @useless_nodes */
ASSERT(list_empty(&cur->upper));
if (cur == node)
ret = true;
/* The node is the lowest node */
if (cur->lowest) {
list_del_init(&cur->lower);
cur->lowest = 0;
}
/* Cleanup the lower edges */
while (!list_empty(&cur->lower)) {
struct btrfs_backref_edge *edge;
struct btrfs_backref_node *lower;
edge = list_entry(cur->lower.next,
struct btrfs_backref_edge, list[UPPER]);
list_del(&edge->list[UPPER]);
list_del(&edge->list[LOWER]);
lower = edge->node[LOWER];
btrfs_backref_free_edge(cache, edge);
/* Child node is also orphan, queue for cleanup */
if (list_empty(&lower->upper))
list_add(&lower->list, useless_node);
}
/* Mark this block processed for relocation */
mark_block_processed(rc, cur);
/*
* Backref nodes for tree leaves are deleted from the cache.
* Backref nodes for upper level tree blocks are left in the
* cache to avoid unnecessary backref lookup.
*/
if (cur->level > 0) {
list_add(&cur->list, &cache->detached);
cur->detached = 1;
} else {
rb_erase(&cur->rb_node, &cache->rb_root);
btrfs_backref_free_node(cache, cur);
}
}
return ret;
}
/*
* Build backref tree for a given tree block. Root of the backref tree
* corresponds the tree block, leaves of the backref tree correspond roots of
* b-trees that reference the tree block.
*
* The basic idea of this function is check backrefs of a given block to find
* upper level blocks that reference the block, and then check backrefs of
* these upper level blocks recursively. The recursion stops when tree root is
* reached or backrefs for the block is cached.
*
* NOTE: if we find that backrefs for a block are cached, we know backrefs for
* all upper level blocks that directly/indirectly reference the block are also
* cached.
*/
static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
btrfs: fix unwritten extent buffer after snapshotting a new subvolume When creating a snapshot of a subvolume that was created in the current transaction, we can end up not persisting a dirty extent buffer that is referenced by the snapshot, resulting in IO errors due to checksum failures when trying to read the extent buffer later from disk. A sequence of steps that leads to this is the following: 1) At ioctl.c:create_subvol() we allocate an extent buffer, with logical address 36007936, for the leaf/root of a new subvolume that has an ID of 291. We mark the extent buffer as dirty, and at this point the subvolume tree has a single node/leaf which is also its root (level 0); 2) We no longer commit the transaction used to create the subvolume at create_subvol(). We used to, but that was recently removed in commit 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create"); 3) The transaction used to create the subvolume has an ID of 33, so the extent buffer 36007936 has a generation of 33; 4) Several updates happen to subvolume 291 during transaction 33, several files created and its tree height changes from 0 to 1, so we end up with a new root at level 1 and the extent buffer 36007936 is now a leaf of that new root node, which is extent buffer 36048896. The commit root remains as 36007936, since we are still at transaction 33; 5) Creation of a snapshot of subvolume 291, with an ID of 292, starts at ioctl.c:create_snapshot(). This triggers a commit of transaction 33 and we end up at transaction.c:create_pending_snapshot(), in the critical section of a transaction commit. There we COW the root of subvolume 291, which is extent buffer 36048896. The COW operation returns extent buffer 36048896, since there's no need to COW because the extent buffer was created in this transaction and it was not written yet. The we call btrfs_copy_root() against the root node 36048896. During this operation we allocate a new extent buffer to turn into the root node of the snapshot, copy the contents of the root node 36048896 into this snapshot root extent buffer, set the owner to 292 (the ID of the snapshot), etc, and then we call btrfs_inc_ref(). This will create a delayed reference for each leaf pointed by the root node with a reference root of 292 - this includes a reference for the leaf 36007936. After that we set the bit BTRFS_ROOT_FORCE_COW in the root's state. Then we call btrfs_insert_dir_item(), to create the directory entry in in the tree of subvolume 291 that points to the snapshot. This ends up needing to modify leaf 36007936 to insert the respective directory items. Because the bit BTRFS_ROOT_FORCE_COW is set for the root's state, we need to COW the leaf. We end up at btrfs_force_cow_block() and then at update_ref_for_cow(). At update_ref_for_cow() we call btrfs_block_can_be_shared() which returns false, despite the fact the leaf 36007936 is shared - the subvolume's root and the snapshot's root point to that leaf. The reason that it incorrectly returns false is because the commit root of the subvolume is extent buffer 36007936 - it was the initial root of the subvolume when we created it. So btrfs_block_can_be_shared() which has the following logic: int btrfs_block_can_be_shared(struct btrfs_root *root, struct extent_buffer *buf) { if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && buf != root->node && buf != root->commit_root && (btrfs_header_generation(buf) <= btrfs_root_last_snapshot(&root->root_item) || btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) return 1; return 0; } Returns false (0) since 'buf' (extent buffer 36007936) matches the root's commit root. As a result, at update_ref_for_cow(), we don't check for the number of references for extent buffer 36007936, we just assume it's not shared and therefore that it has only 1 reference, so we set the local variable 'refs' to 1. Later on, in the final if-else statement at update_ref_for_cow(): static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *cow, int *last_ref) { (...) if (refs > 1) { (...) } else { (...) btrfs_clear_buffer_dirty(trans, buf); *last_ref = 1; } } So we mark the extent buffer 36007936 as not dirty, and as a result we don't write it to disk later in the transaction commit, despite the fact that the snapshot's root points to it. Attempting to access the leaf or dumping the tree for example shows that the extent buffer was not written: $ btrfs inspect-internal dump-tree -t 292 /dev/sdb btrfs-progs v6.2.2 file tree key (292 ROOT_ITEM 33) node 36110336 level 1 items 2 free space 119 generation 33 owner 292 node 36110336 flags 0x1(WRITTEN) backref revision 1 checksum stored a8103e3e checksum calced a8103e3e fs uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 chunk uuid e8c9c885-78f4-4d31-85fe-89e5f5fd4a07 key (256 INODE_ITEM 0) block 36007936 gen 33 key (257 EXTENT_DATA 0) block 36052992 gen 33 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 total bytes 107374182400 bytes used 38572032 uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 The respective on disk region is full of zeroes as the device was trimmed at mkfs time. Obviously 'btrfs check' also detects and complains about this: $ btrfs check /dev/sdb Opening filesystem to check... Checking filesystem on /dev/sdb UUID: 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 generation: 33 (33) [1/7] checking root items [2/7] checking extents checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 bad tree block 36007936, bytenr mismatch, want=36007936, have=0 owner ref check failed [36007936 4096] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space tree [4/7] checking fs roots checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 bad tree block 36007936, bytenr mismatch, want=36007936, have=0 The following tree block(s) is corrupted in tree 292: tree block bytenr: 36110336, level: 1, node key: (256, 1, 0) root 292 root dir 256 not found ERROR: errors found in fs roots found 38572032 bytes used, error(s) found total csum bytes: 16048 total tree bytes: 1265664 total fs tree bytes: 1118208 total extent tree bytes: 65536 btree space waste bytes: 562598 file data blocks allocated: 65978368 referenced 36569088 Fix this by updating btrfs_block_can_be_shared() to consider that an extent buffer may be shared if it matches the commit root and if its generation matches the current transaction's generation. This can be reproduced with the following script: $ cat test.sh #!/bin/bash MNT=/mnt/sdi DEV=/dev/sdi # Use a filesystem with a 64K node size so that we have the same node # size on every machine regardless of its page size (on x86_64 default # node size is 16K due to the 4K page size, while on PPC it's 64K by # default). This way we can make sure we are able to create a btree for # the subvolume with a height of 2. mkfs.btrfs -f -n 64K $DEV mount $DEV $MNT btrfs subvolume create $MNT/subvol # Create a few empty files on the subvolume, this bumps its btree # height to 2 (root node at level 1 and 2 leaves). for ((i = 1; i <= 300; i++)); do echo -n > $MNT/subvol/file_$i done btrfs subvolume snapshot -r $MNT/subvol $MNT/subvol/snap umount $DEV btrfs check $DEV Running it on a 6.5 kernel (or any 6.6-rc kernel at the moment): $ ./test.sh Create subvolume '/mnt/sdi/subvol' Create a readonly snapshot of '/mnt/sdi/subvol' in '/mnt/sdi/subvol/snap' Opening filesystem to check... Checking filesystem on /dev/sdi UUID: bbdde2ff-7d02-45ca-8a73-3c36f23755a1 [1/7] checking root items [2/7] checking extents parent transid verify failed on 30539776 wanted 7 found 5 parent transid verify failed on 30539776 wanted 7 found 5 parent transid verify failed on 30539776 wanted 7 found 5 Ignoring transid failure owner ref check failed [30539776 65536] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space tree [4/7] checking fs roots parent transid verify failed on 30539776 wanted 7 found 5 Ignoring transid failure Wrong key of child node/leaf, wanted: (256, 1, 0), have: (2, 132, 0) Wrong generation of child node/leaf, wanted: 5, have: 7 root 257 root dir 256 not found ERROR: errors found in fs roots found 917504 bytes used, error(s) found total csum bytes: 0 total tree bytes: 851968 total fs tree bytes: 393216 total extent tree bytes: 65536 btree space waste bytes: 736550 file data blocks allocated: 0 referenced 0 A test case for fstests will follow soon. Fixes: 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create") CC: stable@vger.kernel.org # 6.5+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-19 12:19:28 +00:00
struct btrfs_trans_handle *trans,
struct reloc_control *rc, struct btrfs_key *node_key,
int level, u64 bytenr)
{
struct btrfs_backref_iter *iter;
struct btrfs_backref_cache *cache = &rc->backref_cache;
/* For searching parent of TREE_BLOCK_REF */
struct btrfs_path *path;
struct btrfs_backref_node *cur;
struct btrfs_backref_node *node = NULL;
struct btrfs_backref_edge *edge;
int ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
if (!iter)
return ERR_PTR(-ENOMEM);
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
node = btrfs_backref_alloc_node(cache, bytenr, level);
if (!node) {
ret = -ENOMEM;
goto out;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
node->lowest = 1;
cur = node;
/* Breadth-first search to build backref cache */
do {
btrfs: fix unwritten extent buffer after snapshotting a new subvolume When creating a snapshot of a subvolume that was created in the current transaction, we can end up not persisting a dirty extent buffer that is referenced by the snapshot, resulting in IO errors due to checksum failures when trying to read the extent buffer later from disk. A sequence of steps that leads to this is the following: 1) At ioctl.c:create_subvol() we allocate an extent buffer, with logical address 36007936, for the leaf/root of a new subvolume that has an ID of 291. We mark the extent buffer as dirty, and at this point the subvolume tree has a single node/leaf which is also its root (level 0); 2) We no longer commit the transaction used to create the subvolume at create_subvol(). We used to, but that was recently removed in commit 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create"); 3) The transaction used to create the subvolume has an ID of 33, so the extent buffer 36007936 has a generation of 33; 4) Several updates happen to subvolume 291 during transaction 33, several files created and its tree height changes from 0 to 1, so we end up with a new root at level 1 and the extent buffer 36007936 is now a leaf of that new root node, which is extent buffer 36048896. The commit root remains as 36007936, since we are still at transaction 33; 5) Creation of a snapshot of subvolume 291, with an ID of 292, starts at ioctl.c:create_snapshot(). This triggers a commit of transaction 33 and we end up at transaction.c:create_pending_snapshot(), in the critical section of a transaction commit. There we COW the root of subvolume 291, which is extent buffer 36048896. The COW operation returns extent buffer 36048896, since there's no need to COW because the extent buffer was created in this transaction and it was not written yet. The we call btrfs_copy_root() against the root node 36048896. During this operation we allocate a new extent buffer to turn into the root node of the snapshot, copy the contents of the root node 36048896 into this snapshot root extent buffer, set the owner to 292 (the ID of the snapshot), etc, and then we call btrfs_inc_ref(). This will create a delayed reference for each leaf pointed by the root node with a reference root of 292 - this includes a reference for the leaf 36007936. After that we set the bit BTRFS_ROOT_FORCE_COW in the root's state. Then we call btrfs_insert_dir_item(), to create the directory entry in in the tree of subvolume 291 that points to the snapshot. This ends up needing to modify leaf 36007936 to insert the respective directory items. Because the bit BTRFS_ROOT_FORCE_COW is set for the root's state, we need to COW the leaf. We end up at btrfs_force_cow_block() and then at update_ref_for_cow(). At update_ref_for_cow() we call btrfs_block_can_be_shared() which returns false, despite the fact the leaf 36007936 is shared - the subvolume's root and the snapshot's root point to that leaf. The reason that it incorrectly returns false is because the commit root of the subvolume is extent buffer 36007936 - it was the initial root of the subvolume when we created it. So btrfs_block_can_be_shared() which has the following logic: int btrfs_block_can_be_shared(struct btrfs_root *root, struct extent_buffer *buf) { if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && buf != root->node && buf != root->commit_root && (btrfs_header_generation(buf) <= btrfs_root_last_snapshot(&root->root_item) || btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) return 1; return 0; } Returns false (0) since 'buf' (extent buffer 36007936) matches the root's commit root. As a result, at update_ref_for_cow(), we don't check for the number of references for extent buffer 36007936, we just assume it's not shared and therefore that it has only 1 reference, so we set the local variable 'refs' to 1. Later on, in the final if-else statement at update_ref_for_cow(): static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *cow, int *last_ref) { (...) if (refs > 1) { (...) } else { (...) btrfs_clear_buffer_dirty(trans, buf); *last_ref = 1; } } So we mark the extent buffer 36007936 as not dirty, and as a result we don't write it to disk later in the transaction commit, despite the fact that the snapshot's root points to it. Attempting to access the leaf or dumping the tree for example shows that the extent buffer was not written: $ btrfs inspect-internal dump-tree -t 292 /dev/sdb btrfs-progs v6.2.2 file tree key (292 ROOT_ITEM 33) node 36110336 level 1 items 2 free space 119 generation 33 owner 292 node 36110336 flags 0x1(WRITTEN) backref revision 1 checksum stored a8103e3e checksum calced a8103e3e fs uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 chunk uuid e8c9c885-78f4-4d31-85fe-89e5f5fd4a07 key (256 INODE_ITEM 0) block 36007936 gen 33 key (257 EXTENT_DATA 0) block 36052992 gen 33 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 total bytes 107374182400 bytes used 38572032 uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 The respective on disk region is full of zeroes as the device was trimmed at mkfs time. Obviously 'btrfs check' also detects and complains about this: $ btrfs check /dev/sdb Opening filesystem to check... Checking filesystem on /dev/sdb UUID: 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 generation: 33 (33) [1/7] checking root items [2/7] checking extents checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 bad tree block 36007936, bytenr mismatch, want=36007936, have=0 owner ref check failed [36007936 4096] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space tree [4/7] checking fs roots checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 bad tree block 36007936, bytenr mismatch, want=36007936, have=0 The following tree block(s) is corrupted in tree 292: tree block bytenr: 36110336, level: 1, node key: (256, 1, 0) root 292 root dir 256 not found ERROR: errors found in fs roots found 38572032 bytes used, error(s) found total csum bytes: 16048 total tree bytes: 1265664 total fs tree bytes: 1118208 total extent tree bytes: 65536 btree space waste bytes: 562598 file data blocks allocated: 65978368 referenced 36569088 Fix this by updating btrfs_block_can_be_shared() to consider that an extent buffer may be shared if it matches the commit root and if its generation matches the current transaction's generation. This can be reproduced with the following script: $ cat test.sh #!/bin/bash MNT=/mnt/sdi DEV=/dev/sdi # Use a filesystem with a 64K node size so that we have the same node # size on every machine regardless of its page size (on x86_64 default # node size is 16K due to the 4K page size, while on PPC it's 64K by # default). This way we can make sure we are able to create a btree for # the subvolume with a height of 2. mkfs.btrfs -f -n 64K $DEV mount $DEV $MNT btrfs subvolume create $MNT/subvol # Create a few empty files on the subvolume, this bumps its btree # height to 2 (root node at level 1 and 2 leaves). for ((i = 1; i <= 300; i++)); do echo -n > $MNT/subvol/file_$i done btrfs subvolume snapshot -r $MNT/subvol $MNT/subvol/snap umount $DEV btrfs check $DEV Running it on a 6.5 kernel (or any 6.6-rc kernel at the moment): $ ./test.sh Create subvolume '/mnt/sdi/subvol' Create a readonly snapshot of '/mnt/sdi/subvol' in '/mnt/sdi/subvol/snap' Opening filesystem to check... Checking filesystem on /dev/sdi UUID: bbdde2ff-7d02-45ca-8a73-3c36f23755a1 [1/7] checking root items [2/7] checking extents parent transid verify failed on 30539776 wanted 7 found 5 parent transid verify failed on 30539776 wanted 7 found 5 parent transid verify failed on 30539776 wanted 7 found 5 Ignoring transid failure owner ref check failed [30539776 65536] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space tree [4/7] checking fs roots parent transid verify failed on 30539776 wanted 7 found 5 Ignoring transid failure Wrong key of child node/leaf, wanted: (256, 1, 0), have: (2, 132, 0) Wrong generation of child node/leaf, wanted: 5, have: 7 root 257 root dir 256 not found ERROR: errors found in fs roots found 917504 bytes used, error(s) found total csum bytes: 0 total tree bytes: 851968 total fs tree bytes: 393216 total extent tree bytes: 65536 btree space waste bytes: 736550 file data blocks allocated: 0 referenced 0 A test case for fstests will follow soon. Fixes: 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create") CC: stable@vger.kernel.org # 6.5+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-19 12:19:28 +00:00
ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
node_key, cur);
if (ret < 0)
goto out;
edge = list_first_entry_or_null(&cache->pending_edge,
struct btrfs_backref_edge, list[UPPER]);
/*
* The pending list isn't empty, take the first block to
* process
*/
if (edge) {
list_del_init(&edge->list[UPPER]);
cur = edge->node[UPPER];
}
} while (edge);
/* Finish the upper linkage of newly added edges/nodes */
ret = btrfs_backref_finish_upper_links(cache, node);
if (ret < 0)
goto out;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (handle_useless_nodes(rc, node))
node = NULL;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
out:
btrfs_free_path(iter->path);
kfree(iter);
btrfs_free_path(path);
if (ret) {
btrfs_backref_error_cleanup(cache, node);
return ERR_PTR(ret);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
ASSERT(!node || !node->detached);
ASSERT(list_empty(&cache->useless_node) &&
list_empty(&cache->pending_edge));
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return node;
}
/*
* helper to add backref node for the newly created snapshot.
* the backref node is created by cloning backref node that
* corresponds to root of source tree
*/
static int clone_backref_node(struct btrfs_trans_handle *trans,
struct reloc_control *rc,
const struct btrfs_root *src,
struct btrfs_root *dest)
{
struct btrfs_root *reloc_root = src->reloc_root;
struct btrfs_backref_cache *cache = &rc->backref_cache;
struct btrfs_backref_node *node = NULL;
struct btrfs_backref_node *new_node;
struct btrfs_backref_edge *edge;
struct btrfs_backref_edge *new_edge;
struct rb_node *rb_node;
rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
if (rb_node) {
node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
if (node->detached)
node = NULL;
else
BUG_ON(node->new_bytenr != reloc_root->node->start);
}
if (!node) {
rb_node = rb_simple_search(&cache->rb_root,
reloc_root->commit_root->start);
if (rb_node) {
node = rb_entry(rb_node, struct btrfs_backref_node,
rb_node);
BUG_ON(node->detached);
}
}
if (!node)
return 0;
new_node = btrfs_backref_alloc_node(cache, dest->node->start,
node->level);
if (!new_node)
return -ENOMEM;
new_node->lowest = node->lowest;
new_node->checked = 1;
new_node->root = btrfs_grab_root(dest);
ASSERT(new_node->root);
if (!node->lowest) {
list_for_each_entry(edge, &node->lower, list[UPPER]) {
new_edge = btrfs_backref_alloc_edge(cache);
if (!new_edge)
goto fail;
btrfs_backref_link_edge(new_edge, edge->node[LOWER],
new_node, LINK_UPPER);
}
} else {
list_add_tail(&new_node->lower, &cache->leaves);
}
rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
&new_node->rb_node);
if (rb_node)
btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
if (!new_node->lowest) {
list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
list_add_tail(&new_edge->list[LOWER],
&new_edge->node[LOWER]->upper);
}
}
return 0;
fail:
while (!list_empty(&new_node->lower)) {
new_edge = list_entry(new_node->lower.next,
struct btrfs_backref_edge, list[UPPER]);
list_del(&new_edge->list[UPPER]);
btrfs_backref_free_edge(cache, new_edge);
}
btrfs_backref_free_node(cache, new_node);
return -ENOMEM;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* helper to add 'address of tree root -> reloc tree' mapping
*/
static int __add_reloc_root(struct btrfs_root *root)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_fs_info *fs_info = root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct rb_node *rb_node;
struct mapping_node *node;
struct reloc_control *rc = fs_info->reloc_ctl;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
node = kmalloc(sizeof(*node), GFP_NOFS);
if (!node)
return -ENOMEM;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
node->bytenr = root->commit_root->start;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
node->data = root;
spin_lock(&rc->reloc_root_tree.lock);
rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
node->bytenr, &node->rb_node);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
spin_unlock(&rc->reloc_root_tree.lock);
if (rb_node) {
btrfs_err(fs_info,
"Duplicate root found for start=%llu while inserting into relocation tree",
node->bytenr);
return -EEXIST;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
list_add_tail(&root->root_list, &rc->reloc_roots);
return 0;
}
/*
* helper to delete the 'address of tree root -> reloc tree'
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
* mapping
*/
static void __del_reloc_root(struct btrfs_root *root)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_fs_info *fs_info = root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct rb_node *rb_node;
struct mapping_node *node = NULL;
struct reloc_control *rc = fs_info->reloc_ctl;
bool put_ref = false;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs: Handle owner mismatch gracefully when walking up tree [BUG] When mounting certain crafted image, btrfs will trigger kernel BUG_ON() when trying to recover balance: kernel BUG at fs/btrfs/extent-tree.c:8956! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 662 Comm: mount Not tainted 4.18.0-rc1-custom+ #10 RIP: 0010:walk_up_proc+0x336/0x480 [btrfs] RSP: 0018:ffffb53540c9b890 EFLAGS: 00010202 Call Trace: walk_up_tree+0x172/0x1f0 [btrfs] btrfs_drop_snapshot+0x3a4/0x830 [btrfs] merge_reloc_roots+0xe1/0x1d0 [btrfs] btrfs_recover_relocation+0x3ea/0x420 [btrfs] open_ctree+0x1af3/0x1dd0 [btrfs] btrfs_mount_root+0x66b/0x740 [btrfs] mount_fs+0x3b/0x16a vfs_kern_mount.part.9+0x54/0x140 btrfs_mount+0x16d/0x890 [btrfs] mount_fs+0x3b/0x16a vfs_kern_mount.part.9+0x54/0x140 do_mount+0x1fd/0xda0 ksys_mount+0xba/0xd0 __x64_sys_mount+0x21/0x30 do_syscall_64+0x60/0x210 entry_SYSCALL_64_after_hwframe+0x49/0xbe [CAUSE] Extent tree corruption. In this particular case, reloc tree root's owner is DATA_RELOC_TREE (should be TREE_RELOC), thus its backref is corrupted and we failed the owner check in walk_up_tree(). [FIX] It's pretty hard to take care of every extent tree corruption, but at least we can remove such BUG_ON() and exit more gracefully. And since in this particular image, DATA_RELOC_TREE and TREE_RELOC share the same root (which is obviously invalid), we needs to make __del_reloc_root() more robust to detect such invalid sharing to avoid possible NULL dereference as root->node can be NULL in this case. Link: https://bugzilla.kernel.org/show_bug.cgi?id=200411 Reported-by: Xu Wen <wen.xu@gatech.edu> CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-21 01:42:03 +00:00
if (rc && root->node) {
spin_lock(&rc->reloc_root_tree.lock);
rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
root->commit_root->start);
if (rb_node) {
node = rb_entry(rb_node, struct mapping_node, rb_node);
rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
RB_CLEAR_NODE(&node->rb_node);
}
spin_unlock(&rc->reloc_root_tree.lock);
ASSERT(!node || (struct btrfs_root *)node->data == root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
/*
* We only put the reloc root here if it's on the list. There's a lot
* of places where the pattern is to splice the rc->reloc_roots, process
* the reloc roots, and then add the reloc root back onto
* rc->reloc_roots. If we call __del_reloc_root while it's off of the
* list we don't want the reference being dropped, because the guy
* messing with the list is in charge of the reference.
*/
spin_lock(&fs_info->trans_lock);
if (!list_empty(&root->root_list)) {
put_ref = true;
list_del_init(&root->root_list);
}
spin_unlock(&fs_info->trans_lock);
if (put_ref)
btrfs_put_root(root);
kfree(node);
}
/*
* helper to update the 'address of tree root -> reloc tree'
* mapping
*/
static int __update_reloc_root(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct rb_node *rb_node;
struct mapping_node *node = NULL;
struct reloc_control *rc = fs_info->reloc_ctl;
spin_lock(&rc->reloc_root_tree.lock);
rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
root->commit_root->start);
if (rb_node) {
node = rb_entry(rb_node, struct mapping_node, rb_node);
rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
spin_unlock(&rc->reloc_root_tree.lock);
if (!node)
return 0;
BUG_ON((struct btrfs_root *)node->data != root);
spin_lock(&rc->reloc_root_tree.lock);
node->bytenr = root->node->start;
rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
node->bytenr, &node->rb_node);
spin_unlock(&rc->reloc_root_tree.lock);
if (rb_node)
btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return 0;
}
static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_fs_info *fs_info = root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_root *reloc_root;
struct extent_buffer *eb;
struct btrfs_root_item *root_item;
struct btrfs_key root_key;
int ret = 0;
bool must_abort = false;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
if (!root_item)
return ERR_PTR(-ENOMEM);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
root_key.type = BTRFS_ROOT_ITEM_KEY;
root_key.offset = objectid;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (btrfs_root_id(root) == objectid) {
Btrfs: fix relocation incorrectly dropping data references During relocation of a data block group we create a relocation tree for each fs/subvol tree by making a snapshot of each tree using btrfs_copy_root() and the tree's commit root, and then setting the last snapshot field for the fs/subvol tree's root to the value of the current transaction id minus 1. However this can lead to relocation later dropping references that it did not create if we have qgroups enabled, leaving the filesystem in an inconsistent state that keeps aborting transactions. Lets consider the following example to explain the problem, which requires qgroups to be enabled. We are relocating data block group Y, we have a subvolume with id 258 that has a root at level 1, that subvolume is used to store directory entries for snapshots and we are currently at transaction 3404. When committing transaction 3404, we have a pending snapshot and therefore we call btrfs_run_delayed_items() at transaction.c:create_pending_snapshot() in order to create its dentry at subvolume 258. This results in COWing leaf A from root 258 in order to add the dentry. Note that leaf A also contains file extent items referring to extents from some other block group X (we are currently relocating block group Y). Later on, still at create_pending_snapshot() we call qgroup_account_snapshot(), which switches the commit root for root 258 when it calls switch_commit_roots(), so now the COWed version of leaf A, lets call it leaf A', is accessible from the commit root of tree 258. At the end of qgroup_account_snapshot(), we call record_root_in_trans() with 258 as its argument, which results in btrfs_init_reloc_root() being called, which in turn calls relocation.c:create_reloc_root() in order to create a relocation tree associated to root 258, which results in assigning the value of 3403 (which is the current transaction id minus 1 = 3404 - 1) to the last_snapshot field of root 258. When creating the relocation tree root at ctree.c:btrfs_copy_root() we add a shared reference for leaf A', corresponding to the relocation tree's root, when we call btrfs_inc_ref() against the COWed root (a copy of the commit root from tree 258), which is at level 1. So at this point leaf A' has 2 references, one normal reference corresponding to root 258 and one shared reference corresponding to the root of the relocation tree. Transaction 3404 finishes its commit and transaction 3405 is started by relocation when calling merge_reloc_root() for the relocation tree associated to root 258. In the meanwhile leaf A' is COWed again, in response to some filesystem operation, when we are still at transaction 3405. However when we COW leaf A', at ctree.c:update_ref_for_cow(), we call btrfs_block_can_be_shared() in order to figure out if other trees refer to the leaf and if any such trees exists, add a full back reference to leaf A' - but btrfs_block_can_be_shared() incorrectly returns false because the following condition is false: btrfs_header_generation(buf) <= btrfs_root_last_snapshot(&root->root_item) which evaluates to 3404 <= 3403. So after leaf A' is COWed, it stays with only one reference, corresponding to the shared reference we created when we called btrfs_copy_root() to create the relocation tree's root and btrfs_inc_ref() ends up not being called for leaf A' nor we end up setting the flag BTRFS_BLOCK_FLAG_FULL_BACKREF in leaf A'. This results in not adding shared references for the extents from block group X that leaf A' refers to with its file extent items. Later, after merging the relocation root we do a call to to btrfs_drop_snapshot() in order to delete the relocation tree. This ends up calling do_walk_down() when path->slots[1] points to leaf A', which results in calling btrfs_lookup_extent_info() to get the number of references for leaf A', which is 1 at this time (only the shared reference exists) and this value is stored at wc->refs[0]. After this walk_up_proc() is called when wc->level is 0 and path->nodes[0] corresponds to leaf A'. Because the current level is 0 and wc->refs[0] is 1, it does call btrfs_dec_ref() against leaf A', which results in removing the single references that the extents from block group X have which are associated to root 258 - the expectation was to have each of these extents with 2 references - one reference for root 258 and one shared reference related to the root of the relocation tree, and so we would drop only the shared reference (because leaf A' was supposed to have the flag BTRFS_BLOCK_FLAG_FULL_BACKREF set). This leaves the filesystem in an inconsistent state as we now have file extent items in a subvolume tree that point to extents from block group X without references in the extent tree. So later on when we try to decrement the references for these extents, for example due to a file unlink operation, truncate operation or overwriting ranges of a file, we fail because the expected references do not exist in the extent tree. This leads to warnings and transaction aborts like the following: [ 588.965795] ------------[ cut here ]------------ [ 588.965815] WARNING: CPU: 2 PID: 2479 at fs/btrfs/extent-tree.c:1625 lookup_inline_extent_backref+0x432/0x5b0 [btrfs] [ 588.965816] Modules linked in: af_packet iscsi_ibft iscsi_boot_sysfs xfs libcrc32c ppdev acpi_cpufreq button tpm_tis e1000 i2c_piix4 pcspkr parport_pc parport tpm qemu_fw_cfg joydev btrfs xor raid6_pq sr_mod cdrom ata_generic virtio_scsi ata_piix virtio_pci bochs_drm virtio_ring drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops virtio ttm serio_raw drm floppy sg [ 588.965831] CPU: 2 PID: 2479 Comm: kworker/u8:7 Not tainted 4.7.3-3-default-fdm+ #1 [ 588.965832] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014 [ 588.965844] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs] [ 588.965845] 0000000000000000 ffff8802263bfa28 ffffffff813af542 0000000000000000 [ 588.965847] 0000000000000000 ffff8802263bfa68 ffffffff81081e8b 0000065900000000 [ 588.965848] ffff8801db2af000 000000012bbe2000 0000000000000000 ffff880215703b48 [ 588.965849] Call Trace: [ 588.965852] [<ffffffff813af542>] dump_stack+0x63/0x81 [ 588.965854] [<ffffffff81081e8b>] __warn+0xcb/0xf0 [ 588.965855] [<ffffffff81081f7d>] warn_slowpath_null+0x1d/0x20 [ 588.965863] [<ffffffffa0175042>] lookup_inline_extent_backref+0x432/0x5b0 [btrfs] [ 588.965865] [<ffffffff81143220>] ? trace_clock_local+0x10/0x30 [ 588.965867] [<ffffffff8114c5df>] ? rb_reserve_next_event+0x6f/0x460 [ 588.965875] [<ffffffffa0175215>] insert_inline_extent_backref+0x55/0xd0 [btrfs] [ 588.965882] [<ffffffffa017531f>] __btrfs_inc_extent_ref.isra.55+0x8f/0x240 [btrfs] [ 588.965890] [<ffffffffa017acea>] __btrfs_run_delayed_refs+0x74a/0x1260 [btrfs] [ 588.965892] [<ffffffff810cb046>] ? cpuacct_charge+0x86/0xa0 [ 588.965900] [<ffffffffa017e74f>] btrfs_run_delayed_refs+0x9f/0x2c0 [btrfs] [ 588.965908] [<ffffffffa017ea04>] delayed_ref_async_start+0x94/0xb0 [btrfs] [ 588.965918] [<ffffffffa01c799a>] btrfs_scrubparity_helper+0xca/0x350 [btrfs] [ 588.965928] [<ffffffffa01c7c5e>] btrfs_extent_refs_helper+0xe/0x10 [btrfs] [ 588.965930] [<ffffffff8109b323>] process_one_work+0x1f3/0x4e0 [ 588.965931] [<ffffffff8109b658>] worker_thread+0x48/0x4e0 [ 588.965932] [<ffffffff8109b610>] ? process_one_work+0x4e0/0x4e0 [ 588.965934] [<ffffffff810a1659>] kthread+0xc9/0xe0 [ 588.965936] [<ffffffff816f2f1f>] ret_from_fork+0x1f/0x40 [ 588.965937] [<ffffffff810a1590>] ? kthread_worker_fn+0x170/0x170 [ 588.965938] ---[ end trace 34e5232c933a1749 ]--- [ 588.966187] ------------[ cut here ]------------ [ 588.966196] WARNING: CPU: 2 PID: 2479 at fs/btrfs/extent-tree.c:2966 btrfs_run_delayed_refs+0x28c/0x2c0 [btrfs] [ 588.966196] BTRFS: Transaction aborted (error -5) [ 588.966197] Modules linked in: af_packet iscsi_ibft iscsi_boot_sysfs xfs libcrc32c ppdev acpi_cpufreq button tpm_tis e1000 i2c_piix4 pcspkr parport_pc parport tpm qemu_fw_cfg joydev btrfs xor raid6_pq sr_mod cdrom ata_generic virtio_scsi ata_piix virtio_pci bochs_drm virtio_ring drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops virtio ttm serio_raw drm floppy sg [ 588.966206] CPU: 2 PID: 2479 Comm: kworker/u8:7 Tainted: G W 4.7.3-3-default-fdm+ #1 [ 588.966207] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014 [ 588.966217] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs] [ 588.966217] 0000000000000000 ffff8802263bfc98 ffffffff813af542 ffff8802263bfce8 [ 588.966219] 0000000000000000 ffff8802263bfcd8 ffffffff81081e8b 00000b96345ee000 [ 588.966220] ffffffffa021ae1c ffff880215703b48 00000000000005fe ffff8802345ee000 [ 588.966221] Call Trace: [ 588.966223] [<ffffffff813af542>] dump_stack+0x63/0x81 [ 588.966224] [<ffffffff81081e8b>] __warn+0xcb/0xf0 [ 588.966225] [<ffffffff81081eff>] warn_slowpath_fmt+0x4f/0x60 [ 588.966233] [<ffffffffa017e93c>] btrfs_run_delayed_refs+0x28c/0x2c0 [btrfs] [ 588.966241] [<ffffffffa017ea04>] delayed_ref_async_start+0x94/0xb0 [btrfs] [ 588.966250] [<ffffffffa01c799a>] btrfs_scrubparity_helper+0xca/0x350 [btrfs] [ 588.966259] [<ffffffffa01c7c5e>] btrfs_extent_refs_helper+0xe/0x10 [btrfs] [ 588.966260] [<ffffffff8109b323>] process_one_work+0x1f3/0x4e0 [ 588.966261] [<ffffffff8109b658>] worker_thread+0x48/0x4e0 [ 588.966263] [<ffffffff8109b610>] ? process_one_work+0x4e0/0x4e0 [ 588.966264] [<ffffffff810a1659>] kthread+0xc9/0xe0 [ 588.966265] [<ffffffff816f2f1f>] ret_from_fork+0x1f/0x40 [ 588.966267] [<ffffffff810a1590>] ? kthread_worker_fn+0x170/0x170 [ 588.966268] ---[ end trace 34e5232c933a174a ]--- [ 588.966269] BTRFS: error (device sda2) in btrfs_run_delayed_refs:2966: errno=-5 IO failure [ 588.966270] BTRFS info (device sda2): forced readonly This was happening often on openSUSE and SLE systems using btrfs as the root filesystem (with its default layout where multiple subvolumes are used) where balance happens in the background triggered by a cron job and snapshots are automatically created before/after package installations, upgrades and removals. The issue could be triggered simply by running the following loop on the first system boot post installation: while true; do zypper -n in nfs-kernel-server zypper -n rm nfs-kernel-server done (If we were fast enough and made that loop before the cron job triggered a balance operation and the balance finished) So fix by setting the last_snapshot field of the root to the value of the generation of its commit root. Like this btrfs_block_can_be_shared() behaves correctly for the case where the relocation root is created during a transaction commit and for the case where it's created before a transaction commit. Fixes: 6426c7ad697d (btrfs: qgroup: Fix qgroup accounting when creating snapshot) Cc: stable@vger.kernel.org # 4.7+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-11-01 11:23:31 +00:00
u64 commit_root_gen;
/* called by btrfs_init_reloc_root */
ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
BTRFS_TREE_RELOC_OBJECTID);
if (ret)
goto fail;
Btrfs: fix relocation incorrectly dropping data references During relocation of a data block group we create a relocation tree for each fs/subvol tree by making a snapshot of each tree using btrfs_copy_root() and the tree's commit root, and then setting the last snapshot field for the fs/subvol tree's root to the value of the current transaction id minus 1. However this can lead to relocation later dropping references that it did not create if we have qgroups enabled, leaving the filesystem in an inconsistent state that keeps aborting transactions. Lets consider the following example to explain the problem, which requires qgroups to be enabled. We are relocating data block group Y, we have a subvolume with id 258 that has a root at level 1, that subvolume is used to store directory entries for snapshots and we are currently at transaction 3404. When committing transaction 3404, we have a pending snapshot and therefore we call btrfs_run_delayed_items() at transaction.c:create_pending_snapshot() in order to create its dentry at subvolume 258. This results in COWing leaf A from root 258 in order to add the dentry. Note that leaf A also contains file extent items referring to extents from some other block group X (we are currently relocating block group Y). Later on, still at create_pending_snapshot() we call qgroup_account_snapshot(), which switches the commit root for root 258 when it calls switch_commit_roots(), so now the COWed version of leaf A, lets call it leaf A', is accessible from the commit root of tree 258. At the end of qgroup_account_snapshot(), we call record_root_in_trans() with 258 as its argument, which results in btrfs_init_reloc_root() being called, which in turn calls relocation.c:create_reloc_root() in order to create a relocation tree associated to root 258, which results in assigning the value of 3403 (which is the current transaction id minus 1 = 3404 - 1) to the last_snapshot field of root 258. When creating the relocation tree root at ctree.c:btrfs_copy_root() we add a shared reference for leaf A', corresponding to the relocation tree's root, when we call btrfs_inc_ref() against the COWed root (a copy of the commit root from tree 258), which is at level 1. So at this point leaf A' has 2 references, one normal reference corresponding to root 258 and one shared reference corresponding to the root of the relocation tree. Transaction 3404 finishes its commit and transaction 3405 is started by relocation when calling merge_reloc_root() for the relocation tree associated to root 258. In the meanwhile leaf A' is COWed again, in response to some filesystem operation, when we are still at transaction 3405. However when we COW leaf A', at ctree.c:update_ref_for_cow(), we call btrfs_block_can_be_shared() in order to figure out if other trees refer to the leaf and if any such trees exists, add a full back reference to leaf A' - but btrfs_block_can_be_shared() incorrectly returns false because the following condition is false: btrfs_header_generation(buf) <= btrfs_root_last_snapshot(&root->root_item) which evaluates to 3404 <= 3403. So after leaf A' is COWed, it stays with only one reference, corresponding to the shared reference we created when we called btrfs_copy_root() to create the relocation tree's root and btrfs_inc_ref() ends up not being called for leaf A' nor we end up setting the flag BTRFS_BLOCK_FLAG_FULL_BACKREF in leaf A'. This results in not adding shared references for the extents from block group X that leaf A' refers to with its file extent items. Later, after merging the relocation root we do a call to to btrfs_drop_snapshot() in order to delete the relocation tree. This ends up calling do_walk_down() when path->slots[1] points to leaf A', which results in calling btrfs_lookup_extent_info() to get the number of references for leaf A', which is 1 at this time (only the shared reference exists) and this value is stored at wc->refs[0]. After this walk_up_proc() is called when wc->level is 0 and path->nodes[0] corresponds to leaf A'. Because the current level is 0 and wc->refs[0] is 1, it does call btrfs_dec_ref() against leaf A', which results in removing the single references that the extents from block group X have which are associated to root 258 - the expectation was to have each of these extents with 2 references - one reference for root 258 and one shared reference related to the root of the relocation tree, and so we would drop only the shared reference (because leaf A' was supposed to have the flag BTRFS_BLOCK_FLAG_FULL_BACKREF set). This leaves the filesystem in an inconsistent state as we now have file extent items in a subvolume tree that point to extents from block group X without references in the extent tree. So later on when we try to decrement the references for these extents, for example due to a file unlink operation, truncate operation or overwriting ranges of a file, we fail because the expected references do not exist in the extent tree. This leads to warnings and transaction aborts like the following: [ 588.965795] ------------[ cut here ]------------ [ 588.965815] WARNING: CPU: 2 PID: 2479 at fs/btrfs/extent-tree.c:1625 lookup_inline_extent_backref+0x432/0x5b0 [btrfs] [ 588.965816] Modules linked in: af_packet iscsi_ibft iscsi_boot_sysfs xfs libcrc32c ppdev acpi_cpufreq button tpm_tis e1000 i2c_piix4 pcspkr parport_pc parport tpm qemu_fw_cfg joydev btrfs xor raid6_pq sr_mod cdrom ata_generic virtio_scsi ata_piix virtio_pci bochs_drm virtio_ring drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops virtio ttm serio_raw drm floppy sg [ 588.965831] CPU: 2 PID: 2479 Comm: kworker/u8:7 Not tainted 4.7.3-3-default-fdm+ #1 [ 588.965832] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014 [ 588.965844] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs] [ 588.965845] 0000000000000000 ffff8802263bfa28 ffffffff813af542 0000000000000000 [ 588.965847] 0000000000000000 ffff8802263bfa68 ffffffff81081e8b 0000065900000000 [ 588.965848] ffff8801db2af000 000000012bbe2000 0000000000000000 ffff880215703b48 [ 588.965849] Call Trace: [ 588.965852] [<ffffffff813af542>] dump_stack+0x63/0x81 [ 588.965854] [<ffffffff81081e8b>] __warn+0xcb/0xf0 [ 588.965855] [<ffffffff81081f7d>] warn_slowpath_null+0x1d/0x20 [ 588.965863] [<ffffffffa0175042>] lookup_inline_extent_backref+0x432/0x5b0 [btrfs] [ 588.965865] [<ffffffff81143220>] ? trace_clock_local+0x10/0x30 [ 588.965867] [<ffffffff8114c5df>] ? rb_reserve_next_event+0x6f/0x460 [ 588.965875] [<ffffffffa0175215>] insert_inline_extent_backref+0x55/0xd0 [btrfs] [ 588.965882] [<ffffffffa017531f>] __btrfs_inc_extent_ref.isra.55+0x8f/0x240 [btrfs] [ 588.965890] [<ffffffffa017acea>] __btrfs_run_delayed_refs+0x74a/0x1260 [btrfs] [ 588.965892] [<ffffffff810cb046>] ? cpuacct_charge+0x86/0xa0 [ 588.965900] [<ffffffffa017e74f>] btrfs_run_delayed_refs+0x9f/0x2c0 [btrfs] [ 588.965908] [<ffffffffa017ea04>] delayed_ref_async_start+0x94/0xb0 [btrfs] [ 588.965918] [<ffffffffa01c799a>] btrfs_scrubparity_helper+0xca/0x350 [btrfs] [ 588.965928] [<ffffffffa01c7c5e>] btrfs_extent_refs_helper+0xe/0x10 [btrfs] [ 588.965930] [<ffffffff8109b323>] process_one_work+0x1f3/0x4e0 [ 588.965931] [<ffffffff8109b658>] worker_thread+0x48/0x4e0 [ 588.965932] [<ffffffff8109b610>] ? process_one_work+0x4e0/0x4e0 [ 588.965934] [<ffffffff810a1659>] kthread+0xc9/0xe0 [ 588.965936] [<ffffffff816f2f1f>] ret_from_fork+0x1f/0x40 [ 588.965937] [<ffffffff810a1590>] ? kthread_worker_fn+0x170/0x170 [ 588.965938] ---[ end trace 34e5232c933a1749 ]--- [ 588.966187] ------------[ cut here ]------------ [ 588.966196] WARNING: CPU: 2 PID: 2479 at fs/btrfs/extent-tree.c:2966 btrfs_run_delayed_refs+0x28c/0x2c0 [btrfs] [ 588.966196] BTRFS: Transaction aborted (error -5) [ 588.966197] Modules linked in: af_packet iscsi_ibft iscsi_boot_sysfs xfs libcrc32c ppdev acpi_cpufreq button tpm_tis e1000 i2c_piix4 pcspkr parport_pc parport tpm qemu_fw_cfg joydev btrfs xor raid6_pq sr_mod cdrom ata_generic virtio_scsi ata_piix virtio_pci bochs_drm virtio_ring drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops virtio ttm serio_raw drm floppy sg [ 588.966206] CPU: 2 PID: 2479 Comm: kworker/u8:7 Tainted: G W 4.7.3-3-default-fdm+ #1 [ 588.966207] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014 [ 588.966217] Workqueue: btrfs-extent-refs btrfs_extent_refs_helper [btrfs] [ 588.966217] 0000000000000000 ffff8802263bfc98 ffffffff813af542 ffff8802263bfce8 [ 588.966219] 0000000000000000 ffff8802263bfcd8 ffffffff81081e8b 00000b96345ee000 [ 588.966220] ffffffffa021ae1c ffff880215703b48 00000000000005fe ffff8802345ee000 [ 588.966221] Call Trace: [ 588.966223] [<ffffffff813af542>] dump_stack+0x63/0x81 [ 588.966224] [<ffffffff81081e8b>] __warn+0xcb/0xf0 [ 588.966225] [<ffffffff81081eff>] warn_slowpath_fmt+0x4f/0x60 [ 588.966233] [<ffffffffa017e93c>] btrfs_run_delayed_refs+0x28c/0x2c0 [btrfs] [ 588.966241] [<ffffffffa017ea04>] delayed_ref_async_start+0x94/0xb0 [btrfs] [ 588.966250] [<ffffffffa01c799a>] btrfs_scrubparity_helper+0xca/0x350 [btrfs] [ 588.966259] [<ffffffffa01c7c5e>] btrfs_extent_refs_helper+0xe/0x10 [btrfs] [ 588.966260] [<ffffffff8109b323>] process_one_work+0x1f3/0x4e0 [ 588.966261] [<ffffffff8109b658>] worker_thread+0x48/0x4e0 [ 588.966263] [<ffffffff8109b610>] ? process_one_work+0x4e0/0x4e0 [ 588.966264] [<ffffffff810a1659>] kthread+0xc9/0xe0 [ 588.966265] [<ffffffff816f2f1f>] ret_from_fork+0x1f/0x40 [ 588.966267] [<ffffffff810a1590>] ? kthread_worker_fn+0x170/0x170 [ 588.966268] ---[ end trace 34e5232c933a174a ]--- [ 588.966269] BTRFS: error (device sda2) in btrfs_run_delayed_refs:2966: errno=-5 IO failure [ 588.966270] BTRFS info (device sda2): forced readonly This was happening often on openSUSE and SLE systems using btrfs as the root filesystem (with its default layout where multiple subvolumes are used) where balance happens in the background triggered by a cron job and snapshots are automatically created before/after package installations, upgrades and removals. The issue could be triggered simply by running the following loop on the first system boot post installation: while true; do zypper -n in nfs-kernel-server zypper -n rm nfs-kernel-server done (If we were fast enough and made that loop before the cron job triggered a balance operation and the balance finished) So fix by setting the last_snapshot field of the root to the value of the generation of its commit root. Like this btrfs_block_can_be_shared() behaves correctly for the case where the relocation root is created during a transaction commit and for the case where it's created before a transaction commit. Fixes: 6426c7ad697d (btrfs: qgroup: Fix qgroup accounting when creating snapshot) Cc: stable@vger.kernel.org # 4.7+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-11-01 11:23:31 +00:00
/*
* Set the last_snapshot field to the generation of the commit
* root - like this ctree.c:btrfs_block_can_be_shared() behaves
* correctly (returns true) when the relocation root is created
* either inside the critical section of a transaction commit
* (through transaction.c:qgroup_account_snapshot()) and when
* it's created before the transaction commit is started.
*/
commit_root_gen = btrfs_header_generation(root->commit_root);
btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
} else {
/*
* called by btrfs_reloc_post_snapshot_hook.
* the source tree is a reloc tree, all tree blocks
* modified after it was created have RELOC flag
* set in their headers. so it's OK to not update
* the 'last_snapshot'.
*/
ret = btrfs_copy_root(trans, root, root->node, &eb,
BTRFS_TREE_RELOC_OBJECTID);
if (ret)
goto fail;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* We have changed references at this point, we must abort the
* transaction if anything fails.
*/
must_abort = true;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
memcpy(root_item, &root->root_item, sizeof(*root_item));
btrfs_set_root_bytenr(root_item, eb->start);
btrfs_set_root_level(root_item, btrfs_header_level(eb));
btrfs_set_root_generation(root_item, trans->transid);
if (btrfs_root_id(root) == objectid) {
btrfs_set_root_refs(root_item, 0);
memset(&root_item->drop_progress, 0,
sizeof(struct btrfs_disk_key));
btrfs_set_root_drop_level(root_item, 0);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
ret = btrfs_insert_root(trans, fs_info->tree_root,
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
&root_key, root_item);
if (ret)
goto fail;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
kfree(root_item);
reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
if (IS_ERR(reloc_root)) {
ret = PTR_ERR(reloc_root);
goto abort;
}
set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
btrfs: fix data race when accessing the last_trans field of a root KCSAN complains about a data race when accessing the last_trans field of a root: [ 199.553628] BUG: KCSAN: data-race in btrfs_record_root_in_trans [btrfs] / record_root_in_trans [btrfs] [ 199.555186] read to 0x000000008801e308 of 8 bytes by task 2812 on cpu 1: [ 199.555210] btrfs_record_root_in_trans+0x9a/0x128 [btrfs] [ 199.555999] start_transaction+0x154/0xcd8 [btrfs] [ 199.556780] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.557559] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.558339] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.559123] touch_atime+0x16c/0x1e0 [ 199.559151] pipe_read+0x6a8/0x7d0 [ 199.559179] vfs_read+0x466/0x498 [ 199.559204] ksys_read+0x108/0x150 [ 199.559230] __s390x_sys_read+0x68/0x88 [ 199.559257] do_syscall+0x1c6/0x210 [ 199.559286] __do_syscall+0xc8/0xf0 [ 199.559318] system_call+0x70/0x98 [ 199.559431] write to 0x000000008801e308 of 8 bytes by task 2808 on cpu 0: [ 199.559464] record_root_in_trans+0x196/0x228 [btrfs] [ 199.560236] btrfs_record_root_in_trans+0xfe/0x128 [btrfs] [ 199.561097] start_transaction+0x154/0xcd8 [btrfs] [ 199.561927] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.562700] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.563493] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.564277] file_update_time+0xb8/0xf0 [ 199.564301] pipe_write+0x8ac/0xab8 [ 199.564326] vfs_write+0x33c/0x588 [ 199.564349] ksys_write+0x108/0x150 [ 199.564372] __s390x_sys_write+0x68/0x88 [ 199.564397] do_syscall+0x1c6/0x210 [ 199.564424] __do_syscall+0xc8/0xf0 [ 199.564452] system_call+0x70/0x98 This is because we update and read last_trans concurrently without any type of synchronization. This should be generally harmless and in the worst case it can make us do extra locking (btrfs_record_root_in_trans()) trigger some warnings at ctree.c or do extra work during relocation - this would probably only happen in case of load or store tearing. So fix this by always reading and updating the field using READ_ONCE() and WRITE_ONCE(), this silences KCSAN and prevents load and store tearing. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-01 09:51:28 +00:00
btrfs_set_root_last_trans(reloc_root, trans->transid);
return reloc_root;
fail:
kfree(root_item);
abort:
if (must_abort)
btrfs_abort_transaction(trans, ret);
return ERR_PTR(ret);
}
/*
* create reloc tree for a given fs tree. reloc tree is just a
* snapshot of the fs tree with special root objectid.
*
* The reloc_root comes out of here with two references, one for
* root->reloc_root, and another for being on the rc->reloc_roots list.
*/
int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_root *reloc_root;
struct reloc_control *rc = fs_info->reloc_ctl;
Btrfs: fix BUG_ON() casued by the reserved space migration When we did space balance and snapshot creation at the same time, we might meet the following oops: kernel BUG at fs/btrfs/inode.c:3038! [SNIP] Call Trace: [<ffffffffa0411ec7>] btrfs_orphan_cleanup+0x293/0x407 [btrfs] [<ffffffffa042dc45>] btrfs_mksubvol.isra.28+0x259/0x373 [btrfs] [<ffffffffa042de85>] btrfs_ioctl_snap_create_transid+0x126/0x156 [btrfs] [<ffffffffa042dff1>] btrfs_ioctl_snap_create_v2+0xd0/0x121 [btrfs] [<ffffffffa0430b2c>] btrfs_ioctl+0x414/0x1854 [btrfs] [<ffffffff813b60b7>] ? __do_page_fault+0x305/0x379 [<ffffffff811215a9>] vfs_ioctl+0x1d/0x39 [<ffffffff81121d7c>] do_vfs_ioctl+0x32d/0x3e2 [<ffffffff81057fe7>] ? finish_task_switch+0x80/0xb8 [<ffffffff81121e88>] SyS_ioctl+0x57/0x83 [<ffffffff813b39ff>] ? do_device_not_available+0x12/0x14 [<ffffffff813b99c2>] system_call_fastpath+0x16/0x1b [SNIP] RIP [<ffffffffa040da40>] btrfs_orphan_add+0xc3/0x126 [btrfs] The reason of the problem is that the relocation root creation stole the reserved space, which was reserved for orphan item deletion. There are several ways to fix this problem, one is to increasing the reserved space size of the space balace, and then we can use that space to create the relocation tree for each fs/file trees. But it is hard to calculate the suitable size because we doesn't know how many fs/file trees we need relocate. We fixed this problem by reserving the space for relocation root creation actively since the space it need is very small (one tree block, used for root node copy), then we use that reserved space to create the relocation tree. If we don't reserve space for relocation tree creation, we will use the reserved space of the balance. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-09-25 13:47:45 +00:00
struct btrfs_block_rsv *rsv;
int clear_rsv = 0;
int ret;
btrfs: fix setting last_trans for reloc roots I made a mistake with my previous fix, I assumed that we didn't need to mess with the reloc roots once we were out of the part of relocation where we are actually moving the extents. The subtle thing that I missed is that btrfs_init_reloc_root() also updates the last_trans for the reloc root when we do btrfs_record_root_in_trans() for the corresponding fs_root. I've added a comment to make sure future me doesn't make this mistake again. This showed up as a WARN_ON() in btrfs_copy_root() because our last_trans didn't == the current transid. This could happen if we snapshotted a fs root with a reloc root after we set rc->create_reloc_tree = 0, but before we actually merge the reloc root. Worth mentioning that the regression produced the following warning when running snapshot creation and balance in parallel: BTRFS info (device sdc): relocating block group 30408704 flags metadata|dup ------------[ cut here ]------------ WARNING: CPU: 0 PID: 12823 at fs/btrfs/ctree.c:191 btrfs_copy_root+0x26f/0x430 [btrfs] CPU: 0 PID: 12823 Comm: btrfs Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_copy_root+0x26f/0x430 [btrfs] RSP: 0018:ffffb96e044279b8 EFLAGS: 00010202 RAX: 0000000000000009 RBX: ffff9da70bf61000 RCX: ffffb96e04427a48 RDX: ffff9da733a770c8 RSI: ffff9da70bf61000 RDI: ffff9da694163818 RBP: ffff9da733a770c8 R08: fffffffffffffff8 R09: 0000000000000002 R10: ffffb96e044279a0 R11: 0000000000000000 R12: ffff9da694163818 R13: fffffffffffffff8 R14: ffff9da6d2512000 R15: ffff9da714cdac00 FS: 00007fdeacf328c0(0000) GS:ffff9da735e00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055a2a5b8a118 CR3: 00000001eed78002 CR4: 00000000003606f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? create_reloc_root+0x49/0x2b0 [btrfs] ? kmem_cache_alloc_trace+0xe5/0x200 create_reloc_root+0x8b/0x2b0 [btrfs] btrfs_reloc_post_snapshot+0x96/0x5b0 [btrfs] create_pending_snapshot+0x610/0x1010 [btrfs] create_pending_snapshots+0xa8/0xd0 [btrfs] btrfs_commit_transaction+0x4c7/0xc50 [btrfs] ? btrfs_mksubvol+0x3cd/0x560 [btrfs] btrfs_mksubvol+0x455/0x560 [btrfs] __btrfs_ioctl_snap_create+0x15f/0x190 [btrfs] btrfs_ioctl_snap_create_v2+0xa4/0xf0 [btrfs] ? mem_cgroup_commit_charge+0x6e/0x540 btrfs_ioctl+0x12d8/0x3760 [btrfs] ? do_raw_spin_unlock+0x49/0xc0 ? _raw_spin_unlock+0x29/0x40 ? __handle_mm_fault+0x11b3/0x14b0 ? ksys_ioctl+0x92/0xb0 ksys_ioctl+0x92/0xb0 ? trace_hardirqs_off_thunk+0x1a/0x1c __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x5c/0x280 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fdeabd3bdd7 Fixes: 2abc726ab4b8 ("btrfs: do not init a reloc root if we aren't relocating") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-04-10 15:42:48 +00:00
if (!rc)
return 0;
btrfs: relocation: fix use-after-free on dead relocation roots [BUG] One user reported a reproducible KASAN report about use-after-free: BTRFS info (device sdi1): balance: start -dvrange=1256811659264..1256811659265 BTRFS info (device sdi1): relocating block group 1256811659264 flags data|raid0 ================================================================== BUG: KASAN: use-after-free in btrfs_init_reloc_root+0x2cd/0x340 [btrfs] Write of size 8 at addr ffff88856f671710 by task kworker/u24:10/261579 CPU: 2 PID: 261579 Comm: kworker/u24:10 Tainted: P OE 5.2.11-arch1-1-kasan #4 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./X99 Extreme4, BIOS P3.80 04/06/2018 Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs] Call Trace: dump_stack+0x7b/0xba print_address_description+0x6c/0x22e ? btrfs_init_reloc_root+0x2cd/0x340 [btrfs] __kasan_report.cold+0x1b/0x3b ? btrfs_init_reloc_root+0x2cd/0x340 [btrfs] kasan_report+0x12/0x17 __asan_report_store8_noabort+0x17/0x20 btrfs_init_reloc_root+0x2cd/0x340 [btrfs] record_root_in_trans+0x2a0/0x370 [btrfs] btrfs_record_root_in_trans+0xf4/0x140 [btrfs] start_transaction+0x1ab/0xe90 [btrfs] btrfs_join_transaction+0x1d/0x20 [btrfs] btrfs_finish_ordered_io+0x7bf/0x18a0 [btrfs] ? lock_repin_lock+0x400/0x400 ? __kmem_cache_shutdown.cold+0x140/0x1ad ? btrfs_unlink_subvol+0x9b0/0x9b0 [btrfs] finish_ordered_fn+0x15/0x20 [btrfs] normal_work_helper+0x1bd/0xca0 [btrfs] ? process_one_work+0x819/0x1720 ? kasan_check_read+0x11/0x20 btrfs_endio_write_helper+0x12/0x20 [btrfs] process_one_work+0x8c9/0x1720 ? pwq_dec_nr_in_flight+0x2f0/0x2f0 ? worker_thread+0x1d9/0x1030 worker_thread+0x98/0x1030 kthread+0x2bb/0x3b0 ? process_one_work+0x1720/0x1720 ? kthread_park+0x120/0x120 ret_from_fork+0x35/0x40 Allocated by task 369692: __kasan_kmalloc.part.0+0x44/0xc0 __kasan_kmalloc.constprop.0+0xba/0xc0 kasan_kmalloc+0x9/0x10 kmem_cache_alloc_trace+0x138/0x260 btrfs_read_tree_root+0x92/0x360 [btrfs] btrfs_read_fs_root+0x10/0xb0 [btrfs] create_reloc_root+0x47d/0xa10 [btrfs] btrfs_init_reloc_root+0x1e2/0x340 [btrfs] record_root_in_trans+0x2a0/0x370 [btrfs] btrfs_record_root_in_trans+0xf4/0x140 [btrfs] start_transaction+0x1ab/0xe90 [btrfs] btrfs_start_transaction+0x1e/0x20 [btrfs] __btrfs_prealloc_file_range+0x1c2/0xa00 [btrfs] btrfs_prealloc_file_range+0x13/0x20 [btrfs] prealloc_file_extent_cluster+0x29f/0x570 [btrfs] relocate_file_extent_cluster+0x193/0xc30 [btrfs] relocate_data_extent+0x1f8/0x490 [btrfs] relocate_block_group+0x600/0x1060 [btrfs] btrfs_relocate_block_group+0x3a0/0xa00 [btrfs] btrfs_relocate_chunk+0x9e/0x180 [btrfs] btrfs_balance+0x14e4/0x2fc0 [btrfs] btrfs_ioctl_balance+0x47f/0x640 [btrfs] btrfs_ioctl+0x119d/0x8380 [btrfs] do_vfs_ioctl+0x9f5/0x1060 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x73/0xb0 do_syscall_64+0xa5/0x370 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 369692: __kasan_slab_free+0x14f/0x210 kasan_slab_free+0xe/0x10 kfree+0xd8/0x270 btrfs_drop_snapshot+0x154c/0x1eb0 [btrfs] clean_dirty_subvols+0x227/0x340 [btrfs] relocate_block_group+0x972/0x1060 [btrfs] btrfs_relocate_block_group+0x3a0/0xa00 [btrfs] btrfs_relocate_chunk+0x9e/0x180 [btrfs] btrfs_balance+0x14e4/0x2fc0 [btrfs] btrfs_ioctl_balance+0x47f/0x640 [btrfs] btrfs_ioctl+0x119d/0x8380 [btrfs] do_vfs_ioctl+0x9f5/0x1060 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x73/0xb0 do_syscall_64+0xa5/0x370 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The buggy address belongs to the object at ffff88856f671100 which belongs to the cache kmalloc-4k of size 4096 The buggy address is located 1552 bytes inside of 4096-byte region [ffff88856f671100, ffff88856f672100) The buggy address belongs to the page: page:ffffea0015bd9c00 refcount:1 mapcount:0 mapping:ffff88864400e600 index:0x0 compound_mapcount: 0 flags: 0x2ffff0000010200(slab|head) raw: 02ffff0000010200 dead000000000100 dead000000000200 ffff88864400e600 raw: 0000000000000000 0000000000070007 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88856f671600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88856f671680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff88856f671700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88856f671780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88856f671800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== BTRFS info (device sdi1): 1 enospc errors during balance BTRFS info (device sdi1): balance: ended with status: -28 [CAUSE] The problem happens when finish_ordered_io() get called with balance still running, while the reloc root of that subvolume is already dead. (Tree is swap already done, but tree not yet deleted for possible qgroup usage.) That means root->reloc_root still exists, but that reloc_root can be under btrfs_drop_snapshot(), thus we shouldn't access it. The following race could cause the use-after-free problem: CPU1 | CPU2 -------------------------------------------------------------------------- | relocate_block_group() | |- unset_reloc_control(rc) | |- btrfs_commit_transaction() btrfs_finish_ordered_io() | |- clean_dirty_subvols() |- btrfs_join_transaction() | | |- record_root_in_trans() | | |- btrfs_init_reloc_root() | | |- if (root->reloc_root) | | | | |- root->reloc_root = NULL | | |- btrfs_drop_snapshot(reloc_root); |- reloc_root->last_trans| = trans->transid | ^^^^^^^^^^^^^^^^^^^^^^ Use after free [FIX] Fix it by the following modifications: - Test if the root has dead reloc tree before accessing root->reloc_root If the root has BTRFS_ROOT_DEAD_RELOC_TREE, then we don't need to create or update root->reloc_tree - Clear the BTRFS_ROOT_DEAD_RELOC_TREE flag until we have fully dropped reloc tree To co-operate with above modification, so as long as BTRFS_ROOT_DEAD_RELOC_TREE is still set, we won't try to re-create reloc tree at record_root_in_trans(). Reported-by: Cebtenzzre <cebtenzzre@gmail.com> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.1+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-23 06:56:14 +00:00
/*
* The subvolume has reloc tree but the swap is finished, no need to
* create/update the dead reloc tree
*/
btrfs: relocation: fix reloc_root lifespan and access [BUG] There are several different KASAN reports for balance + snapshot workloads. Involved call paths include: should_ignore_root+0x54/0xb0 [btrfs] build_backref_tree+0x11af/0x2280 [btrfs] relocate_tree_blocks+0x391/0xb80 [btrfs] relocate_block_group+0x3e5/0xa00 [btrfs] btrfs_relocate_block_group+0x240/0x4d0 [btrfs] btrfs_relocate_chunk+0x53/0xf0 [btrfs] btrfs_balance+0xc91/0x1840 [btrfs] btrfs_ioctl_balance+0x416/0x4e0 [btrfs] btrfs_ioctl+0x8af/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 create_reloc_root+0x9f/0x460 [btrfs] btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs] create_pending_snapshot+0xa9b/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs] create_pending_snapshot+0x209/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 [CAUSE] All these call sites are only relying on root->reloc_root, which can undergo btrfs_drop_snapshot(), and since we don't have real refcount based protection to reloc roots, we can reach already dropped reloc root, triggering KASAN. [FIX] To avoid such access to unstable root->reloc_root, we should check BTRFS_ROOT_DEAD_RELOC_TREE bit first. This patch introduces wrappers that provide the correct way to check the bit with memory barriers protection. Most callers don't distinguish merged reloc tree and no reloc tree. The only exception is should_ignore_root(), as merged reloc tree can be ignored, while no reloc tree shouldn't. [CRITICAL SECTION ANALYSIS] Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the DEAD_RELOC_TREE bit has extra help from transaction as a higher level barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are: NULL: reloc_root is NULL PTR: reloc_root is not NULL 0: DEAD_RELOC_ROOT bit not set DEAD: DEAD_RELOC_ROOT bit set (NULL, 0) Initial state __ | /\ Section A btrfs_init_reloc_root() \/ | __ (PTR, 0) reloc_root initialized /\ | | btrfs_update_reloc_root() | Section B | | (PTR, DEAD) reloc_root has been merged \/ | __ === btrfs_commit_transaction() ==================== | /\ clean_dirty_subvols() | | | Section C (NULL, DEAD) reloc_root cleanup starts \/ | __ btrfs_drop_snapshot() /\ | | Section D (NULL, 0) Back to initial state \/ Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds transaction handle, so none of such caller can cross transaction boundary. In Section A, every caller just found no DEAD bit, and grab reloc_root. In the cross section A-B, caller may get no DEAD bit, but since reloc_root is still completely valid thus accessing reloc_root is completely safe. No test_bit() caller can cross the boundary of Section B and Section C. In Section C, every caller found the DEAD bit, so no one will access reloc_root. In the cross section C-D, either caller gets the DEAD bit set, avoiding access reloc_root no matter if it's safe or not. Or caller get the DEAD bit cleared, then access reloc_root, which is already NULL, nothing will be wrong. The memory write barriers are between the reloc_root updates and bit set/clear, the pairing read side is before test_bit. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ barriers ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 05:12:00 +00:00
if (reloc_root_is_dead(root))
btrfs: relocation: fix use-after-free on dead relocation roots [BUG] One user reported a reproducible KASAN report about use-after-free: BTRFS info (device sdi1): balance: start -dvrange=1256811659264..1256811659265 BTRFS info (device sdi1): relocating block group 1256811659264 flags data|raid0 ================================================================== BUG: KASAN: use-after-free in btrfs_init_reloc_root+0x2cd/0x340 [btrfs] Write of size 8 at addr ffff88856f671710 by task kworker/u24:10/261579 CPU: 2 PID: 261579 Comm: kworker/u24:10 Tainted: P OE 5.2.11-arch1-1-kasan #4 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./X99 Extreme4, BIOS P3.80 04/06/2018 Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs] Call Trace: dump_stack+0x7b/0xba print_address_description+0x6c/0x22e ? btrfs_init_reloc_root+0x2cd/0x340 [btrfs] __kasan_report.cold+0x1b/0x3b ? btrfs_init_reloc_root+0x2cd/0x340 [btrfs] kasan_report+0x12/0x17 __asan_report_store8_noabort+0x17/0x20 btrfs_init_reloc_root+0x2cd/0x340 [btrfs] record_root_in_trans+0x2a0/0x370 [btrfs] btrfs_record_root_in_trans+0xf4/0x140 [btrfs] start_transaction+0x1ab/0xe90 [btrfs] btrfs_join_transaction+0x1d/0x20 [btrfs] btrfs_finish_ordered_io+0x7bf/0x18a0 [btrfs] ? lock_repin_lock+0x400/0x400 ? __kmem_cache_shutdown.cold+0x140/0x1ad ? btrfs_unlink_subvol+0x9b0/0x9b0 [btrfs] finish_ordered_fn+0x15/0x20 [btrfs] normal_work_helper+0x1bd/0xca0 [btrfs] ? process_one_work+0x819/0x1720 ? kasan_check_read+0x11/0x20 btrfs_endio_write_helper+0x12/0x20 [btrfs] process_one_work+0x8c9/0x1720 ? pwq_dec_nr_in_flight+0x2f0/0x2f0 ? worker_thread+0x1d9/0x1030 worker_thread+0x98/0x1030 kthread+0x2bb/0x3b0 ? process_one_work+0x1720/0x1720 ? kthread_park+0x120/0x120 ret_from_fork+0x35/0x40 Allocated by task 369692: __kasan_kmalloc.part.0+0x44/0xc0 __kasan_kmalloc.constprop.0+0xba/0xc0 kasan_kmalloc+0x9/0x10 kmem_cache_alloc_trace+0x138/0x260 btrfs_read_tree_root+0x92/0x360 [btrfs] btrfs_read_fs_root+0x10/0xb0 [btrfs] create_reloc_root+0x47d/0xa10 [btrfs] btrfs_init_reloc_root+0x1e2/0x340 [btrfs] record_root_in_trans+0x2a0/0x370 [btrfs] btrfs_record_root_in_trans+0xf4/0x140 [btrfs] start_transaction+0x1ab/0xe90 [btrfs] btrfs_start_transaction+0x1e/0x20 [btrfs] __btrfs_prealloc_file_range+0x1c2/0xa00 [btrfs] btrfs_prealloc_file_range+0x13/0x20 [btrfs] prealloc_file_extent_cluster+0x29f/0x570 [btrfs] relocate_file_extent_cluster+0x193/0xc30 [btrfs] relocate_data_extent+0x1f8/0x490 [btrfs] relocate_block_group+0x600/0x1060 [btrfs] btrfs_relocate_block_group+0x3a0/0xa00 [btrfs] btrfs_relocate_chunk+0x9e/0x180 [btrfs] btrfs_balance+0x14e4/0x2fc0 [btrfs] btrfs_ioctl_balance+0x47f/0x640 [btrfs] btrfs_ioctl+0x119d/0x8380 [btrfs] do_vfs_ioctl+0x9f5/0x1060 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x73/0xb0 do_syscall_64+0xa5/0x370 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 369692: __kasan_slab_free+0x14f/0x210 kasan_slab_free+0xe/0x10 kfree+0xd8/0x270 btrfs_drop_snapshot+0x154c/0x1eb0 [btrfs] clean_dirty_subvols+0x227/0x340 [btrfs] relocate_block_group+0x972/0x1060 [btrfs] btrfs_relocate_block_group+0x3a0/0xa00 [btrfs] btrfs_relocate_chunk+0x9e/0x180 [btrfs] btrfs_balance+0x14e4/0x2fc0 [btrfs] btrfs_ioctl_balance+0x47f/0x640 [btrfs] btrfs_ioctl+0x119d/0x8380 [btrfs] do_vfs_ioctl+0x9f5/0x1060 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x73/0xb0 do_syscall_64+0xa5/0x370 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The buggy address belongs to the object at ffff88856f671100 which belongs to the cache kmalloc-4k of size 4096 The buggy address is located 1552 bytes inside of 4096-byte region [ffff88856f671100, ffff88856f672100) The buggy address belongs to the page: page:ffffea0015bd9c00 refcount:1 mapcount:0 mapping:ffff88864400e600 index:0x0 compound_mapcount: 0 flags: 0x2ffff0000010200(slab|head) raw: 02ffff0000010200 dead000000000100 dead000000000200 ffff88864400e600 raw: 0000000000000000 0000000000070007 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88856f671600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88856f671680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff88856f671700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88856f671780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88856f671800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== BTRFS info (device sdi1): 1 enospc errors during balance BTRFS info (device sdi1): balance: ended with status: -28 [CAUSE] The problem happens when finish_ordered_io() get called with balance still running, while the reloc root of that subvolume is already dead. (Tree is swap already done, but tree not yet deleted for possible qgroup usage.) That means root->reloc_root still exists, but that reloc_root can be under btrfs_drop_snapshot(), thus we shouldn't access it. The following race could cause the use-after-free problem: CPU1 | CPU2 -------------------------------------------------------------------------- | relocate_block_group() | |- unset_reloc_control(rc) | |- btrfs_commit_transaction() btrfs_finish_ordered_io() | |- clean_dirty_subvols() |- btrfs_join_transaction() | | |- record_root_in_trans() | | |- btrfs_init_reloc_root() | | |- if (root->reloc_root) | | | | |- root->reloc_root = NULL | | |- btrfs_drop_snapshot(reloc_root); |- reloc_root->last_trans| = trans->transid | ^^^^^^^^^^^^^^^^^^^^^^ Use after free [FIX] Fix it by the following modifications: - Test if the root has dead reloc tree before accessing root->reloc_root If the root has BTRFS_ROOT_DEAD_RELOC_TREE, then we don't need to create or update root->reloc_tree - Clear the BTRFS_ROOT_DEAD_RELOC_TREE flag until we have fully dropped reloc tree To co-operate with above modification, so as long as BTRFS_ROOT_DEAD_RELOC_TREE is still set, we won't try to re-create reloc tree at record_root_in_trans(). Reported-by: Cebtenzzre <cebtenzzre@gmail.com> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.1+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-23 06:56:14 +00:00
return 0;
btrfs: fix setting last_trans for reloc roots I made a mistake with my previous fix, I assumed that we didn't need to mess with the reloc roots once we were out of the part of relocation where we are actually moving the extents. The subtle thing that I missed is that btrfs_init_reloc_root() also updates the last_trans for the reloc root when we do btrfs_record_root_in_trans() for the corresponding fs_root. I've added a comment to make sure future me doesn't make this mistake again. This showed up as a WARN_ON() in btrfs_copy_root() because our last_trans didn't == the current transid. This could happen if we snapshotted a fs root with a reloc root after we set rc->create_reloc_tree = 0, but before we actually merge the reloc root. Worth mentioning that the regression produced the following warning when running snapshot creation and balance in parallel: BTRFS info (device sdc): relocating block group 30408704 flags metadata|dup ------------[ cut here ]------------ WARNING: CPU: 0 PID: 12823 at fs/btrfs/ctree.c:191 btrfs_copy_root+0x26f/0x430 [btrfs] CPU: 0 PID: 12823 Comm: btrfs Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_copy_root+0x26f/0x430 [btrfs] RSP: 0018:ffffb96e044279b8 EFLAGS: 00010202 RAX: 0000000000000009 RBX: ffff9da70bf61000 RCX: ffffb96e04427a48 RDX: ffff9da733a770c8 RSI: ffff9da70bf61000 RDI: ffff9da694163818 RBP: ffff9da733a770c8 R08: fffffffffffffff8 R09: 0000000000000002 R10: ffffb96e044279a0 R11: 0000000000000000 R12: ffff9da694163818 R13: fffffffffffffff8 R14: ffff9da6d2512000 R15: ffff9da714cdac00 FS: 00007fdeacf328c0(0000) GS:ffff9da735e00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055a2a5b8a118 CR3: 00000001eed78002 CR4: 00000000003606f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? create_reloc_root+0x49/0x2b0 [btrfs] ? kmem_cache_alloc_trace+0xe5/0x200 create_reloc_root+0x8b/0x2b0 [btrfs] btrfs_reloc_post_snapshot+0x96/0x5b0 [btrfs] create_pending_snapshot+0x610/0x1010 [btrfs] create_pending_snapshots+0xa8/0xd0 [btrfs] btrfs_commit_transaction+0x4c7/0xc50 [btrfs] ? btrfs_mksubvol+0x3cd/0x560 [btrfs] btrfs_mksubvol+0x455/0x560 [btrfs] __btrfs_ioctl_snap_create+0x15f/0x190 [btrfs] btrfs_ioctl_snap_create_v2+0xa4/0xf0 [btrfs] ? mem_cgroup_commit_charge+0x6e/0x540 btrfs_ioctl+0x12d8/0x3760 [btrfs] ? do_raw_spin_unlock+0x49/0xc0 ? _raw_spin_unlock+0x29/0x40 ? __handle_mm_fault+0x11b3/0x14b0 ? ksys_ioctl+0x92/0xb0 ksys_ioctl+0x92/0xb0 ? trace_hardirqs_off_thunk+0x1a/0x1c __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x5c/0x280 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fdeabd3bdd7 Fixes: 2abc726ab4b8 ("btrfs: do not init a reloc root if we aren't relocating") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-04-10 15:42:48 +00:00
/*
* This is subtle but important. We do not do
* record_root_in_transaction for reloc roots, instead we record their
* corresponding fs root, and then here we update the last trans for the
* reloc root. This means that we have to do this for the entire life
* of the reloc root, regardless of which stage of the relocation we are
* in.
*/
if (root->reloc_root) {
reloc_root = root->reloc_root;
btrfs: fix data race when accessing the last_trans field of a root KCSAN complains about a data race when accessing the last_trans field of a root: [ 199.553628] BUG: KCSAN: data-race in btrfs_record_root_in_trans [btrfs] / record_root_in_trans [btrfs] [ 199.555186] read to 0x000000008801e308 of 8 bytes by task 2812 on cpu 1: [ 199.555210] btrfs_record_root_in_trans+0x9a/0x128 [btrfs] [ 199.555999] start_transaction+0x154/0xcd8 [btrfs] [ 199.556780] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.557559] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.558339] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.559123] touch_atime+0x16c/0x1e0 [ 199.559151] pipe_read+0x6a8/0x7d0 [ 199.559179] vfs_read+0x466/0x498 [ 199.559204] ksys_read+0x108/0x150 [ 199.559230] __s390x_sys_read+0x68/0x88 [ 199.559257] do_syscall+0x1c6/0x210 [ 199.559286] __do_syscall+0xc8/0xf0 [ 199.559318] system_call+0x70/0x98 [ 199.559431] write to 0x000000008801e308 of 8 bytes by task 2808 on cpu 0: [ 199.559464] record_root_in_trans+0x196/0x228 [btrfs] [ 199.560236] btrfs_record_root_in_trans+0xfe/0x128 [btrfs] [ 199.561097] start_transaction+0x154/0xcd8 [btrfs] [ 199.561927] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.562700] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.563493] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.564277] file_update_time+0xb8/0xf0 [ 199.564301] pipe_write+0x8ac/0xab8 [ 199.564326] vfs_write+0x33c/0x588 [ 199.564349] ksys_write+0x108/0x150 [ 199.564372] __s390x_sys_write+0x68/0x88 [ 199.564397] do_syscall+0x1c6/0x210 [ 199.564424] __do_syscall+0xc8/0xf0 [ 199.564452] system_call+0x70/0x98 This is because we update and read last_trans concurrently without any type of synchronization. This should be generally harmless and in the worst case it can make us do extra locking (btrfs_record_root_in_trans()) trigger some warnings at ctree.c or do extra work during relocation - this would probably only happen in case of load or store tearing. So fix this by always reading and updating the field using READ_ONCE() and WRITE_ONCE(), this silences KCSAN and prevents load and store tearing. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-01 09:51:28 +00:00
btrfs_set_root_last_trans(reloc_root, trans->transid);
return 0;
}
btrfs: fix setting last_trans for reloc roots I made a mistake with my previous fix, I assumed that we didn't need to mess with the reloc roots once we were out of the part of relocation where we are actually moving the extents. The subtle thing that I missed is that btrfs_init_reloc_root() also updates the last_trans for the reloc root when we do btrfs_record_root_in_trans() for the corresponding fs_root. I've added a comment to make sure future me doesn't make this mistake again. This showed up as a WARN_ON() in btrfs_copy_root() because our last_trans didn't == the current transid. This could happen if we snapshotted a fs root with a reloc root after we set rc->create_reloc_tree = 0, but before we actually merge the reloc root. Worth mentioning that the regression produced the following warning when running snapshot creation and balance in parallel: BTRFS info (device sdc): relocating block group 30408704 flags metadata|dup ------------[ cut here ]------------ WARNING: CPU: 0 PID: 12823 at fs/btrfs/ctree.c:191 btrfs_copy_root+0x26f/0x430 [btrfs] CPU: 0 PID: 12823 Comm: btrfs Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_copy_root+0x26f/0x430 [btrfs] RSP: 0018:ffffb96e044279b8 EFLAGS: 00010202 RAX: 0000000000000009 RBX: ffff9da70bf61000 RCX: ffffb96e04427a48 RDX: ffff9da733a770c8 RSI: ffff9da70bf61000 RDI: ffff9da694163818 RBP: ffff9da733a770c8 R08: fffffffffffffff8 R09: 0000000000000002 R10: ffffb96e044279a0 R11: 0000000000000000 R12: ffff9da694163818 R13: fffffffffffffff8 R14: ffff9da6d2512000 R15: ffff9da714cdac00 FS: 00007fdeacf328c0(0000) GS:ffff9da735e00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055a2a5b8a118 CR3: 00000001eed78002 CR4: 00000000003606f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? create_reloc_root+0x49/0x2b0 [btrfs] ? kmem_cache_alloc_trace+0xe5/0x200 create_reloc_root+0x8b/0x2b0 [btrfs] btrfs_reloc_post_snapshot+0x96/0x5b0 [btrfs] create_pending_snapshot+0x610/0x1010 [btrfs] create_pending_snapshots+0xa8/0xd0 [btrfs] btrfs_commit_transaction+0x4c7/0xc50 [btrfs] ? btrfs_mksubvol+0x3cd/0x560 [btrfs] btrfs_mksubvol+0x455/0x560 [btrfs] __btrfs_ioctl_snap_create+0x15f/0x190 [btrfs] btrfs_ioctl_snap_create_v2+0xa4/0xf0 [btrfs] ? mem_cgroup_commit_charge+0x6e/0x540 btrfs_ioctl+0x12d8/0x3760 [btrfs] ? do_raw_spin_unlock+0x49/0xc0 ? _raw_spin_unlock+0x29/0x40 ? __handle_mm_fault+0x11b3/0x14b0 ? ksys_ioctl+0x92/0xb0 ksys_ioctl+0x92/0xb0 ? trace_hardirqs_off_thunk+0x1a/0x1c __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x5c/0x280 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fdeabd3bdd7 Fixes: 2abc726ab4b8 ("btrfs: do not init a reloc root if we aren't relocating") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-04-10 15:42:48 +00:00
/*
* We are merging reloc roots, we do not need new reloc trees. Also
* reloc trees never need their own reloc tree.
*/
if (!rc->create_reloc_tree || btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
btrfs: fix setting last_trans for reloc roots I made a mistake with my previous fix, I assumed that we didn't need to mess with the reloc roots once we were out of the part of relocation where we are actually moving the extents. The subtle thing that I missed is that btrfs_init_reloc_root() also updates the last_trans for the reloc root when we do btrfs_record_root_in_trans() for the corresponding fs_root. I've added a comment to make sure future me doesn't make this mistake again. This showed up as a WARN_ON() in btrfs_copy_root() because our last_trans didn't == the current transid. This could happen if we snapshotted a fs root with a reloc root after we set rc->create_reloc_tree = 0, but before we actually merge the reloc root. Worth mentioning that the regression produced the following warning when running snapshot creation and balance in parallel: BTRFS info (device sdc): relocating block group 30408704 flags metadata|dup ------------[ cut here ]------------ WARNING: CPU: 0 PID: 12823 at fs/btrfs/ctree.c:191 btrfs_copy_root+0x26f/0x430 [btrfs] CPU: 0 PID: 12823 Comm: btrfs Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_copy_root+0x26f/0x430 [btrfs] RSP: 0018:ffffb96e044279b8 EFLAGS: 00010202 RAX: 0000000000000009 RBX: ffff9da70bf61000 RCX: ffffb96e04427a48 RDX: ffff9da733a770c8 RSI: ffff9da70bf61000 RDI: ffff9da694163818 RBP: ffff9da733a770c8 R08: fffffffffffffff8 R09: 0000000000000002 R10: ffffb96e044279a0 R11: 0000000000000000 R12: ffff9da694163818 R13: fffffffffffffff8 R14: ffff9da6d2512000 R15: ffff9da714cdac00 FS: 00007fdeacf328c0(0000) GS:ffff9da735e00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055a2a5b8a118 CR3: 00000001eed78002 CR4: 00000000003606f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: ? create_reloc_root+0x49/0x2b0 [btrfs] ? kmem_cache_alloc_trace+0xe5/0x200 create_reloc_root+0x8b/0x2b0 [btrfs] btrfs_reloc_post_snapshot+0x96/0x5b0 [btrfs] create_pending_snapshot+0x610/0x1010 [btrfs] create_pending_snapshots+0xa8/0xd0 [btrfs] btrfs_commit_transaction+0x4c7/0xc50 [btrfs] ? btrfs_mksubvol+0x3cd/0x560 [btrfs] btrfs_mksubvol+0x455/0x560 [btrfs] __btrfs_ioctl_snap_create+0x15f/0x190 [btrfs] btrfs_ioctl_snap_create_v2+0xa4/0xf0 [btrfs] ? mem_cgroup_commit_charge+0x6e/0x540 btrfs_ioctl+0x12d8/0x3760 [btrfs] ? do_raw_spin_unlock+0x49/0xc0 ? _raw_spin_unlock+0x29/0x40 ? __handle_mm_fault+0x11b3/0x14b0 ? ksys_ioctl+0x92/0xb0 ksys_ioctl+0x92/0xb0 ? trace_hardirqs_off_thunk+0x1a/0x1c __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x5c/0x280 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fdeabd3bdd7 Fixes: 2abc726ab4b8 ("btrfs: do not init a reloc root if we aren't relocating") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-04-10 15:42:48 +00:00
return 0;
Btrfs: fix BUG_ON() casued by the reserved space migration When we did space balance and snapshot creation at the same time, we might meet the following oops: kernel BUG at fs/btrfs/inode.c:3038! [SNIP] Call Trace: [<ffffffffa0411ec7>] btrfs_orphan_cleanup+0x293/0x407 [btrfs] [<ffffffffa042dc45>] btrfs_mksubvol.isra.28+0x259/0x373 [btrfs] [<ffffffffa042de85>] btrfs_ioctl_snap_create_transid+0x126/0x156 [btrfs] [<ffffffffa042dff1>] btrfs_ioctl_snap_create_v2+0xd0/0x121 [btrfs] [<ffffffffa0430b2c>] btrfs_ioctl+0x414/0x1854 [btrfs] [<ffffffff813b60b7>] ? __do_page_fault+0x305/0x379 [<ffffffff811215a9>] vfs_ioctl+0x1d/0x39 [<ffffffff81121d7c>] do_vfs_ioctl+0x32d/0x3e2 [<ffffffff81057fe7>] ? finish_task_switch+0x80/0xb8 [<ffffffff81121e88>] SyS_ioctl+0x57/0x83 [<ffffffff813b39ff>] ? do_device_not_available+0x12/0x14 [<ffffffff813b99c2>] system_call_fastpath+0x16/0x1b [SNIP] RIP [<ffffffffa040da40>] btrfs_orphan_add+0xc3/0x126 [btrfs] The reason of the problem is that the relocation root creation stole the reserved space, which was reserved for orphan item deletion. There are several ways to fix this problem, one is to increasing the reserved space size of the space balace, and then we can use that space to create the relocation tree for each fs/file trees. But it is hard to calculate the suitable size because we doesn't know how many fs/file trees we need relocate. We fixed this problem by reserving the space for relocation root creation actively since the space it need is very small (one tree block, used for root node copy), then we use that reserved space to create the relocation tree. If we don't reserve space for relocation tree creation, we will use the reserved space of the balance. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-09-25 13:47:45 +00:00
if (!trans->reloc_reserved) {
rsv = trans->block_rsv;
trans->block_rsv = rc->block_rsv;
clear_rsv = 1;
}
reloc_root = create_reloc_root(trans, root, btrfs_root_id(root));
if (clear_rsv)
Btrfs: fix BUG_ON() casued by the reserved space migration When we did space balance and snapshot creation at the same time, we might meet the following oops: kernel BUG at fs/btrfs/inode.c:3038! [SNIP] Call Trace: [<ffffffffa0411ec7>] btrfs_orphan_cleanup+0x293/0x407 [btrfs] [<ffffffffa042dc45>] btrfs_mksubvol.isra.28+0x259/0x373 [btrfs] [<ffffffffa042de85>] btrfs_ioctl_snap_create_transid+0x126/0x156 [btrfs] [<ffffffffa042dff1>] btrfs_ioctl_snap_create_v2+0xd0/0x121 [btrfs] [<ffffffffa0430b2c>] btrfs_ioctl+0x414/0x1854 [btrfs] [<ffffffff813b60b7>] ? __do_page_fault+0x305/0x379 [<ffffffff811215a9>] vfs_ioctl+0x1d/0x39 [<ffffffff81121d7c>] do_vfs_ioctl+0x32d/0x3e2 [<ffffffff81057fe7>] ? finish_task_switch+0x80/0xb8 [<ffffffff81121e88>] SyS_ioctl+0x57/0x83 [<ffffffff813b39ff>] ? do_device_not_available+0x12/0x14 [<ffffffff813b99c2>] system_call_fastpath+0x16/0x1b [SNIP] RIP [<ffffffffa040da40>] btrfs_orphan_add+0xc3/0x126 [btrfs] The reason of the problem is that the relocation root creation stole the reserved space, which was reserved for orphan item deletion. There are several ways to fix this problem, one is to increasing the reserved space size of the space balace, and then we can use that space to create the relocation tree for each fs/file trees. But it is hard to calculate the suitable size because we doesn't know how many fs/file trees we need relocate. We fixed this problem by reserving the space for relocation root creation actively since the space it need is very small (one tree block, used for root node copy), then we use that reserved space to create the relocation tree. If we don't reserve space for relocation tree creation, we will use the reserved space of the balance. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-09-25 13:47:45 +00:00
trans->block_rsv = rsv;
if (IS_ERR(reloc_root))
return PTR_ERR(reloc_root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = __add_reloc_root(reloc_root);
ASSERT(ret != -EEXIST);
if (ret) {
/* Pairs with create_reloc_root */
btrfs_put_root(reloc_root);
return ret;
}
root->reloc_root = btrfs_grab_root(reloc_root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return 0;
}
/*
* update root item of reloc tree
*/
int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_root *reloc_root;
struct btrfs_root_item *root_item;
int ret;
btrfs: relocation: fix reloc_root lifespan and access [BUG] There are several different KASAN reports for balance + snapshot workloads. Involved call paths include: should_ignore_root+0x54/0xb0 [btrfs] build_backref_tree+0x11af/0x2280 [btrfs] relocate_tree_blocks+0x391/0xb80 [btrfs] relocate_block_group+0x3e5/0xa00 [btrfs] btrfs_relocate_block_group+0x240/0x4d0 [btrfs] btrfs_relocate_chunk+0x53/0xf0 [btrfs] btrfs_balance+0xc91/0x1840 [btrfs] btrfs_ioctl_balance+0x416/0x4e0 [btrfs] btrfs_ioctl+0x8af/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 create_reloc_root+0x9f/0x460 [btrfs] btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs] create_pending_snapshot+0xa9b/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs] create_pending_snapshot+0x209/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 [CAUSE] All these call sites are only relying on root->reloc_root, which can undergo btrfs_drop_snapshot(), and since we don't have real refcount based protection to reloc roots, we can reach already dropped reloc root, triggering KASAN. [FIX] To avoid such access to unstable root->reloc_root, we should check BTRFS_ROOT_DEAD_RELOC_TREE bit first. This patch introduces wrappers that provide the correct way to check the bit with memory barriers protection. Most callers don't distinguish merged reloc tree and no reloc tree. The only exception is should_ignore_root(), as merged reloc tree can be ignored, while no reloc tree shouldn't. [CRITICAL SECTION ANALYSIS] Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the DEAD_RELOC_TREE bit has extra help from transaction as a higher level barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are: NULL: reloc_root is NULL PTR: reloc_root is not NULL 0: DEAD_RELOC_ROOT bit not set DEAD: DEAD_RELOC_ROOT bit set (NULL, 0) Initial state __ | /\ Section A btrfs_init_reloc_root() \/ | __ (PTR, 0) reloc_root initialized /\ | | btrfs_update_reloc_root() | Section B | | (PTR, DEAD) reloc_root has been merged \/ | __ === btrfs_commit_transaction() ==================== | /\ clean_dirty_subvols() | | | Section C (NULL, DEAD) reloc_root cleanup starts \/ | __ btrfs_drop_snapshot() /\ | | Section D (NULL, 0) Back to initial state \/ Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds transaction handle, so none of such caller can cross transaction boundary. In Section A, every caller just found no DEAD bit, and grab reloc_root. In the cross section A-B, caller may get no DEAD bit, but since reloc_root is still completely valid thus accessing reloc_root is completely safe. No test_bit() caller can cross the boundary of Section B and Section C. In Section C, every caller found the DEAD bit, so no one will access reloc_root. In the cross section C-D, either caller gets the DEAD bit set, avoiding access reloc_root no matter if it's safe or not. Or caller get the DEAD bit cleared, then access reloc_root, which is already NULL, nothing will be wrong. The memory write barriers are between the reloc_root updates and bit set/clear, the pairing read side is before test_bit. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ barriers ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 05:12:00 +00:00
if (!have_reloc_root(root))
return 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
reloc_root = root->reloc_root;
root_item = &reloc_root->root_item;
/*
* We are probably ok here, but __del_reloc_root() will drop its ref of
* the root. We have the ref for root->reloc_root, but just in case
* hold it while we update the reloc root.
*/
btrfs_grab_root(reloc_root);
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
/* root->reloc_root will stay until current relocation finished */
btrfs: fix a NULL pointer dereference when failed to start a new trasacntion [BUG] Syzbot reported a NULL pointer dereference with the following crash: FAULT_INJECTION: forcing a failure. start_transaction+0x830/0x1670 fs/btrfs/transaction.c:676 prepare_to_relocate+0x31f/0x4c0 fs/btrfs/relocation.c:3642 relocate_block_group+0x169/0xd20 fs/btrfs/relocation.c:3678 ... BTRFS info (device loop0): balance: ended with status: -12 Oops: general protection fault, probably for non-canonical address 0xdffffc00000000cc: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000660-0x0000000000000667] RIP: 0010:btrfs_update_reloc_root+0x362/0xa80 fs/btrfs/relocation.c:926 Call Trace: <TASK> commit_fs_roots+0x2ee/0x720 fs/btrfs/transaction.c:1496 btrfs_commit_transaction+0xfaf/0x3740 fs/btrfs/transaction.c:2430 del_balance_item fs/btrfs/volumes.c:3678 [inline] reset_balance_state+0x25e/0x3c0 fs/btrfs/volumes.c:3742 btrfs_balance+0xead/0x10c0 fs/btrfs/volumes.c:4574 btrfs_ioctl_balance+0x493/0x7c0 fs/btrfs/ioctl.c:3673 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xf9/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f [CAUSE] The allocation failure happens at the start_transaction() inside prepare_to_relocate(), and during the error handling we call unset_reloc_control(), which makes fs_info->balance_ctl to be NULL. Then we continue the error path cleanup in btrfs_balance() by calling reset_balance_state() which will call del_balance_item() to fully delete the balance item in the root tree. However during the small window between set_reloc_contrl() and unset_reloc_control(), we can have a subvolume tree update and created a reloc_root for that subvolume. Then we go into the final btrfs_commit_transaction() of del_balance_item(), and into btrfs_update_reloc_root() inside commit_fs_roots(). That function checks if fs_info->reloc_ctl is in the merge_reloc_tree stage, but since fs_info->reloc_ctl is NULL, it results a NULL pointer dereference. [FIX] Just add extra check on fs_info->reloc_ctl inside btrfs_update_reloc_root(), before checking fs_info->reloc_ctl->merge_reloc_tree. That DEAD_RELOC_TREE handling is to prevent further modification to the reloc tree during merge stage, but since there is no reloc_ctl at all, we do not need to bother that. Reported-by: syzbot+283673dbc38527ef9f3d@syzkaller.appspotmail.com Link: https://lore.kernel.org/linux-btrfs/66f6bfa7.050a0220.38ace9.0019.GAE@google.com/ CC: stable@vger.kernel.org # 4.19+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-27 22:35:58 +00:00
if (fs_info->reloc_ctl && fs_info->reloc_ctl->merge_reloc_tree &&
btrfs_root_refs(root_item) == 0) {
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
btrfs: relocation: fix reloc_root lifespan and access [BUG] There are several different KASAN reports for balance + snapshot workloads. Involved call paths include: should_ignore_root+0x54/0xb0 [btrfs] build_backref_tree+0x11af/0x2280 [btrfs] relocate_tree_blocks+0x391/0xb80 [btrfs] relocate_block_group+0x3e5/0xa00 [btrfs] btrfs_relocate_block_group+0x240/0x4d0 [btrfs] btrfs_relocate_chunk+0x53/0xf0 [btrfs] btrfs_balance+0xc91/0x1840 [btrfs] btrfs_ioctl_balance+0x416/0x4e0 [btrfs] btrfs_ioctl+0x8af/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 create_reloc_root+0x9f/0x460 [btrfs] btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs] create_pending_snapshot+0xa9b/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs] create_pending_snapshot+0x209/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 [CAUSE] All these call sites are only relying on root->reloc_root, which can undergo btrfs_drop_snapshot(), and since we don't have real refcount based protection to reloc roots, we can reach already dropped reloc root, triggering KASAN. [FIX] To avoid such access to unstable root->reloc_root, we should check BTRFS_ROOT_DEAD_RELOC_TREE bit first. This patch introduces wrappers that provide the correct way to check the bit with memory barriers protection. Most callers don't distinguish merged reloc tree and no reloc tree. The only exception is should_ignore_root(), as merged reloc tree can be ignored, while no reloc tree shouldn't. [CRITICAL SECTION ANALYSIS] Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the DEAD_RELOC_TREE bit has extra help from transaction as a higher level barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are: NULL: reloc_root is NULL PTR: reloc_root is not NULL 0: DEAD_RELOC_ROOT bit not set DEAD: DEAD_RELOC_ROOT bit set (NULL, 0) Initial state __ | /\ Section A btrfs_init_reloc_root() \/ | __ (PTR, 0) reloc_root initialized /\ | | btrfs_update_reloc_root() | Section B | | (PTR, DEAD) reloc_root has been merged \/ | __ === btrfs_commit_transaction() ==================== | /\ clean_dirty_subvols() | | | Section C (NULL, DEAD) reloc_root cleanup starts \/ | __ btrfs_drop_snapshot() /\ | | Section D (NULL, 0) Back to initial state \/ Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds transaction handle, so none of such caller can cross transaction boundary. In Section A, every caller just found no DEAD bit, and grab reloc_root. In the cross section A-B, caller may get no DEAD bit, but since reloc_root is still completely valid thus accessing reloc_root is completely safe. No test_bit() caller can cross the boundary of Section B and Section C. In Section C, every caller found the DEAD bit, so no one will access reloc_root. In the cross section C-D, either caller gets the DEAD bit set, avoiding access reloc_root no matter if it's safe or not. Or caller get the DEAD bit cleared, then access reloc_root, which is already NULL, nothing will be wrong. The memory write barriers are between the reloc_root updates and bit set/clear, the pairing read side is before test_bit. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ barriers ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 05:12:00 +00:00
/*
* Mark the tree as dead before we change reloc_root so
* have_reloc_root will not touch it from now on.
*/
smp_wmb();
__del_reloc_root(reloc_root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
if (reloc_root->commit_root != reloc_root->node) {
__update_reloc_root(reloc_root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_set_root_node(root_item, reloc_root->node);
free_extent_buffer(reloc_root->commit_root);
reloc_root->commit_root = btrfs_root_node(reloc_root);
}
ret = btrfs_update_root(trans, fs_info->tree_root,
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
&reloc_root->root_key, root_item);
btrfs_put_root(reloc_root);
return ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
/*
* get new location of data
*/
static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
u64 bytenr, u64 num_bytes)
{
struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
struct btrfs_path *path;
struct btrfs_file_extent_item *fi;
struct extent_buffer *leaf;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
bytenr -= BTRFS_I(reloc_inode)->reloc_block_group_start;
ret = btrfs_lookup_file_extent(NULL, root, path,
btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (ret < 0)
goto out;
if (ret > 0) {
ret = -ENOENT;
goto out;
}
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
btrfs_file_extent_compression(leaf, fi) ||
btrfs_file_extent_encryption(leaf, fi) ||
btrfs_file_extent_other_encoding(leaf, fi));
if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
ret = -EINVAL;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
goto out;
}
*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
/*
* update file extent items in the tree leaf to point to
* the new locations.
*/
static noinline_for_stack
int replace_file_extents(struct btrfs_trans_handle *trans,
struct reloc_control *rc,
struct btrfs_root *root,
struct extent_buffer *leaf)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_fs_info *fs_info = root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_key key;
struct btrfs_file_extent_item *fi;
struct btrfs_inode *inode = NULL;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
u64 parent;
u64 bytenr;
u64 new_bytenr = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
u64 num_bytes;
u64 end;
u32 nritems;
u32 i;
int ret = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
int first = 1;
int dirty = 0;
if (rc->stage != UPDATE_DATA_PTRS)
return 0;
/* reloc trees always use full backref */
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
parent = leaf->start;
else
parent = 0;
nritems = btrfs_header_nritems(leaf);
for (i = 0; i < nritems; i++) {
struct btrfs_ref ref = { 0 };
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
cond_resched();
btrfs_item_key_to_cpu(leaf, &key, i);
if (key.type != BTRFS_EXTENT_DATA_KEY)
continue;
fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, fi) ==
BTRFS_FILE_EXTENT_INLINE)
continue;
bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
if (bytenr == 0)
continue;
if (!in_range(bytenr, rc->block_group->start,
rc->block_group->length))
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
continue;
/*
* if we are modifying block in fs tree, wait for read_folio
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
* to complete and drop the extent cache
*/
if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (first) {
inode = btrfs_find_first_inode(root, key.objectid);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
first = 0;
} else if (inode && btrfs_ino(inode) < key.objectid) {
btrfs_add_delayed_iput(inode);
inode = btrfs_find_first_inode(root, key.objectid);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
if (inode && btrfs_ino(inode) == key.objectid) {
struct extent_state *cached_state = NULL;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
end = key.offset +
btrfs_file_extent_num_bytes(leaf, fi);
WARN_ON(!IS_ALIGNED(key.offset,
fs_info->sectorsize));
WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
end--;
/* Take mmap lock to serialize with reflinks. */
if (!down_read_trylock(&inode->i_mmap_lock))
continue;
ret = try_lock_extent(&inode->io_tree, key.offset,
end, &cached_state);
if (!ret) {
up_read(&inode->i_mmap_lock);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
continue;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_drop_extent_map_range(inode, key.offset, end, true);
unlock_extent(&inode->io_tree, key.offset, end,
&cached_state);
up_read(&inode->i_mmap_lock);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
}
ret = get_new_location(rc->data_inode, &new_bytenr,
bytenr, num_bytes);
if (ret) {
/*
* Don't have to abort since we've not changed anything
* in the file extent yet.
*/
break;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
dirty = 1;
key.offset -= btrfs_file_extent_offset(leaf, fi);
ref.action = BTRFS_ADD_DELAYED_REF;
ref.bytenr = new_bytenr;
ref.num_bytes = num_bytes;
ref.parent = parent;
ref.owning_root = btrfs_root_id(root);
ref.ref_root = btrfs_header_owner(leaf);
btrfs_init_data_ref(&ref, key.objectid, key.offset,
btrfs_root_id(root), false);
ret = btrfs_inc_extent_ref(trans, &ref);
if (ret) {
btrfs_abort_transaction(trans, ret);
break;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ref.action = BTRFS_DROP_DELAYED_REF;
ref.bytenr = bytenr;
ref.num_bytes = num_bytes;
ref.parent = parent;
ref.owning_root = btrfs_root_id(root);
ref.ref_root = btrfs_header_owner(leaf);
btrfs_init_data_ref(&ref, key.objectid, key.offset,
btrfs_root_id(root), false);
ret = btrfs_free_extent(trans, &ref);
if (ret) {
btrfs_abort_transaction(trans, ret);
break;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
if (dirty)
btrfs_mark_buffer_dirty(trans, leaf);
if (inode)
btrfs_add_delayed_iput(inode);
return ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
int slot, const struct btrfs_path *path,
int level)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_disk_key key1;
struct btrfs_disk_key key2;
btrfs_node_key(eb, &key1, slot);
btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
return memcmp(&key1, &key2, sizeof(key1));
}
/*
* try to replace tree blocks in fs tree with the new blocks
* in reloc tree. tree blocks haven't been modified since the
* reloc tree was create can be replaced.
*
* if a block was replaced, level of the block + 1 is returned.
* if no block got replaced, 0 is returned. if there are other
* errors, a negative error number is returned.
*/
static noinline_for_stack
btrfs: qgroup: Only trace data extents in leaves if we're relocating data block group For qgroup_trace_extent_swap(), if we find one leaf that needs to be traced, we will also iterate all file extents and trace them. This is OK if we're relocating data block groups, but if we're relocating metadata block groups, balance code itself has ensured that both subtree of file tree and reloc tree contain the same contents. That's to say, if we're relocating metadata block groups, all file extents in reloc and file tree should match, thus no need to trace them. This should reduce the total number of dirty extents processed in metadata block group balance. [[Benchmark]] (with all previous enhancement) Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. | v4.19-rc1 | w/ patchset | diff (*) --------------------------------------------------------------- relocated extents | 22929 | 22851 | -0.3% qgroup dirty extents | 227757 | 140886 | -38.1% time (sys) | 65.253s | 37.464s | -42.6% time (real) | 74.032s | 44.722s | -39.6% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 06:42:35 +00:00
int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
struct btrfs_root *dest, struct btrfs_root *src,
struct btrfs_path *path, struct btrfs_key *next_key,
int lowest_level, int max_level)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_fs_info *fs_info = dest->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct extent_buffer *eb;
struct extent_buffer *parent;
struct btrfs_ref ref = { 0 };
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_key key;
u64 old_bytenr;
u64 new_bytenr;
u64 old_ptr_gen;
u64 new_ptr_gen;
u64 last_snapshot;
u32 blocksize;
int cow = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
int level;
int ret;
int slot;
ASSERT(btrfs_root_id(src) == BTRFS_TREE_RELOC_OBJECTID);
ASSERT(btrfs_root_id(dest) != BTRFS_TREE_RELOC_OBJECTID);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
last_snapshot = btrfs_root_last_snapshot(&src->root_item);
again:
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
slot = path->slots[lowest_level];
btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
eb = btrfs_lock_root_node(dest);
level = btrfs_header_level(eb);
if (level < lowest_level) {
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
return 0;
}
if (cow) {
ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
BTRFS_NESTING_COW);
if (ret) {
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
return ret;
}
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (next_key) {
next_key->objectid = (u64)-1;
next_key->type = (u8)-1;
next_key->offset = (u64)-1;
}
parent = eb;
while (1) {
level = btrfs_header_level(parent);
ASSERT(level >= lowest_level);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = btrfs_bin_search(parent, 0, &key, &slot);
if (ret < 0)
break;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (ret && slot > 0)
slot--;
if (next_key && slot + 1 < btrfs_header_nritems(parent))
btrfs_node_key_to_cpu(parent, next_key, slot + 1);
old_bytenr = btrfs_node_blockptr(parent, slot);
blocksize = fs_info->nodesize;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
if (level <= max_level) {
eb = path->nodes[level];
new_bytenr = btrfs_node_blockptr(eb,
path->slots[level]);
new_ptr_gen = btrfs_node_ptr_generation(eb,
path->slots[level]);
} else {
new_bytenr = 0;
new_ptr_gen = 0;
}
if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = level;
break;
}
if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
memcmp_node_keys(parent, slot, path, level)) {
if (level <= lowest_level) {
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = 0;
break;
}
eb = btrfs_read_node_slot(parent, slot);
if (IS_ERR(eb)) {
ret = PTR_ERR(eb);
break;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_tree_lock(eb);
if (cow) {
ret = btrfs_cow_block(trans, dest, eb, parent,
slot, &eb,
BTRFS_NESTING_COW);
if (ret) {
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
break;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
btrfs_tree_unlock(parent);
free_extent_buffer(parent);
parent = eb;
continue;
}
if (!cow) {
btrfs_tree_unlock(parent);
free_extent_buffer(parent);
cow = 1;
goto again;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_node_key_to_cpu(path->nodes[level], &key,
path->slots[level]);
btrfs_release_path(path);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
path->lowest_level = level;
btrfs: fix lockdep splat with reloc root extent buffers We have been hitting the following lockdep splat with btrfs/187 recently WARNING: possible circular locking dependency detected 5.19.0-rc8+ #775 Not tainted ------------------------------------------------------ btrfs/752500 is trying to acquire lock: ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110 but task is already holding lock: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-01/1){+.+.}-{3:3}: down_write_nested+0x41/0x80 __btrfs_tree_lock+0x24/0x110 btrfs_init_new_buffer+0x7d/0x2c0 btrfs_alloc_tree_block+0x120/0x3b0 __btrfs_cow_block+0x136/0x600 btrfs_cow_block+0x10b/0x230 btrfs_search_slot+0x53b/0xb70 btrfs_lookup_inode+0x2a/0xa0 __btrfs_update_delayed_inode+0x5f/0x280 btrfs_async_run_delayed_root+0x24c/0x290 btrfs_work_helper+0xf2/0x3e0 process_one_work+0x271/0x590 worker_thread+0x52/0x3b0 kthread+0xf0/0x120 ret_from_fork+0x1f/0x30 -> #1 (btrfs-tree-01){++++}-{3:3}: down_write_nested+0x41/0x80 __btrfs_tree_lock+0x24/0x110 btrfs_search_slot+0x3c3/0xb70 do_relocation+0x10c/0x6b0 relocate_tree_blocks+0x317/0x6d0 relocate_block_group+0x1f1/0x560 btrfs_relocate_block_group+0x23e/0x400 btrfs_relocate_chunk+0x4c/0x140 btrfs_balance+0x755/0xe40 btrfs_ioctl+0x1ea2/0x2c90 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd -> #0 (btrfs-treloc-02#2){+.+.}-{3:3}: __lock_acquire+0x1122/0x1e10 lock_acquire+0xc2/0x2d0 down_write_nested+0x41/0x80 __btrfs_tree_lock+0x24/0x110 btrfs_lock_root_node+0x31/0x50 btrfs_search_slot+0x1cb/0xb70 replace_path+0x541/0x9f0 merge_reloc_root+0x1d6/0x610 merge_reloc_roots+0xe2/0x260 relocate_block_group+0x2c8/0x560 btrfs_relocate_block_group+0x23e/0x400 btrfs_relocate_chunk+0x4c/0x140 btrfs_balance+0x755/0xe40 btrfs_ioctl+0x1ea2/0x2c90 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd other info that might help us debug this: Chain exists of: btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-01/1); lock(btrfs-tree-01); lock(btrfs-tree-01/1); lock(btrfs-treloc-02#2); *** DEADLOCK *** 7 locks held by btrfs/752500: #0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90 #1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40 #2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400 #3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610 #4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0 #5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0 #6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110 stack backtrace: CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x56/0x73 check_noncircular+0xd6/0x100 ? lock_is_held_type+0xe2/0x140 __lock_acquire+0x1122/0x1e10 lock_acquire+0xc2/0x2d0 ? __btrfs_tree_lock+0x24/0x110 down_write_nested+0x41/0x80 ? __btrfs_tree_lock+0x24/0x110 __btrfs_tree_lock+0x24/0x110 btrfs_lock_root_node+0x31/0x50 btrfs_search_slot+0x1cb/0xb70 ? lock_release+0x137/0x2d0 ? _raw_spin_unlock+0x29/0x50 ? release_extent_buffer+0x128/0x180 replace_path+0x541/0x9f0 merge_reloc_root+0x1d6/0x610 merge_reloc_roots+0xe2/0x260 relocate_block_group+0x2c8/0x560 btrfs_relocate_block_group+0x23e/0x400 btrfs_relocate_chunk+0x4c/0x140 btrfs_balance+0x755/0xe40 btrfs_ioctl+0x1ea2/0x2c90 ? lock_is_held_type+0xe2/0x140 ? lock_is_held_type+0xe2/0x140 ? __x64_sys_ioctl+0x88/0xc0 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd This isn't necessarily new, it's just tricky to hit in practice. There are two competing things going on here. With relocation we create a snapshot of every fs tree with a reloc tree. Any extent buffers that get initialized here are initialized with the reloc root lockdep key. However since it is a snapshot, any blocks that are currently in cache that originally belonged to the fs tree will have the normal tree lockdep key set. This creates the lock dependency of reloc tree -> normal tree for the extent buffer locking during the first phase of the relocation as we walk down the reloc root to relocate blocks. However this is problematic because the final phase of the relocation is merging the reloc root into the original fs root. This involves searching down to any keys that exist in the original fs root and then swapping the relocated block and the original fs root block. We have to search down to the fs root first, and then go search the reloc root for the block we need to replace. This creates the dependency of normal tree -> reloc tree which is why lockdep complains. Additionally even if we were to fix this particular mismatch with a different nesting for the merge case, we're still slotting in a block that has a owner of the reloc root objectid into a normal tree, so that block will have its lockdep key set to the tree reloc root, and create a lockdep splat later on when we wander into that block from the fs root. Unfortunately the only solution here is to make sure we do not set the lockdep key to the reloc tree lockdep key normally, and then reset any blocks we wander into from the reloc root when we're doing the merged. This solves the problem of having mixed tree reloc keys intermixed with normal tree keys, and then allows us to make sure in the merge case we maintain the lock order of normal tree -> reloc tree We handle this by setting a bit on the reloc root when we do the search for the block we want to relocate, and any block we search into or COW at that point gets set to the reloc tree key. This works correctly because we only ever COW down to the parent node, so we aren't resetting the key for the block we're linking into the fs root. With this patch we no longer have the lockdep splat in btrfs/187. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-26 20:24:04 +00:00
set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
btrfs: fix lockdep splat with reloc root extent buffers We have been hitting the following lockdep splat with btrfs/187 recently WARNING: possible circular locking dependency detected 5.19.0-rc8+ #775 Not tainted ------------------------------------------------------ btrfs/752500 is trying to acquire lock: ffff97e1875a97b8 (btrfs-treloc-02#2){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110 but task is already holding lock: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-01/1){+.+.}-{3:3}: down_write_nested+0x41/0x80 __btrfs_tree_lock+0x24/0x110 btrfs_init_new_buffer+0x7d/0x2c0 btrfs_alloc_tree_block+0x120/0x3b0 __btrfs_cow_block+0x136/0x600 btrfs_cow_block+0x10b/0x230 btrfs_search_slot+0x53b/0xb70 btrfs_lookup_inode+0x2a/0xa0 __btrfs_update_delayed_inode+0x5f/0x280 btrfs_async_run_delayed_root+0x24c/0x290 btrfs_work_helper+0xf2/0x3e0 process_one_work+0x271/0x590 worker_thread+0x52/0x3b0 kthread+0xf0/0x120 ret_from_fork+0x1f/0x30 -> #1 (btrfs-tree-01){++++}-{3:3}: down_write_nested+0x41/0x80 __btrfs_tree_lock+0x24/0x110 btrfs_search_slot+0x3c3/0xb70 do_relocation+0x10c/0x6b0 relocate_tree_blocks+0x317/0x6d0 relocate_block_group+0x1f1/0x560 btrfs_relocate_block_group+0x23e/0x400 btrfs_relocate_chunk+0x4c/0x140 btrfs_balance+0x755/0xe40 btrfs_ioctl+0x1ea2/0x2c90 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd -> #0 (btrfs-treloc-02#2){+.+.}-{3:3}: __lock_acquire+0x1122/0x1e10 lock_acquire+0xc2/0x2d0 down_write_nested+0x41/0x80 __btrfs_tree_lock+0x24/0x110 btrfs_lock_root_node+0x31/0x50 btrfs_search_slot+0x1cb/0xb70 replace_path+0x541/0x9f0 merge_reloc_root+0x1d6/0x610 merge_reloc_roots+0xe2/0x260 relocate_block_group+0x2c8/0x560 btrfs_relocate_block_group+0x23e/0x400 btrfs_relocate_chunk+0x4c/0x140 btrfs_balance+0x755/0xe40 btrfs_ioctl+0x1ea2/0x2c90 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd other info that might help us debug this: Chain exists of: btrfs-treloc-02#2 --> btrfs-tree-01 --> btrfs-tree-01/1 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-01/1); lock(btrfs-tree-01); lock(btrfs-tree-01/1); lock(btrfs-treloc-02#2); *** DEADLOCK *** 7 locks held by btrfs/752500: #0: ffff97e292fdf460 (sb_writers#12){.+.+}-{0:0}, at: btrfs_ioctl+0x208/0x2c90 #1: ffff97e284c02050 (&fs_info->reclaim_bgs_lock){+.+.}-{3:3}, at: btrfs_balance+0x55f/0xe40 #2: ffff97e284c00878 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x236/0x400 #3: ffff97e292fdf650 (sb_internal#2){.+.+}-{0:0}, at: merge_reloc_root+0xef/0x610 #4: ffff97e284c02378 (btrfs_trans_num_writers){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0 #5: ffff97e284c023a0 (btrfs_trans_num_extwriters){++++}-{0:0}, at: join_transaction+0x1a8/0x5a0 #6: ffff97e1875a9278 (btrfs-tree-01/1){+.+.}-{3:3}, at: __btrfs_tree_lock+0x24/0x110 stack backtrace: CPU: 1 PID: 752500 Comm: btrfs Not tainted 5.19.0-rc8+ #775 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack_lvl+0x56/0x73 check_noncircular+0xd6/0x100 ? lock_is_held_type+0xe2/0x140 __lock_acquire+0x1122/0x1e10 lock_acquire+0xc2/0x2d0 ? __btrfs_tree_lock+0x24/0x110 down_write_nested+0x41/0x80 ? __btrfs_tree_lock+0x24/0x110 __btrfs_tree_lock+0x24/0x110 btrfs_lock_root_node+0x31/0x50 btrfs_search_slot+0x1cb/0xb70 ? lock_release+0x137/0x2d0 ? _raw_spin_unlock+0x29/0x50 ? release_extent_buffer+0x128/0x180 replace_path+0x541/0x9f0 merge_reloc_root+0x1d6/0x610 merge_reloc_roots+0xe2/0x260 relocate_block_group+0x2c8/0x560 btrfs_relocate_block_group+0x23e/0x400 btrfs_relocate_chunk+0x4c/0x140 btrfs_balance+0x755/0xe40 btrfs_ioctl+0x1ea2/0x2c90 ? lock_is_held_type+0xe2/0x140 ? lock_is_held_type+0xe2/0x140 ? __x64_sys_ioctl+0x88/0xc0 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd This isn't necessarily new, it's just tricky to hit in practice. There are two competing things going on here. With relocation we create a snapshot of every fs tree with a reloc tree. Any extent buffers that get initialized here are initialized with the reloc root lockdep key. However since it is a snapshot, any blocks that are currently in cache that originally belonged to the fs tree will have the normal tree lockdep key set. This creates the lock dependency of reloc tree -> normal tree for the extent buffer locking during the first phase of the relocation as we walk down the reloc root to relocate blocks. However this is problematic because the final phase of the relocation is merging the reloc root into the original fs root. This involves searching down to any keys that exist in the original fs root and then swapping the relocated block and the original fs root block. We have to search down to the fs root first, and then go search the reloc root for the block we need to replace. This creates the dependency of normal tree -> reloc tree which is why lockdep complains. Additionally even if we were to fix this particular mismatch with a different nesting for the merge case, we're still slotting in a block that has a owner of the reloc root objectid into a normal tree, so that block will have its lockdep key set to the tree reloc root, and create a lockdep splat later on when we wander into that block from the fs root. Unfortunately the only solution here is to make sure we do not set the lockdep key to the reloc tree lockdep key normally, and then reset any blocks we wander into from the reloc root when we're doing the merged. This solves the problem of having mixed tree reloc keys intermixed with normal tree keys, and then allows us to make sure in the merge case we maintain the lock order of normal tree -> reloc tree We handle this by setting a bit on the reloc root when we do the search for the block we want to relocate, and any block we search into or COW at that point gets set to the reloc tree key. This works correctly because we only ever COW down to the parent node, so we aren't resetting the key for the block we're linking into the fs root. With this patch we no longer have the lockdep splat in btrfs/187. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-26 20:24:04 +00:00
clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
path->lowest_level = 0;
if (ret) {
if (ret > 0)
ret = -ENOENT;
break;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs: qgroup: Fix qgroup data leaking by using subtree tracing Commit 62b99540a1d91e464 (btrfs: relocation: Fix leaking qgroups numbers on data extents) only fixes the problem partly. The previous fix is to trace all new data extents at transaction commit time when balance finishes. However balance is not done in a large transaction, every path replacement can happen in its own transaction. This makes the fix useless if transaction commits during relocation. For example: relocate_block_group() |-merge_reloc_roots() | |- merge_reloc_root() | |- btrfs_start_transaction() <- Trans X | |- replace_path() <- Cause leak | |- btrfs_end_transaction_throttle() <- Trans X commits here | | Leak not fixed | | | |- btrfs_start_transaction() <- Trans Y | |- replace_path() <- Cause leak | |- btrfs_end_transaction_throttle() <- Trans Y ends | but not committed |-btrfs_join_transaction() <- Still trans Y |-qgroup_fix() <- Only fixes data leak | in trans Y |-btrfs_commit_transaction() <- Trans Y commits In that case, qgroup fixup can only fix data leak in trans Y, data leak in trans X is out of fix. So the correct fix should happen in the same transaction of replace_path(). This patch fixes it by tracing both subtrees of tree block swap, so it can fix the problem and ensure all leaking and fix are in the same transaction, so no leak again. Reported-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-10-18 01:31:29 +00:00
/*
* Info qgroup to trace both subtrees.
*
* We must trace both trees.
* 1) Tree reloc subtree
* If not traced, we will leak data numbers
* 2) Fs subtree
* If not traced, we will double count old data
btrfs: qgroup: Use delayed subtree rescan for balance Before this patch, qgroup code traces the whole subtree of subvolume and reloc trees unconditionally. This makes qgroup numbers consistent, but it could cause tons of unnecessary extent tracing, which causes a lot of overhead. However for subtree swap of balance, just swap both subtrees because they contain the same contents and tree structure, so qgroup numbers won't change. It's the race window between subtree swap and transaction commit could cause qgroup number change. This patch will delay the qgroup subtree scan until COW happens for the subtree root. So if there is no other operations for the fs, balance won't cause extra qgroup overhead. (best case scenario) Depending on the workload, most of the subtree scan can still be avoided. Only for worst case scenario, it will fall back to old subtree swap overhead. (scan all swapped subtrees) [[Benchmark]] Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. And after file system population, there is no other activity, so it should be the best case scenario. | v4.20-rc1 | w/ patchset | diff ----------------------------------------------------------------------- relocated extents | 22615 | 22457 | -0.1% qgroup dirty extents | 163457 | 121606 | -25.6% time (sys) | 22.884s | 18.842s | -17.6% time (real) | 27.724s | 22.884s | -17.5% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:17 +00:00
*
* We don't scan the subtree right now, but only record
* the swapped tree blocks.
* The real subtree rescan is delayed until we have new
* CoW on the subtree root node before transaction commit.
btrfs: qgroup: Fix qgroup data leaking by using subtree tracing Commit 62b99540a1d91e464 (btrfs: relocation: Fix leaking qgroups numbers on data extents) only fixes the problem partly. The previous fix is to trace all new data extents at transaction commit time when balance finishes. However balance is not done in a large transaction, every path replacement can happen in its own transaction. This makes the fix useless if transaction commits during relocation. For example: relocate_block_group() |-merge_reloc_roots() | |- merge_reloc_root() | |- btrfs_start_transaction() <- Trans X | |- replace_path() <- Cause leak | |- btrfs_end_transaction_throttle() <- Trans X commits here | | Leak not fixed | | | |- btrfs_start_transaction() <- Trans Y | |- replace_path() <- Cause leak | |- btrfs_end_transaction_throttle() <- Trans Y ends | but not committed |-btrfs_join_transaction() <- Still trans Y |-qgroup_fix() <- Only fixes data leak | in trans Y |-btrfs_commit_transaction() <- Trans Y commits In that case, qgroup fixup can only fix data leak in trans Y, data leak in trans X is out of fix. So the correct fix should happen in the same transaction of replace_path(). This patch fixes it by tracing both subtrees of tree block swap, so it can fix the problem and ensure all leaking and fix are in the same transaction, so no leak again. Reported-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com> Reviewed-and-Tested-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-10-18 01:31:29 +00:00
*/
ret = btrfs_qgroup_add_swapped_blocks(dest,
btrfs: qgroup: Introduce per-root swapped blocks infrastructure To allow delayed subtree swap rescan, btrfs needs to record per-root information about which tree blocks get swapped. This patch introduces the required infrastructure. The designed workflow will be: 1) Record the subtree root block that gets swapped. During subtree swap: O = Old tree blocks N = New tree blocks reloc tree subvolume tree X Root Root / \ / \ NA OB OA OB / | | \ / | | \ NC ND OE OF OC OD OE OF In this case, NA and OA are going to be swapped, record (NA, OA) into subvolume tree X. 2) After subtree swap. reloc tree subvolume tree X Root Root / \ / \ OA OB NA OB / | | \ / | | \ OC OD OE OF NC ND OE OF 3a) COW happens for OB If we are going to COW tree block OB, we check OB's bytenr against tree X's swapped_blocks structure. If it doesn't fit any, nothing will happen. 3b) COW happens for NA Check NA's bytenr against tree X's swapped_blocks, and get a hit. Then we do subtree scan on both subtrees OA and NA. Resulting 6 tree blocks to be scanned (OA, OC, OD, NA, NC, ND). Then no matter what we do to subvolume tree X, qgroup numbers will still be correct. Then NA's record gets removed from X's swapped_blocks. 4) Transaction commit Any record in X's swapped_blocks gets removed, since there is no modification to swapped subtrees, no need to trigger heavy qgroup subtree rescan for them. This will introduce 128 bytes overhead for each btrfs_root even qgroup is not enabled. This is to reduce memory allocations and potential failures. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:16 +00:00
rc->block_group, parent, slot,
path->nodes[level], path->slots[level],
last_snapshot);
if (ret < 0)
break;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* swap blocks in fs tree and reloc tree.
*/
btrfs_set_node_blockptr(parent, slot, new_bytenr);
btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
btrfs_mark_buffer_dirty(trans, parent);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_set_node_blockptr(path->nodes[level],
path->slots[level], old_bytenr);
btrfs_set_node_ptr_generation(path->nodes[level],
path->slots[level], old_ptr_gen);
btrfs_mark_buffer_dirty(trans, path->nodes[level]);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ref.action = BTRFS_ADD_DELAYED_REF;
ref.bytenr = old_bytenr;
ref.num_bytes = blocksize;
ref.parent = path->nodes[level]->start;
ref.owning_root = btrfs_root_id(src);
ref.ref_root = btrfs_root_id(src);
btrfs_init_tree_ref(&ref, level - 1, 0, true);
ret = btrfs_inc_extent_ref(trans, &ref);
if (ret) {
btrfs_abort_transaction(trans, ret);
break;
}
ref.action = BTRFS_ADD_DELAYED_REF;
ref.bytenr = new_bytenr;
ref.num_bytes = blocksize;
ref.parent = 0;
ref.owning_root = btrfs_root_id(dest);
ref.ref_root = btrfs_root_id(dest);
btrfs_init_tree_ref(&ref, level - 1, 0, true);
ret = btrfs_inc_extent_ref(trans, &ref);
if (ret) {
btrfs_abort_transaction(trans, ret);
break;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/* We don't know the real owning_root, use 0. */
ref.action = BTRFS_DROP_DELAYED_REF;
ref.bytenr = new_bytenr;
ref.num_bytes = blocksize;
ref.parent = path->nodes[level]->start;
ref.owning_root = 0;
ref.ref_root = btrfs_root_id(src);
btrfs_init_tree_ref(&ref, level - 1, 0, true);
ret = btrfs_free_extent(trans, &ref);
if (ret) {
btrfs_abort_transaction(trans, ret);
break;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/* We don't know the real owning_root, use 0. */
ref.action = BTRFS_DROP_DELAYED_REF;
ref.bytenr = old_bytenr;
ref.num_bytes = blocksize;
ref.parent = 0;
ref.owning_root = 0;
ref.ref_root = btrfs_root_id(dest);
btrfs_init_tree_ref(&ref, level - 1, 0, true);
ret = btrfs_free_extent(trans, &ref);
if (ret) {
btrfs_abort_transaction(trans, ret);
break;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_unlock_up_safe(path, 0);
ret = level;
break;
}
btrfs_tree_unlock(parent);
free_extent_buffer(parent);
return ret;
}
/*
* helper to find next relocated block in reloc tree
*/
static noinline_for_stack
int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
int *level)
{
struct extent_buffer *eb;
int i;
u64 last_snapshot;
u32 nritems;
last_snapshot = btrfs_root_last_snapshot(&root->root_item);
for (i = 0; i < *level; i++) {
free_extent_buffer(path->nodes[i]);
path->nodes[i] = NULL;
}
for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
eb = path->nodes[i];
nritems = btrfs_header_nritems(eb);
while (path->slots[i] + 1 < nritems) {
path->slots[i]++;
if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
last_snapshot)
continue;
*level = i;
return 0;
}
free_extent_buffer(path->nodes[i]);
path->nodes[i] = NULL;
}
return 1;
}
/*
* walk down reloc tree to find relocated block of lowest level
*/
static noinline_for_stack
int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
int *level)
{
struct extent_buffer *eb = NULL;
int i;
u64 ptr_gen = 0;
u64 last_snapshot;
u32 nritems;
last_snapshot = btrfs_root_last_snapshot(&root->root_item);
for (i = *level; i > 0; i--) {
eb = path->nodes[i];
nritems = btrfs_header_nritems(eb);
while (path->slots[i] < nritems) {
ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
if (ptr_gen > last_snapshot)
break;
path->slots[i]++;
}
if (path->slots[i] >= nritems) {
if (i == *level)
break;
*level = i + 1;
return 0;
}
if (i == 1) {
*level = i;
return 0;
}
eb = btrfs_read_node_slot(eb, path->slots[i]);
if (IS_ERR(eb))
return PTR_ERR(eb);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
BUG_ON(btrfs_header_level(eb) != i - 1);
path->nodes[i - 1] = eb;
path->slots[i - 1] = 0;
}
return 1;
}
/*
* invalidate extent cache for file extents whose key in range of
* [min_key, max_key)
*/
static int invalidate_extent_cache(struct btrfs_root *root,
const struct btrfs_key *min_key,
const struct btrfs_key *max_key)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_inode *inode = NULL;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
u64 objectid;
u64 start, end;
u64 ino;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
objectid = min_key->objectid;
while (1) {
struct extent_state *cached_state = NULL;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
cond_resched();
if (inode)
iput(&inode->vfs_inode);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (objectid > max_key->objectid)
break;
inode = btrfs_find_first_inode(root, objectid);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (!inode)
break;
ino = btrfs_ino(inode);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (ino > max_key->objectid) {
iput(&inode->vfs_inode);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
break;
}
objectid = ino + 1;
if (!S_ISREG(inode->vfs_inode.i_mode))
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
continue;
if (unlikely(min_key->objectid == ino)) {
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (min_key->type > BTRFS_EXTENT_DATA_KEY)
continue;
if (min_key->type < BTRFS_EXTENT_DATA_KEY)
start = 0;
else {
start = min_key->offset;
WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
} else {
start = 0;
}
if (unlikely(max_key->objectid == ino)) {
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (max_key->type < BTRFS_EXTENT_DATA_KEY)
continue;
if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
end = (u64)-1;
} else {
if (max_key->offset == 0)
continue;
end = max_key->offset;
WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
end--;
}
} else {
end = (u64)-1;
}
/* the lock_extent waits for read_folio to complete */
lock_extent(&inode->io_tree, start, end, &cached_state);
btrfs_drop_extent_map_range(inode, start, end, true);
unlock_extent(&inode->io_tree, start, end, &cached_state);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
return 0;
}
static int find_next_key(struct btrfs_path *path, int level,
struct btrfs_key *key)
{
while (level < BTRFS_MAX_LEVEL) {
if (!path->nodes[level])
break;
if (path->slots[level] + 1 <
btrfs_header_nritems(path->nodes[level])) {
btrfs_node_key_to_cpu(path->nodes[level], key,
path->slots[level] + 1);
return 0;
}
level++;
}
return 1;
}
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
/*
* Insert current subvolume into reloc_control::dirty_subvol_roots
*/
static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
struct reloc_control *rc,
struct btrfs_root *root)
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
{
struct btrfs_root *reloc_root = root->reloc_root;
struct btrfs_root_item *reloc_root_item;
int ret;
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
/* @root must be a subvolume tree root with a valid reloc tree */
ASSERT(btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID);
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
ASSERT(reloc_root);
reloc_root_item = &reloc_root->root_item;
memset(&reloc_root_item->drop_progress, 0,
sizeof(reloc_root_item->drop_progress));
btrfs_set_root_drop_level(reloc_root_item, 0);
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
btrfs_set_root_refs(reloc_root_item, 0);
ret = btrfs_update_reloc_root(trans, root);
if (ret)
return ret;
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
if (list_empty(&root->reloc_dirty_list)) {
btrfs_grab_root(root);
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
}
return 0;
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
}
static int clean_dirty_subvols(struct reloc_control *rc)
{
struct btrfs_root *root;
struct btrfs_root *next;
int ret = 0;
btrfs: reloc: Also queue orphan reloc tree for cleanup to avoid BUG_ON() [BUG] When a fs has orphan reloc tree along with unfinished balance: ... item 16 key (TREE_RELOC ROOT_ITEM FS_TREE) itemoff 12090 itemsize 439 generation 12 root_dirid 256 bytenr 300400640 level 1 refs 0 <<< lastsnap 8 byte_limit 0 bytes_used 1359872 flags 0x0(none) uuid 7c48d938-33a3-4aae-ab19-6e5c9d406e46 item 17 key (BALANCE TEMPORARY_ITEM 0) itemoff 11642 itemsize 448 temporary item objectid BALANCE offset 0 balance status flags 14 Then at mount time, we can hit the following kernel BUG_ON(): BTRFS info (device dm-3): relocating block group 298844160 flags metadata|dup ------------[ cut here ]------------ kernel BUG at fs/btrfs/relocation.c:1413! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 897 Comm: btrfs-balance Tainted: G O 5.2.0-rc1-custom #15 RIP: 0010:create_reloc_root+0x1eb/0x200 [btrfs] Call Trace: btrfs_init_reloc_root+0x96/0xb0 [btrfs] record_root_in_trans+0xb2/0xe0 [btrfs] btrfs_record_root_in_trans+0x55/0x70 [btrfs] select_reloc_root+0x7e/0x230 [btrfs] do_relocation+0xc4/0x620 [btrfs] relocate_tree_blocks+0x592/0x6a0 [btrfs] relocate_block_group+0x47b/0x5d0 [btrfs] btrfs_relocate_block_group+0x183/0x2f0 [btrfs] btrfs_relocate_chunk+0x4e/0xe0 [btrfs] btrfs_balance+0x864/0xfa0 [btrfs] balance_kthread+0x3b/0x50 [btrfs] kthread+0x123/0x140 ret_from_fork+0x27/0x50 [CAUSE] In btrfs, reloc trees are used to record swapped tree blocks during balance. Reloc tree either get merged (replace old tree blocks of its parent subvolume) in next transaction if its ref is 1 (fresh). Or is already merged and will be cleaned up if its ref is 0 (orphan). After commit d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots"), reloc tree cleanup is delayed until one block group is balanced. Since fresh reloc roots are recorded during merge, as long as there is no power loss, those orphan reloc roots converted from fresh ones are handled without problem. However when power loss happens, orphan reloc roots can be recorded on-disk, thus at next mount time, we will have orphan reloc roots from on-disk data directly, and ignored by clean_dirty_subvols() routine. Then when background balance starts to balance another block group, and needs to create new reloc root for the same root, btrfs_insert_item() returns -EEXIST, and trigger that BUG_ON(). [FIX] For orphan reloc roots, also queue them to rc->dirty_subvol_roots, so all reloc roots no matter orphan or not, can be cleaned up properly and avoid above BUG_ON(). And to cooperate with above change, clean_dirty_subvols() will check if the queued root is a reloc root or a subvol root. For a subvol root, do the old work, and for a orphan reloc root, clean it up. Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.1 Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-05-22 08:33:11 +00:00
int ret2;
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
reloc_dirty_list) {
if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID) {
btrfs: reloc: Also queue orphan reloc tree for cleanup to avoid BUG_ON() [BUG] When a fs has orphan reloc tree along with unfinished balance: ... item 16 key (TREE_RELOC ROOT_ITEM FS_TREE) itemoff 12090 itemsize 439 generation 12 root_dirid 256 bytenr 300400640 level 1 refs 0 <<< lastsnap 8 byte_limit 0 bytes_used 1359872 flags 0x0(none) uuid 7c48d938-33a3-4aae-ab19-6e5c9d406e46 item 17 key (BALANCE TEMPORARY_ITEM 0) itemoff 11642 itemsize 448 temporary item objectid BALANCE offset 0 balance status flags 14 Then at mount time, we can hit the following kernel BUG_ON(): BTRFS info (device dm-3): relocating block group 298844160 flags metadata|dup ------------[ cut here ]------------ kernel BUG at fs/btrfs/relocation.c:1413! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 897 Comm: btrfs-balance Tainted: G O 5.2.0-rc1-custom #15 RIP: 0010:create_reloc_root+0x1eb/0x200 [btrfs] Call Trace: btrfs_init_reloc_root+0x96/0xb0 [btrfs] record_root_in_trans+0xb2/0xe0 [btrfs] btrfs_record_root_in_trans+0x55/0x70 [btrfs] select_reloc_root+0x7e/0x230 [btrfs] do_relocation+0xc4/0x620 [btrfs] relocate_tree_blocks+0x592/0x6a0 [btrfs] relocate_block_group+0x47b/0x5d0 [btrfs] btrfs_relocate_block_group+0x183/0x2f0 [btrfs] btrfs_relocate_chunk+0x4e/0xe0 [btrfs] btrfs_balance+0x864/0xfa0 [btrfs] balance_kthread+0x3b/0x50 [btrfs] kthread+0x123/0x140 ret_from_fork+0x27/0x50 [CAUSE] In btrfs, reloc trees are used to record swapped tree blocks during balance. Reloc tree either get merged (replace old tree blocks of its parent subvolume) in next transaction if its ref is 1 (fresh). Or is already merged and will be cleaned up if its ref is 0 (orphan). After commit d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots"), reloc tree cleanup is delayed until one block group is balanced. Since fresh reloc roots are recorded during merge, as long as there is no power loss, those orphan reloc roots converted from fresh ones are handled without problem. However when power loss happens, orphan reloc roots can be recorded on-disk, thus at next mount time, we will have orphan reloc roots from on-disk data directly, and ignored by clean_dirty_subvols() routine. Then when background balance starts to balance another block group, and needs to create new reloc root for the same root, btrfs_insert_item() returns -EEXIST, and trigger that BUG_ON(). [FIX] For orphan reloc roots, also queue them to rc->dirty_subvol_roots, so all reloc roots no matter orphan or not, can be cleaned up properly and avoid above BUG_ON(). And to cooperate with above change, clean_dirty_subvols() will check if the queued root is a reloc root or a subvol root. For a subvol root, do the old work, and for a orphan reloc root, clean it up. Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.1 Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-05-22 08:33:11 +00:00
/* Merged subvolume, cleanup its reloc root */
struct btrfs_root *reloc_root = root->reloc_root;
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
btrfs: reloc: Also queue orphan reloc tree for cleanup to avoid BUG_ON() [BUG] When a fs has orphan reloc tree along with unfinished balance: ... item 16 key (TREE_RELOC ROOT_ITEM FS_TREE) itemoff 12090 itemsize 439 generation 12 root_dirid 256 bytenr 300400640 level 1 refs 0 <<< lastsnap 8 byte_limit 0 bytes_used 1359872 flags 0x0(none) uuid 7c48d938-33a3-4aae-ab19-6e5c9d406e46 item 17 key (BALANCE TEMPORARY_ITEM 0) itemoff 11642 itemsize 448 temporary item objectid BALANCE offset 0 balance status flags 14 Then at mount time, we can hit the following kernel BUG_ON(): BTRFS info (device dm-3): relocating block group 298844160 flags metadata|dup ------------[ cut here ]------------ kernel BUG at fs/btrfs/relocation.c:1413! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 897 Comm: btrfs-balance Tainted: G O 5.2.0-rc1-custom #15 RIP: 0010:create_reloc_root+0x1eb/0x200 [btrfs] Call Trace: btrfs_init_reloc_root+0x96/0xb0 [btrfs] record_root_in_trans+0xb2/0xe0 [btrfs] btrfs_record_root_in_trans+0x55/0x70 [btrfs] select_reloc_root+0x7e/0x230 [btrfs] do_relocation+0xc4/0x620 [btrfs] relocate_tree_blocks+0x592/0x6a0 [btrfs] relocate_block_group+0x47b/0x5d0 [btrfs] btrfs_relocate_block_group+0x183/0x2f0 [btrfs] btrfs_relocate_chunk+0x4e/0xe0 [btrfs] btrfs_balance+0x864/0xfa0 [btrfs] balance_kthread+0x3b/0x50 [btrfs] kthread+0x123/0x140 ret_from_fork+0x27/0x50 [CAUSE] In btrfs, reloc trees are used to record swapped tree blocks during balance. Reloc tree either get merged (replace old tree blocks of its parent subvolume) in next transaction if its ref is 1 (fresh). Or is already merged and will be cleaned up if its ref is 0 (orphan). After commit d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots"), reloc tree cleanup is delayed until one block group is balanced. Since fresh reloc roots are recorded during merge, as long as there is no power loss, those orphan reloc roots converted from fresh ones are handled without problem. However when power loss happens, orphan reloc roots can be recorded on-disk, thus at next mount time, we will have orphan reloc roots from on-disk data directly, and ignored by clean_dirty_subvols() routine. Then when background balance starts to balance another block group, and needs to create new reloc root for the same root, btrfs_insert_item() returns -EEXIST, and trigger that BUG_ON(). [FIX] For orphan reloc roots, also queue them to rc->dirty_subvol_roots, so all reloc roots no matter orphan or not, can be cleaned up properly and avoid above BUG_ON(). And to cooperate with above change, clean_dirty_subvols() will check if the queued root is a reloc root or a subvol root. For a subvol root, do the old work, and for a orphan reloc root, clean it up. Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.1 Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-05-22 08:33:11 +00:00
list_del_init(&root->reloc_dirty_list);
root->reloc_root = NULL;
btrfs: relocation: fix reloc_root lifespan and access [BUG] There are several different KASAN reports for balance + snapshot workloads. Involved call paths include: should_ignore_root+0x54/0xb0 [btrfs] build_backref_tree+0x11af/0x2280 [btrfs] relocate_tree_blocks+0x391/0xb80 [btrfs] relocate_block_group+0x3e5/0xa00 [btrfs] btrfs_relocate_block_group+0x240/0x4d0 [btrfs] btrfs_relocate_chunk+0x53/0xf0 [btrfs] btrfs_balance+0xc91/0x1840 [btrfs] btrfs_ioctl_balance+0x416/0x4e0 [btrfs] btrfs_ioctl+0x8af/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 create_reloc_root+0x9f/0x460 [btrfs] btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs] create_pending_snapshot+0xa9b/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs] create_pending_snapshot+0x209/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 [CAUSE] All these call sites are only relying on root->reloc_root, which can undergo btrfs_drop_snapshot(), and since we don't have real refcount based protection to reloc roots, we can reach already dropped reloc root, triggering KASAN. [FIX] To avoid such access to unstable root->reloc_root, we should check BTRFS_ROOT_DEAD_RELOC_TREE bit first. This patch introduces wrappers that provide the correct way to check the bit with memory barriers protection. Most callers don't distinguish merged reloc tree and no reloc tree. The only exception is should_ignore_root(), as merged reloc tree can be ignored, while no reloc tree shouldn't. [CRITICAL SECTION ANALYSIS] Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the DEAD_RELOC_TREE bit has extra help from transaction as a higher level barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are: NULL: reloc_root is NULL PTR: reloc_root is not NULL 0: DEAD_RELOC_ROOT bit not set DEAD: DEAD_RELOC_ROOT bit set (NULL, 0) Initial state __ | /\ Section A btrfs_init_reloc_root() \/ | __ (PTR, 0) reloc_root initialized /\ | | btrfs_update_reloc_root() | Section B | | (PTR, DEAD) reloc_root has been merged \/ | __ === btrfs_commit_transaction() ==================== | /\ clean_dirty_subvols() | | | Section C (NULL, DEAD) reloc_root cleanup starts \/ | __ btrfs_drop_snapshot() /\ | | Section D (NULL, 0) Back to initial state \/ Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds transaction handle, so none of such caller can cross transaction boundary. In Section A, every caller just found no DEAD bit, and grab reloc_root. In the cross section A-B, caller may get no DEAD bit, but since reloc_root is still completely valid thus accessing reloc_root is completely safe. No test_bit() caller can cross the boundary of Section B and Section C. In Section C, every caller found the DEAD bit, so no one will access reloc_root. In the cross section C-D, either caller gets the DEAD bit set, avoiding access reloc_root no matter if it's safe or not. Or caller get the DEAD bit cleared, then access reloc_root, which is already NULL, nothing will be wrong. The memory write barriers are between the reloc_root updates and bit set/clear, the pairing read side is before test_bit. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ barriers ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 05:12:00 +00:00
/*
* Need barrier to ensure clear_bit() only happens after
* root->reloc_root = NULL. Pairs with have_reloc_root.
*/
smp_wmb();
btrfs: relocation: fix use-after-free on dead relocation roots [BUG] One user reported a reproducible KASAN report about use-after-free: BTRFS info (device sdi1): balance: start -dvrange=1256811659264..1256811659265 BTRFS info (device sdi1): relocating block group 1256811659264 flags data|raid0 ================================================================== BUG: KASAN: use-after-free in btrfs_init_reloc_root+0x2cd/0x340 [btrfs] Write of size 8 at addr ffff88856f671710 by task kworker/u24:10/261579 CPU: 2 PID: 261579 Comm: kworker/u24:10 Tainted: P OE 5.2.11-arch1-1-kasan #4 Hardware name: To Be Filled By O.E.M. To Be Filled By O.E.M./X99 Extreme4, BIOS P3.80 04/06/2018 Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs] Call Trace: dump_stack+0x7b/0xba print_address_description+0x6c/0x22e ? btrfs_init_reloc_root+0x2cd/0x340 [btrfs] __kasan_report.cold+0x1b/0x3b ? btrfs_init_reloc_root+0x2cd/0x340 [btrfs] kasan_report+0x12/0x17 __asan_report_store8_noabort+0x17/0x20 btrfs_init_reloc_root+0x2cd/0x340 [btrfs] record_root_in_trans+0x2a0/0x370 [btrfs] btrfs_record_root_in_trans+0xf4/0x140 [btrfs] start_transaction+0x1ab/0xe90 [btrfs] btrfs_join_transaction+0x1d/0x20 [btrfs] btrfs_finish_ordered_io+0x7bf/0x18a0 [btrfs] ? lock_repin_lock+0x400/0x400 ? __kmem_cache_shutdown.cold+0x140/0x1ad ? btrfs_unlink_subvol+0x9b0/0x9b0 [btrfs] finish_ordered_fn+0x15/0x20 [btrfs] normal_work_helper+0x1bd/0xca0 [btrfs] ? process_one_work+0x819/0x1720 ? kasan_check_read+0x11/0x20 btrfs_endio_write_helper+0x12/0x20 [btrfs] process_one_work+0x8c9/0x1720 ? pwq_dec_nr_in_flight+0x2f0/0x2f0 ? worker_thread+0x1d9/0x1030 worker_thread+0x98/0x1030 kthread+0x2bb/0x3b0 ? process_one_work+0x1720/0x1720 ? kthread_park+0x120/0x120 ret_from_fork+0x35/0x40 Allocated by task 369692: __kasan_kmalloc.part.0+0x44/0xc0 __kasan_kmalloc.constprop.0+0xba/0xc0 kasan_kmalloc+0x9/0x10 kmem_cache_alloc_trace+0x138/0x260 btrfs_read_tree_root+0x92/0x360 [btrfs] btrfs_read_fs_root+0x10/0xb0 [btrfs] create_reloc_root+0x47d/0xa10 [btrfs] btrfs_init_reloc_root+0x1e2/0x340 [btrfs] record_root_in_trans+0x2a0/0x370 [btrfs] btrfs_record_root_in_trans+0xf4/0x140 [btrfs] start_transaction+0x1ab/0xe90 [btrfs] btrfs_start_transaction+0x1e/0x20 [btrfs] __btrfs_prealloc_file_range+0x1c2/0xa00 [btrfs] btrfs_prealloc_file_range+0x13/0x20 [btrfs] prealloc_file_extent_cluster+0x29f/0x570 [btrfs] relocate_file_extent_cluster+0x193/0xc30 [btrfs] relocate_data_extent+0x1f8/0x490 [btrfs] relocate_block_group+0x600/0x1060 [btrfs] btrfs_relocate_block_group+0x3a0/0xa00 [btrfs] btrfs_relocate_chunk+0x9e/0x180 [btrfs] btrfs_balance+0x14e4/0x2fc0 [btrfs] btrfs_ioctl_balance+0x47f/0x640 [btrfs] btrfs_ioctl+0x119d/0x8380 [btrfs] do_vfs_ioctl+0x9f5/0x1060 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x73/0xb0 do_syscall_64+0xa5/0x370 entry_SYSCALL_64_after_hwframe+0x44/0xa9 Freed by task 369692: __kasan_slab_free+0x14f/0x210 kasan_slab_free+0xe/0x10 kfree+0xd8/0x270 btrfs_drop_snapshot+0x154c/0x1eb0 [btrfs] clean_dirty_subvols+0x227/0x340 [btrfs] relocate_block_group+0x972/0x1060 [btrfs] btrfs_relocate_block_group+0x3a0/0xa00 [btrfs] btrfs_relocate_chunk+0x9e/0x180 [btrfs] btrfs_balance+0x14e4/0x2fc0 [btrfs] btrfs_ioctl_balance+0x47f/0x640 [btrfs] btrfs_ioctl+0x119d/0x8380 [btrfs] do_vfs_ioctl+0x9f5/0x1060 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x73/0xb0 do_syscall_64+0xa5/0x370 entry_SYSCALL_64_after_hwframe+0x44/0xa9 The buggy address belongs to the object at ffff88856f671100 which belongs to the cache kmalloc-4k of size 4096 The buggy address is located 1552 bytes inside of 4096-byte region [ffff88856f671100, ffff88856f672100) The buggy address belongs to the page: page:ffffea0015bd9c00 refcount:1 mapcount:0 mapping:ffff88864400e600 index:0x0 compound_mapcount: 0 flags: 0x2ffff0000010200(slab|head) raw: 02ffff0000010200 dead000000000100 dead000000000200 ffff88864400e600 raw: 0000000000000000 0000000000070007 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88856f671600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88856f671680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb >ffff88856f671700: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff88856f671780: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88856f671800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ================================================================== BTRFS info (device sdi1): 1 enospc errors during balance BTRFS info (device sdi1): balance: ended with status: -28 [CAUSE] The problem happens when finish_ordered_io() get called with balance still running, while the reloc root of that subvolume is already dead. (Tree is swap already done, but tree not yet deleted for possible qgroup usage.) That means root->reloc_root still exists, but that reloc_root can be under btrfs_drop_snapshot(), thus we shouldn't access it. The following race could cause the use-after-free problem: CPU1 | CPU2 -------------------------------------------------------------------------- | relocate_block_group() | |- unset_reloc_control(rc) | |- btrfs_commit_transaction() btrfs_finish_ordered_io() | |- clean_dirty_subvols() |- btrfs_join_transaction() | | |- record_root_in_trans() | | |- btrfs_init_reloc_root() | | |- if (root->reloc_root) | | | | |- root->reloc_root = NULL | | |- btrfs_drop_snapshot(reloc_root); |- reloc_root->last_trans| = trans->transid | ^^^^^^^^^^^^^^^^^^^^^^ Use after free [FIX] Fix it by the following modifications: - Test if the root has dead reloc tree before accessing root->reloc_root If the root has BTRFS_ROOT_DEAD_RELOC_TREE, then we don't need to create or update root->reloc_tree - Clear the BTRFS_ROOT_DEAD_RELOC_TREE flag until we have fully dropped reloc tree To co-operate with above modification, so as long as BTRFS_ROOT_DEAD_RELOC_TREE is still set, we won't try to re-create reloc tree at record_root_in_trans(). Reported-by: Cebtenzzre <cebtenzzre@gmail.com> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.1+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-09-23 06:56:14 +00:00
clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
if (reloc_root) {
/*
* btrfs_drop_snapshot drops our ref we hold for
* ->reloc_root. If it fails however we must
* drop the ref ourselves.
*/
ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
if (ret2 < 0) {
btrfs_put_root(reloc_root);
if (!ret)
ret = ret2;
}
}
btrfs_put_root(root);
btrfs: reloc: Also queue orphan reloc tree for cleanup to avoid BUG_ON() [BUG] When a fs has orphan reloc tree along with unfinished balance: ... item 16 key (TREE_RELOC ROOT_ITEM FS_TREE) itemoff 12090 itemsize 439 generation 12 root_dirid 256 bytenr 300400640 level 1 refs 0 <<< lastsnap 8 byte_limit 0 bytes_used 1359872 flags 0x0(none) uuid 7c48d938-33a3-4aae-ab19-6e5c9d406e46 item 17 key (BALANCE TEMPORARY_ITEM 0) itemoff 11642 itemsize 448 temporary item objectid BALANCE offset 0 balance status flags 14 Then at mount time, we can hit the following kernel BUG_ON(): BTRFS info (device dm-3): relocating block group 298844160 flags metadata|dup ------------[ cut here ]------------ kernel BUG at fs/btrfs/relocation.c:1413! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 897 Comm: btrfs-balance Tainted: G O 5.2.0-rc1-custom #15 RIP: 0010:create_reloc_root+0x1eb/0x200 [btrfs] Call Trace: btrfs_init_reloc_root+0x96/0xb0 [btrfs] record_root_in_trans+0xb2/0xe0 [btrfs] btrfs_record_root_in_trans+0x55/0x70 [btrfs] select_reloc_root+0x7e/0x230 [btrfs] do_relocation+0xc4/0x620 [btrfs] relocate_tree_blocks+0x592/0x6a0 [btrfs] relocate_block_group+0x47b/0x5d0 [btrfs] btrfs_relocate_block_group+0x183/0x2f0 [btrfs] btrfs_relocate_chunk+0x4e/0xe0 [btrfs] btrfs_balance+0x864/0xfa0 [btrfs] balance_kthread+0x3b/0x50 [btrfs] kthread+0x123/0x140 ret_from_fork+0x27/0x50 [CAUSE] In btrfs, reloc trees are used to record swapped tree blocks during balance. Reloc tree either get merged (replace old tree blocks of its parent subvolume) in next transaction if its ref is 1 (fresh). Or is already merged and will be cleaned up if its ref is 0 (orphan). After commit d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots"), reloc tree cleanup is delayed until one block group is balanced. Since fresh reloc roots are recorded during merge, as long as there is no power loss, those orphan reloc roots converted from fresh ones are handled without problem. However when power loss happens, orphan reloc roots can be recorded on-disk, thus at next mount time, we will have orphan reloc roots from on-disk data directly, and ignored by clean_dirty_subvols() routine. Then when background balance starts to balance another block group, and needs to create new reloc root for the same root, btrfs_insert_item() returns -EEXIST, and trigger that BUG_ON(). [FIX] For orphan reloc roots, also queue them to rc->dirty_subvol_roots, so all reloc roots no matter orphan or not, can be cleaned up properly and avoid above BUG_ON(). And to cooperate with above change, clean_dirty_subvols() will check if the queued root is a reloc root or a subvol root. For a subvol root, do the old work, and for a orphan reloc root, clean it up. Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.1 Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-05-22 08:33:11 +00:00
} else {
/* Orphan reloc tree, just clean it up */
ret2 = btrfs_drop_snapshot(root, 0, 1);
if (ret2 < 0) {
btrfs_put_root(root);
if (!ret)
ret = ret2;
}
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
}
}
return ret;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* merge the relocated tree blocks in reloc tree with corresponding
* fs tree.
*/
static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_key key;
struct btrfs_key next_key;
struct btrfs_trans_handle *trans = NULL;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_root *reloc_root;
struct btrfs_root_item *root_item;
struct btrfs_path *path;
struct extent_buffer *leaf;
btrfs: fix min reserved size calculation in merge_reloc_root The minimum reserve size was adjusted to take into account the height of the tree we are merging, however we can have a root with a level == 0. What we want is root_level + 1 to get the number of nodes we may have to cow. This fixes the enospc_debug warning pops with btrfs/101. Nikolay: this fixes failures on btrfs/060 btrfs/062 btrfs/063 and btrfs/195 That I was seeing, the call trace was: [ 3680.515564] ------------[ cut here ]------------ [ 3680.515566] BTRFS: block rsv returned -28 [ 3680.515585] WARNING: CPU: 2 PID: 8339 at fs/btrfs/block-rsv.c:521 btrfs_use_block_rsv+0x162/0x180 [ 3680.515587] Modules linked in: [ 3680.515591] CPU: 2 PID: 8339 Comm: btrfs Tainted: G W 5.9.0-rc8-default #95 [ 3680.515593] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 [ 3680.515595] RIP: 0010:btrfs_use_block_rsv+0x162/0x180 [ 3680.515600] RSP: 0018:ffffa01ac9753910 EFLAGS: 00010282 [ 3680.515602] RAX: 0000000000000000 RBX: ffff984b34200000 RCX: 0000000000000027 [ 3680.515604] RDX: 0000000000000027 RSI: 0000000000000000 RDI: ffff984b3bd19e28 [ 3680.515606] RBP: 0000000000004000 R08: ffff984b3bd19e20 R09: 0000000000000001 [ 3680.515608] R10: 0000000000000004 R11: 0000000000000046 R12: ffff984b264fdc00 [ 3680.515609] R13: ffff984b13149000 R14: 00000000ffffffe4 R15: ffff984b34200000 [ 3680.515613] FS: 00007f4e2912b8c0(0000) GS:ffff984b3bd00000(0000) knlGS:0000000000000000 [ 3680.515615] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3680.515617] CR2: 00007fab87122150 CR3: 0000000118e42000 CR4: 00000000000006e0 [ 3680.515620] Call Trace: [ 3680.515627] btrfs_alloc_tree_block+0x8b/0x340 [ 3680.515633] ? __lock_acquire+0x51a/0xac0 [ 3680.515646] alloc_tree_block_no_bg_flush+0x4f/0x60 [ 3680.515651] __btrfs_cow_block+0x14e/0x7e0 [ 3680.515662] btrfs_cow_block+0x144/0x2c0 [ 3680.515670] merge_reloc_root+0x4d4/0x610 [ 3680.515675] ? btrfs_lookup_fs_root+0x78/0x90 [ 3680.515686] merge_reloc_roots+0xee/0x280 [ 3680.515695] relocate_block_group+0x2ce/0x5e0 [ 3680.515704] btrfs_relocate_block_group+0x16e/0x310 [ 3680.515711] btrfs_relocate_chunk+0x38/0xf0 [ 3680.515716] btrfs_shrink_device+0x200/0x560 [ 3680.515728] btrfs_rm_device+0x1ae/0x6a6 [ 3680.515744] ? _copy_from_user+0x6e/0xb0 [ 3680.515750] btrfs_ioctl+0x1afe/0x28c0 [ 3680.515755] ? find_held_lock+0x2b/0x80 [ 3680.515760] ? do_user_addr_fault+0x1f8/0x418 [ 3680.515773] ? __x64_sys_ioctl+0x77/0xb0 [ 3680.515775] __x64_sys_ioctl+0x77/0xb0 [ 3680.515781] do_syscall_64+0x31/0x70 [ 3680.515785] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Reported-by: Nikolay Borisov <nborisov@suse.com> Fixes: 44d354abf33e ("btrfs: relocation: review the call sites which can be interrupted by signal") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-26 20:57:27 +00:00
int reserve_level;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
int level;
int max_level;
int replaced = 0;
int ret = 0;
u32 min_reserved;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = READA_FORWARD;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
reloc_root = root->reloc_root;
root_item = &reloc_root->root_item;
if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
level = btrfs_root_level(root_item);
atomic_inc(&reloc_root->node->refs);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
path->nodes[level] = reloc_root->node;
path->slots[level] = 0;
} else {
btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
level = btrfs_root_drop_level(root_item);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
BUG_ON(level == 0);
path->lowest_level = level;
ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
path->lowest_level = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (ret < 0) {
btrfs_free_path(path);
return ret;
}
btrfs_node_key_to_cpu(path->nodes[level], &next_key,
path->slots[level]);
WARN_ON(memcmp(&key, &next_key, sizeof(key)));
btrfs_unlock_up_safe(path, 0);
}
/*
* In merge_reloc_root(), we modify the upper level pointer to swap the
* tree blocks between reloc tree and subvolume tree. Thus for tree
* block COW, we COW at most from level 1 to root level for each tree.
*
* Thus the needed metadata size is at most root_level * nodesize,
* and * 2 since we have two trees to COW.
*/
btrfs: fix min reserved size calculation in merge_reloc_root The minimum reserve size was adjusted to take into account the height of the tree we are merging, however we can have a root with a level == 0. What we want is root_level + 1 to get the number of nodes we may have to cow. This fixes the enospc_debug warning pops with btrfs/101. Nikolay: this fixes failures on btrfs/060 btrfs/062 btrfs/063 and btrfs/195 That I was seeing, the call trace was: [ 3680.515564] ------------[ cut here ]------------ [ 3680.515566] BTRFS: block rsv returned -28 [ 3680.515585] WARNING: CPU: 2 PID: 8339 at fs/btrfs/block-rsv.c:521 btrfs_use_block_rsv+0x162/0x180 [ 3680.515587] Modules linked in: [ 3680.515591] CPU: 2 PID: 8339 Comm: btrfs Tainted: G W 5.9.0-rc8-default #95 [ 3680.515593] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1 04/01/2014 [ 3680.515595] RIP: 0010:btrfs_use_block_rsv+0x162/0x180 [ 3680.515600] RSP: 0018:ffffa01ac9753910 EFLAGS: 00010282 [ 3680.515602] RAX: 0000000000000000 RBX: ffff984b34200000 RCX: 0000000000000027 [ 3680.515604] RDX: 0000000000000027 RSI: 0000000000000000 RDI: ffff984b3bd19e28 [ 3680.515606] RBP: 0000000000004000 R08: ffff984b3bd19e20 R09: 0000000000000001 [ 3680.515608] R10: 0000000000000004 R11: 0000000000000046 R12: ffff984b264fdc00 [ 3680.515609] R13: ffff984b13149000 R14: 00000000ffffffe4 R15: ffff984b34200000 [ 3680.515613] FS: 00007f4e2912b8c0(0000) GS:ffff984b3bd00000(0000) knlGS:0000000000000000 [ 3680.515615] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3680.515617] CR2: 00007fab87122150 CR3: 0000000118e42000 CR4: 00000000000006e0 [ 3680.515620] Call Trace: [ 3680.515627] btrfs_alloc_tree_block+0x8b/0x340 [ 3680.515633] ? __lock_acquire+0x51a/0xac0 [ 3680.515646] alloc_tree_block_no_bg_flush+0x4f/0x60 [ 3680.515651] __btrfs_cow_block+0x14e/0x7e0 [ 3680.515662] btrfs_cow_block+0x144/0x2c0 [ 3680.515670] merge_reloc_root+0x4d4/0x610 [ 3680.515675] ? btrfs_lookup_fs_root+0x78/0x90 [ 3680.515686] merge_reloc_roots+0xee/0x280 [ 3680.515695] relocate_block_group+0x2ce/0x5e0 [ 3680.515704] btrfs_relocate_block_group+0x16e/0x310 [ 3680.515711] btrfs_relocate_chunk+0x38/0xf0 [ 3680.515716] btrfs_shrink_device+0x200/0x560 [ 3680.515728] btrfs_rm_device+0x1ae/0x6a6 [ 3680.515744] ? _copy_from_user+0x6e/0xb0 [ 3680.515750] btrfs_ioctl+0x1afe/0x28c0 [ 3680.515755] ? find_held_lock+0x2b/0x80 [ 3680.515760] ? do_user_addr_fault+0x1f8/0x418 [ 3680.515773] ? __x64_sys_ioctl+0x77/0xb0 [ 3680.515775] __x64_sys_ioctl+0x77/0xb0 [ 3680.515781] do_syscall_64+0x31/0x70 [ 3680.515785] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Reported-by: Nikolay Borisov <nborisov@suse.com> Fixes: 44d354abf33e ("btrfs: relocation: review the call sites which can be interrupted by signal") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-26 20:57:27 +00:00
reserve_level = max_t(int, 1, btrfs_root_level(root_item));
min_reserved = fs_info->nodesize * reserve_level * 2;
memset(&next_key, 0, sizeof(next_key));
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
while (1) {
ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
min_reserved,
BTRFS_RESERVE_FLUSH_LIMIT);
if (ret)
goto out;
trans = btrfs_start_transaction(root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
trans = NULL;
goto out;
}
/*
* At this point we no longer have a reloc_control, so we can't
* depend on btrfs_init_reloc_root to update our last_trans.
*
* But that's ok, we started the trans handle on our
* corresponding fs_root, which means it's been added to the
* dirty list. At commit time we'll still call
* btrfs_update_reloc_root() and update our root item
* appropriately.
*/
btrfs: fix data race when accessing the last_trans field of a root KCSAN complains about a data race when accessing the last_trans field of a root: [ 199.553628] BUG: KCSAN: data-race in btrfs_record_root_in_trans [btrfs] / record_root_in_trans [btrfs] [ 199.555186] read to 0x000000008801e308 of 8 bytes by task 2812 on cpu 1: [ 199.555210] btrfs_record_root_in_trans+0x9a/0x128 [btrfs] [ 199.555999] start_transaction+0x154/0xcd8 [btrfs] [ 199.556780] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.557559] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.558339] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.559123] touch_atime+0x16c/0x1e0 [ 199.559151] pipe_read+0x6a8/0x7d0 [ 199.559179] vfs_read+0x466/0x498 [ 199.559204] ksys_read+0x108/0x150 [ 199.559230] __s390x_sys_read+0x68/0x88 [ 199.559257] do_syscall+0x1c6/0x210 [ 199.559286] __do_syscall+0xc8/0xf0 [ 199.559318] system_call+0x70/0x98 [ 199.559431] write to 0x000000008801e308 of 8 bytes by task 2808 on cpu 0: [ 199.559464] record_root_in_trans+0x196/0x228 [btrfs] [ 199.560236] btrfs_record_root_in_trans+0xfe/0x128 [btrfs] [ 199.561097] start_transaction+0x154/0xcd8 [btrfs] [ 199.561927] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.562700] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.563493] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.564277] file_update_time+0xb8/0xf0 [ 199.564301] pipe_write+0x8ac/0xab8 [ 199.564326] vfs_write+0x33c/0x588 [ 199.564349] ksys_write+0x108/0x150 [ 199.564372] __s390x_sys_write+0x68/0x88 [ 199.564397] do_syscall+0x1c6/0x210 [ 199.564424] __do_syscall+0xc8/0xf0 [ 199.564452] system_call+0x70/0x98 This is because we update and read last_trans concurrently without any type of synchronization. This should be generally harmless and in the worst case it can make us do extra locking (btrfs_record_root_in_trans()) trigger some warnings at ctree.c or do extra work during relocation - this would probably only happen in case of load or store tearing. So fix this by always reading and updating the field using READ_ONCE() and WRITE_ONCE(), this silences KCSAN and prevents load and store tearing. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-01 09:51:28 +00:00
btrfs_set_root_last_trans(reloc_root, trans->transid);
trans->block_rsv = rc->block_rsv;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
replaced = 0;
max_level = level;
ret = walk_down_reloc_tree(reloc_root, path, &level);
if (ret < 0)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
goto out;
if (ret > 0)
break;
if (!find_next_key(path, level, &key) &&
btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
ret = 0;
} else {
btrfs: qgroup: Only trace data extents in leaves if we're relocating data block group For qgroup_trace_extent_swap(), if we find one leaf that needs to be traced, we will also iterate all file extents and trace them. This is OK if we're relocating data block groups, but if we're relocating metadata block groups, balance code itself has ensured that both subtree of file tree and reloc tree contain the same contents. That's to say, if we're relocating metadata block groups, all file extents in reloc and file tree should match, thus no need to trace them. This should reduce the total number of dirty extents processed in metadata block group balance. [[Benchmark]] (with all previous enhancement) Hardware: VM 4G vRAM, 8 vCPUs, disk is using 'unsafe' cache mode, backing device is SAMSUNG 850 evo SSD. Host has 16G ram. Mkfs parameter: --nodesize 4K (To bump up tree size) Initial subvolume contents: 4G data copied from /usr and /lib. (With enough regular small files) Snapshots: 16 snapshots of the original subvolume. each snapshot has 3 random files modified. balance parameter: -m So the content should be pretty similar to a real world root fs layout. | v4.19-rc1 | w/ patchset | diff (*) --------------------------------------------------------------- relocated extents | 22929 | 22851 | -0.3% qgroup dirty extents | 227757 | 140886 | -38.1% time (sys) | 65.253s | 37.464s | -42.6% time (real) | 74.032s | 44.722s | -39.6% Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-27 06:42:35 +00:00
ret = replace_path(trans, rc, root, reloc_root, path,
&next_key, level, max_level);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
if (ret < 0)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
goto out;
if (ret > 0) {
level = ret;
btrfs_node_key_to_cpu(path->nodes[level], &key,
path->slots[level]);
replaced = 1;
}
ret = walk_up_reloc_tree(reloc_root, path, &level);
if (ret > 0)
break;
BUG_ON(level == 0);
/*
* save the merging progress in the drop_progress.
* this is OK since root refs == 1 in this case.
*/
btrfs_node_key(path->nodes[level], &root_item->drop_progress,
path->slots[level]);
btrfs_set_root_drop_level(root_item, level);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_end_transaction_throttle(trans);
trans = NULL;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_btree_balance_dirty(fs_info);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (replaced && rc->stage == UPDATE_DATA_PTRS)
invalidate_extent_cache(root, &key, &next_key);
}
/*
* handle the case only one block in the fs tree need to be
* relocated and the block is tree root.
*/
leaf = btrfs_lock_root_node(root);
ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
BTRFS_NESTING_COW);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_tree_unlock(leaf);
free_extent_buffer(leaf);
out:
btrfs_free_path(path);
if (ret == 0) {
ret = insert_dirty_subvol(trans, rc, root);
if (ret)
btrfs_abort_transaction(trans, ret);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (trans)
btrfs_end_transaction_throttle(trans);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_btree_balance_dirty(fs_info);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (replaced && rc->stage == UPDATE_DATA_PTRS)
invalidate_extent_cache(root, &key, &next_key);
return ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static noinline_for_stack
int prepare_to_merge(struct reloc_control *rc, int err)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_root *root = rc->extent_root;
struct btrfs_fs_info *fs_info = root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_root *reloc_root;
struct btrfs_trans_handle *trans;
LIST_HEAD(reloc_roots);
u64 num_bytes = 0;
int ret;
mutex_lock(&fs_info->reloc_mutex);
rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
rc->merging_rsv_size += rc->nodes_relocated * 2;
mutex_unlock(&fs_info->reloc_mutex);
again:
if (!err) {
num_bytes = rc->merging_rsv_size;
ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
BTRFS_RESERVE_FLUSH_ALL);
if (ret)
err = ret;
}
trans = btrfs_join_transaction(rc->extent_root);
if (IS_ERR(trans)) {
if (!err)
btrfs_block_rsv_release(fs_info, rc->block_rsv,
num_bytes, NULL);
return PTR_ERR(trans);
}
if (!err) {
if (num_bytes != rc->merging_rsv_size) {
btrfs_end_transaction(trans);
btrfs_block_rsv_release(fs_info, rc->block_rsv,
num_bytes, NULL);
goto again;
}
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
rc->merge_reloc_tree = true;
while (!list_empty(&rc->reloc_roots)) {
reloc_root = list_entry(rc->reloc_roots.next,
struct btrfs_root, root_list);
list_del_init(&reloc_root->root_list);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
false);
if (IS_ERR(root)) {
/*
* Even if we have an error we need this reloc root
* back on our list so we can clean up properly.
*/
list_add(&reloc_root->root_list, &reloc_roots);
btrfs_abort_transaction(trans, (int)PTR_ERR(root));
if (!err)
err = PTR_ERR(root);
break;
}
if (unlikely(root->reloc_root != reloc_root)) {
if (root->reloc_root) {
btrfs_err(fs_info,
"reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
btrfs_root_id(root),
btrfs_root_id(root->reloc_root),
root->reloc_root->root_key.type,
root->reloc_root->root_key.offset,
btrfs_root_generation(
&root->reloc_root->root_item),
btrfs_root_id(reloc_root),
reloc_root->root_key.type,
reloc_root->root_key.offset,
btrfs_root_generation(
&reloc_root->root_item));
} else {
btrfs_err(fs_info,
"reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
btrfs_root_id(root),
btrfs_root_id(reloc_root),
reloc_root->root_key.type,
reloc_root->root_key.offset,
btrfs_root_generation(
&reloc_root->root_item));
}
list_add(&reloc_root->root_list, &reloc_roots);
btrfs_put_root(root);
btrfs_abort_transaction(trans, -EUCLEAN);
if (!err)
err = -EUCLEAN;
break;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* set reference count to 1, so btrfs_recover_relocation
* knows it should resumes merging
*/
if (!err)
btrfs_set_root_refs(&reloc_root->root_item, 1);
ret = btrfs_update_reloc_root(trans, root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* Even if we have an error we need this reloc root back on our
* list so we can clean up properly.
*/
list_add(&reloc_root->root_list, &reloc_roots);
btrfs_put_root(root);
if (ret) {
btrfs_abort_transaction(trans, ret);
if (!err)
err = ret;
break;
}
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
list_splice(&reloc_roots, &rc->reloc_roots);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (!err)
err = btrfs_commit_transaction(trans);
else
btrfs_end_transaction(trans);
return err;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static noinline_for_stack
void free_reloc_roots(struct list_head *list)
{
struct btrfs_root *reloc_root, *tmp;
list_for_each_entry_safe(reloc_root, tmp, list, root_list)
__del_reloc_root(reloc_root);
}
static noinline_for_stack
void merge_reloc_roots(struct reloc_control *rc)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_root *root;
struct btrfs_root *reloc_root;
LIST_HEAD(reloc_roots);
int found = 0;
int ret = 0;
again:
root = rc->extent_root;
/*
* this serializes us with btrfs_record_root_in_transaction,
* we have to make sure nobody is in the middle of
* adding their roots to the list while we are
* doing this splice
*/
mutex_lock(&fs_info->reloc_mutex);
list_splice_init(&rc->reloc_roots, &reloc_roots);
mutex_unlock(&fs_info->reloc_mutex);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
while (!list_empty(&reloc_roots)) {
found = 1;
reloc_root = list_entry(reloc_roots.next,
struct btrfs_root, root_list);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
false);
if (btrfs_root_refs(&reloc_root->root_item) > 0) {
if (WARN_ON(IS_ERR(root))) {
/*
* For recovery we read the fs roots on mount,
* and if we didn't find the root then we marked
* the reloc root as a garbage root. For normal
* relocation obviously the root should exist in
* memory. However there's no reason we can't
* handle the error properly here just in case.
*/
ret = PTR_ERR(root);
goto out;
}
if (WARN_ON(root->reloc_root != reloc_root)) {
/*
* This can happen if on-disk metadata has some
* corruption, e.g. bad reloc tree key offset.
*/
ret = -EINVAL;
goto out;
}
ret = merge_reloc_root(rc, root);
btrfs_put_root(root);
if (ret) {
if (list_empty(&reloc_root->root_list))
list_add_tail(&reloc_root->root_list,
&reloc_roots);
goto out;
}
} else {
btrfs: reloc: fix reloc root leak and NULL pointer dereference [BUG] When balance is canceled, there is a pretty high chance that unmounting the fs can lead to lead the NULL pointer dereference: BTRFS warning (device dm-3): page private not zero on page 223158272 ... BTRFS warning (device dm-3): page private not zero on page 223162368 BTRFS error (device dm-3): leaked root 18446744073709551608-304 refcount 1 BUG: kernel NULL pointer dereference, address: 0000000000000168 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 2 PID: 5793 Comm: umount Tainted: G O 5.7.0-rc5-custom+ #53 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:__lock_acquire+0x5dc/0x24c0 Call Trace: lock_acquire+0xab/0x390 _raw_spin_lock+0x39/0x80 btrfs_release_extent_buffer_pages+0xd7/0x200 [btrfs] release_extent_buffer+0xb2/0x170 [btrfs] free_extent_buffer+0x66/0xb0 [btrfs] btrfs_put_root+0x8e/0x130 [btrfs] btrfs_check_leaked_roots.cold+0x5/0x5d [btrfs] btrfs_free_fs_info+0xe5/0x120 [btrfs] btrfs_kill_super+0x1f/0x30 [btrfs] deactivate_locked_super+0x3b/0x80 deactivate_super+0x3e/0x50 cleanup_mnt+0x109/0x160 __cleanup_mnt+0x12/0x20 task_work_run+0x67/0xa0 exit_to_usermode_loop+0xc5/0xd0 syscall_return_slowpath+0x205/0x360 do_syscall_64+0x6e/0xb0 entry_SYSCALL_64_after_hwframe+0x49/0xb3 RIP: 0033:0x7fd028ef740b [CAUSE] When balance is canceled, all reloc roots are marked as orphan, and orphan reloc roots are going to be cleaned up. However for orphan reloc roots and merged reloc roots, their lifespan are quite different: Merged reloc roots | Orphan reloc roots by cancel -------------------------------------------------------------------- create_reloc_root() | create_reloc_root() |- refs == 1 | |- refs == 1 | btrfs_grab_root(reloc_root); | btrfs_grab_root(reloc_root); |- refs == 2 | |- refs == 2 | root->reloc_root = reloc_root; | root->reloc_root = reloc_root; >>> No difference so far <<< | prepare_to_merge() | prepare_to_merge() |- btrfs_set_root_refs(item, 1);| |- if (!err) (err == -EINTR) | merge_reloc_roots() | merge_reloc_roots() |- merge_reloc_root() | |- Doing nothing to put reloc root |- insert_dirty_subvol() | |- refs == 2 |- __del_reloc_root() | |- btrfs_put_root() | |- refs == 1 | >>> Now orphan reloc roots still have refs 2 <<< | clean_dirty_subvols() | clean_dirty_subvols() |- btrfs_drop_snapshot() | |- btrfS_drop_snapshot() |- reloc_root get freed | |- reloc_root still has refs 2 | related ebs get freed, but | reloc_root still recorded in | allocated_roots btrfs_check_leaked_roots() | btrfs_check_leaked_roots() |- No leaked roots | |- Leaked reloc_roots detected | |- btrfs_put_root() | |- free_extent_buffer(root->node); | |- eb already freed, caused NULL | pointer dereference [FIX] The fix is to clear fs_root->reloc_root and put it at merge_reloc_roots() time, so that we won't leak reloc roots. Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.1+ Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-19 02:13:20 +00:00
if (!IS_ERR(root)) {
if (root->reloc_root == reloc_root) {
root->reloc_root = NULL;
btrfs_put_root(reloc_root);
}
clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
&root->state);
btrfs: reloc: fix reloc root leak and NULL pointer dereference [BUG] When balance is canceled, there is a pretty high chance that unmounting the fs can lead to lead the NULL pointer dereference: BTRFS warning (device dm-3): page private not zero on page 223158272 ... BTRFS warning (device dm-3): page private not zero on page 223162368 BTRFS error (device dm-3): leaked root 18446744073709551608-304 refcount 1 BUG: kernel NULL pointer dereference, address: 0000000000000168 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 2 PID: 5793 Comm: umount Tainted: G O 5.7.0-rc5-custom+ #53 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:__lock_acquire+0x5dc/0x24c0 Call Trace: lock_acquire+0xab/0x390 _raw_spin_lock+0x39/0x80 btrfs_release_extent_buffer_pages+0xd7/0x200 [btrfs] release_extent_buffer+0xb2/0x170 [btrfs] free_extent_buffer+0x66/0xb0 [btrfs] btrfs_put_root+0x8e/0x130 [btrfs] btrfs_check_leaked_roots.cold+0x5/0x5d [btrfs] btrfs_free_fs_info+0xe5/0x120 [btrfs] btrfs_kill_super+0x1f/0x30 [btrfs] deactivate_locked_super+0x3b/0x80 deactivate_super+0x3e/0x50 cleanup_mnt+0x109/0x160 __cleanup_mnt+0x12/0x20 task_work_run+0x67/0xa0 exit_to_usermode_loop+0xc5/0xd0 syscall_return_slowpath+0x205/0x360 do_syscall_64+0x6e/0xb0 entry_SYSCALL_64_after_hwframe+0x49/0xb3 RIP: 0033:0x7fd028ef740b [CAUSE] When balance is canceled, all reloc roots are marked as orphan, and orphan reloc roots are going to be cleaned up. However for orphan reloc roots and merged reloc roots, their lifespan are quite different: Merged reloc roots | Orphan reloc roots by cancel -------------------------------------------------------------------- create_reloc_root() | create_reloc_root() |- refs == 1 | |- refs == 1 | btrfs_grab_root(reloc_root); | btrfs_grab_root(reloc_root); |- refs == 2 | |- refs == 2 | root->reloc_root = reloc_root; | root->reloc_root = reloc_root; >>> No difference so far <<< | prepare_to_merge() | prepare_to_merge() |- btrfs_set_root_refs(item, 1);| |- if (!err) (err == -EINTR) | merge_reloc_roots() | merge_reloc_roots() |- merge_reloc_root() | |- Doing nothing to put reloc root |- insert_dirty_subvol() | |- refs == 2 |- __del_reloc_root() | |- btrfs_put_root() | |- refs == 1 | >>> Now orphan reloc roots still have refs 2 <<< | clean_dirty_subvols() | clean_dirty_subvols() |- btrfs_drop_snapshot() | |- btrfS_drop_snapshot() |- reloc_root get freed | |- reloc_root still has refs 2 | related ebs get freed, but | reloc_root still recorded in | allocated_roots btrfs_check_leaked_roots() | btrfs_check_leaked_roots() |- No leaked roots | |- Leaked reloc_roots detected | |- btrfs_put_root() | |- free_extent_buffer(root->node); | |- eb already freed, caused NULL | pointer dereference [FIX] The fix is to clear fs_root->reloc_root and put it at merge_reloc_roots() time, so that we won't leak reloc roots. Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.1+ Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-19 02:13:20 +00:00
btrfs_put_root(root);
}
list_del_init(&reloc_root->root_list);
btrfs: reloc: Also queue orphan reloc tree for cleanup to avoid BUG_ON() [BUG] When a fs has orphan reloc tree along with unfinished balance: ... item 16 key (TREE_RELOC ROOT_ITEM FS_TREE) itemoff 12090 itemsize 439 generation 12 root_dirid 256 bytenr 300400640 level 1 refs 0 <<< lastsnap 8 byte_limit 0 bytes_used 1359872 flags 0x0(none) uuid 7c48d938-33a3-4aae-ab19-6e5c9d406e46 item 17 key (BALANCE TEMPORARY_ITEM 0) itemoff 11642 itemsize 448 temporary item objectid BALANCE offset 0 balance status flags 14 Then at mount time, we can hit the following kernel BUG_ON(): BTRFS info (device dm-3): relocating block group 298844160 flags metadata|dup ------------[ cut here ]------------ kernel BUG at fs/btrfs/relocation.c:1413! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 897 Comm: btrfs-balance Tainted: G O 5.2.0-rc1-custom #15 RIP: 0010:create_reloc_root+0x1eb/0x200 [btrfs] Call Trace: btrfs_init_reloc_root+0x96/0xb0 [btrfs] record_root_in_trans+0xb2/0xe0 [btrfs] btrfs_record_root_in_trans+0x55/0x70 [btrfs] select_reloc_root+0x7e/0x230 [btrfs] do_relocation+0xc4/0x620 [btrfs] relocate_tree_blocks+0x592/0x6a0 [btrfs] relocate_block_group+0x47b/0x5d0 [btrfs] btrfs_relocate_block_group+0x183/0x2f0 [btrfs] btrfs_relocate_chunk+0x4e/0xe0 [btrfs] btrfs_balance+0x864/0xfa0 [btrfs] balance_kthread+0x3b/0x50 [btrfs] kthread+0x123/0x140 ret_from_fork+0x27/0x50 [CAUSE] In btrfs, reloc trees are used to record swapped tree blocks during balance. Reloc tree either get merged (replace old tree blocks of its parent subvolume) in next transaction if its ref is 1 (fresh). Or is already merged and will be cleaned up if its ref is 0 (orphan). After commit d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots"), reloc tree cleanup is delayed until one block group is balanced. Since fresh reloc roots are recorded during merge, as long as there is no power loss, those orphan reloc roots converted from fresh ones are handled without problem. However when power loss happens, orphan reloc roots can be recorded on-disk, thus at next mount time, we will have orphan reloc roots from on-disk data directly, and ignored by clean_dirty_subvols() routine. Then when background balance starts to balance another block group, and needs to create new reloc root for the same root, btrfs_insert_item() returns -EEXIST, and trigger that BUG_ON(). [FIX] For orphan reloc roots, also queue them to rc->dirty_subvol_roots, so all reloc roots no matter orphan or not, can be cleaned up properly and avoid above BUG_ON(). And to cooperate with above change, clean_dirty_subvols() will check if the queued root is a reloc root or a subvol root. For a subvol root, do the old work, and for a orphan reloc root, clean it up. Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.1 Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-05-22 08:33:11 +00:00
/* Don't forget to queue this reloc root for cleanup */
list_add_tail(&reloc_root->reloc_dirty_list,
&rc->dirty_subvol_roots);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
if (found) {
found = 0;
goto again;
}
out:
if (ret) {
btrfs_handle_fs_error(fs_info, ret, NULL);
free_reloc_roots(&reloc_roots);
/* new reloc root may be added */
mutex_lock(&fs_info->reloc_mutex);
list_splice_init(&rc->reloc_roots, &reloc_roots);
mutex_unlock(&fs_info->reloc_mutex);
free_reloc_roots(&reloc_roots);
}
btrfs: remove a BUG_ON() from merge_reloc_roots() This was pretty subtle, we default to reloc roots having 0 root refs, so if we crash in the middle of the relocation they can just be deleted. If we successfully complete the relocation operations we'll set our root refs to 1 in prepare_to_merge() and then go on to merge_reloc_roots(). At prepare_to_merge() time if any of the reloc roots have a 0 reference still, we will remove that reloc root from our reloc root rb tree, and then clean it up later. However this only happens if we successfully start a transaction. If we've aborted previously we will skip this step completely, and only have reloc roots with a reference count of 0, but were never properly removed from the reloc control's rb tree. This isn't a problem per-se, our references are held by the list the reloc roots are on, and by the original root the reloc root belongs to. If we end up in this situation all the reloc roots will be added to the dirty_reloc_list, and then properly dropped at that point. The reloc control will be free'd and the rb tree is no longer used. There were two options when fixing this, one was to remove the BUG_ON(), the other was to make prepare_to_merge() handle the case where we couldn't start a trans handle. IMO this is the cleaner solution. I started with handling the error in prepare_to_merge(), but it turned out super ugly. And in the end this BUG_ON() simply doesn't matter, the cleanup was happening properly, we were just panicing because this BUG_ON() only matters in the success case. So I've opted to just remove it and add a comment where it was. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-04 16:18:30 +00:00
/*
* We used to have
*
* BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
*
* here, but it's wrong. If we fail to start the transaction in
* prepare_to_merge() we will have only 0 ref reloc roots, none of which
* have actually been removed from the reloc_root_tree rb tree. This is
* fine because we're bailing here, and we hold a reference on the root
* for the list that holds it, so these roots will be cleaned up when we
* do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
* will be cleaned up on unmount.
*
* The remaining nodes will be cleaned up by free_reloc_control.
*/
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static void free_block_list(struct rb_root *blocks)
{
struct tree_block *block;
struct rb_node *rb_node;
while ((rb_node = rb_first(blocks))) {
block = rb_entry(rb_node, struct tree_block, rb_node);
rb_erase(rb_node, blocks);
kfree(block);
}
}
static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
struct btrfs_root *reloc_root)
{
struct btrfs_fs_info *fs_info = reloc_root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_root *root;
int ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs: fix data race when accessing the last_trans field of a root KCSAN complains about a data race when accessing the last_trans field of a root: [ 199.553628] BUG: KCSAN: data-race in btrfs_record_root_in_trans [btrfs] / record_root_in_trans [btrfs] [ 199.555186] read to 0x000000008801e308 of 8 bytes by task 2812 on cpu 1: [ 199.555210] btrfs_record_root_in_trans+0x9a/0x128 [btrfs] [ 199.555999] start_transaction+0x154/0xcd8 [btrfs] [ 199.556780] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.557559] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.558339] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.559123] touch_atime+0x16c/0x1e0 [ 199.559151] pipe_read+0x6a8/0x7d0 [ 199.559179] vfs_read+0x466/0x498 [ 199.559204] ksys_read+0x108/0x150 [ 199.559230] __s390x_sys_read+0x68/0x88 [ 199.559257] do_syscall+0x1c6/0x210 [ 199.559286] __do_syscall+0xc8/0xf0 [ 199.559318] system_call+0x70/0x98 [ 199.559431] write to 0x000000008801e308 of 8 bytes by task 2808 on cpu 0: [ 199.559464] record_root_in_trans+0x196/0x228 [btrfs] [ 199.560236] btrfs_record_root_in_trans+0xfe/0x128 [btrfs] [ 199.561097] start_transaction+0x154/0xcd8 [btrfs] [ 199.561927] btrfs_join_transaction+0x44/0x60 [btrfs] [ 199.562700] btrfs_dirty_inode+0x9c/0x140 [btrfs] [ 199.563493] btrfs_update_time+0x8c/0xb0 [btrfs] [ 199.564277] file_update_time+0xb8/0xf0 [ 199.564301] pipe_write+0x8ac/0xab8 [ 199.564326] vfs_write+0x33c/0x588 [ 199.564349] ksys_write+0x108/0x150 [ 199.564372] __s390x_sys_write+0x68/0x88 [ 199.564397] do_syscall+0x1c6/0x210 [ 199.564424] __do_syscall+0xc8/0xf0 [ 199.564452] system_call+0x70/0x98 This is because we update and read last_trans concurrently without any type of synchronization. This should be generally harmless and in the worst case it can make us do extra locking (btrfs_record_root_in_trans()) trigger some warnings at ctree.c or do extra work during relocation - this would probably only happen in case of load or store tearing. So fix this by always reading and updating the field using READ_ONCE() and WRITE_ONCE(), this silences KCSAN and prevents load and store tearing. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-01 09:51:28 +00:00
if (btrfs_get_root_last_trans(reloc_root) == trans->transid)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return 0;
root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
/*
* This should succeed, since we can't have a reloc root without having
* already looked up the actual root and created the reloc root for this
* root.
*
* However if there's some sort of corruption where we have a ref to a
* reloc root without a corresponding root this could return ENOENT.
*/
if (IS_ERR(root)) {
ASSERT(0);
return PTR_ERR(root);
}
if (root->reloc_root != reloc_root) {
ASSERT(0);
btrfs_err(fs_info,
"root %llu has two reloc roots associated with it",
reloc_root->root_key.offset);
btrfs_put_root(root);
return -EUCLEAN;
}
ret = btrfs_record_root_in_trans(trans, root);
btrfs_put_root(root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static noinline_for_stack
struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
struct reloc_control *rc,
struct btrfs_backref_node *node,
struct btrfs_backref_edge *edges[])
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_backref_node *next;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_root *root;
int index = 0;
int ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
next = node;
while (1) {
cond_resched();
next = walk_up_backref(next, edges, &index);
root = next->root;
/*
* If there is no root, then our references for this block are
* incomplete, as we should be able to walk all the way up to a
* block that is owned by a root.
*
* This path is only for SHAREABLE roots, so if we come upon a
* non-SHAREABLE root then we have backrefs that resolve
* improperly.
*
* Both of these cases indicate file system corruption, or a bug
* in the backref walking code.
*/
if (!root) {
ASSERT(0);
btrfs_err(trans->fs_info,
"bytenr %llu doesn't have a backref path ending in a root",
node->bytenr);
return ERR_PTR(-EUCLEAN);
}
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
ASSERT(0);
btrfs_err(trans->fs_info,
"bytenr %llu has multiple refs with one ending in a non-shareable root",
node->bytenr);
return ERR_PTR(-EUCLEAN);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID) {
ret = record_reloc_root_in_trans(trans, root);
if (ret)
return ERR_PTR(ret);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
break;
}
ret = btrfs_record_root_in_trans(trans, root);
if (ret)
return ERR_PTR(ret);
root = root->reloc_root;
/*
* We could have raced with another thread which failed, so
* root->reloc_root may not be set, return ENOENT in this case.
*/
if (!root)
return ERR_PTR(-ENOENT);
if (next->new_bytenr != root->node->start) {
/*
* We just created the reloc root, so we shouldn't have
* ->new_bytenr set and this shouldn't be in the changed
* list. If it is then we have multiple roots pointing
* at the same bytenr which indicates corruption, or
* we've made a mistake in the backref walking code.
*/
ASSERT(next->new_bytenr == 0);
ASSERT(list_empty(&next->list));
if (next->new_bytenr || !list_empty(&next->list)) {
btrfs_err(trans->fs_info,
"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
node->bytenr, next->bytenr);
return ERR_PTR(-EUCLEAN);
}
next->new_bytenr = root->node->start;
btrfs_put_root(next->root);
next->root = btrfs_grab_root(root);
ASSERT(next->root);
list_add_tail(&next->list,
&rc->backref_cache.changed);
mark_block_processed(rc, next);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
break;
}
WARN_ON(1);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
root = NULL;
next = walk_down_backref(edges, &index);
if (!next || next->level <= node->level)
break;
}
if (!root) {
/*
* This can happen if there's fs corruption or if there's a bug
* in the backref lookup code.
*/
ASSERT(0);
return ERR_PTR(-ENOENT);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
next = node;
/* setup backref node path for btrfs_reloc_cow_block */
while (1) {
rc->backref_cache.path[next->level] = next;
if (--index < 0)
break;
next = edges[index]->node[UPPER];
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
return root;
}
/*
* Select a tree root for relocation.
*
* Return NULL if the block is not shareable. We should use do_relocation() in
* this case.
*
* Return a tree root pointer if the block is shareable.
* Return -ENOENT if the block is root of reloc tree.
*/
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
static noinline_for_stack
struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_backref_node *next;
struct btrfs_root *root;
struct btrfs_root *fs_root = NULL;
struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
int index = 0;
next = node;
while (1) {
cond_resched();
next = walk_up_backref(next, edges, &index);
root = next->root;
/*
* This can occur if we have incomplete extent refs leading all
* the way up a particular path, in this case return -EUCLEAN.
*/
if (!root)
return ERR_PTR(-EUCLEAN);
/* No other choice for non-shareable tree */
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
return root;
if (btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID)
fs_root = root;
if (next != node)
return NULL;
next = walk_down_backref(edges, &index);
if (!next || next->level <= node->level)
break;
}
if (!fs_root)
return ERR_PTR(-ENOENT);
return fs_root;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static noinline_for_stack u64 calcu_metadata_size(struct reloc_control *rc,
struct btrfs_backref_node *node)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
struct btrfs_backref_node *next = node;
struct btrfs_backref_edge *edge;
struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
u64 num_bytes = 0;
int index = 0;
BUG_ON(node->processed);
while (next) {
cond_resched();
while (1) {
if (next->processed)
break;
num_bytes += fs_info->nodesize;
if (list_empty(&next->upper))
break;
edge = list_entry(next->upper.next,
struct btrfs_backref_edge, list[LOWER]);
edges[index++] = edge;
next = edge->node[UPPER];
}
next = walk_down_backref(edges, &index);
}
return num_bytes;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static int reserve_metadata_space(struct btrfs_trans_handle *trans,
struct reloc_control *rc,
struct btrfs_backref_node *node)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_root *root = rc->extent_root;
struct btrfs_fs_info *fs_info = root->fs_info;
u64 num_bytes;
int ret;
u64 tmp;
num_bytes = calcu_metadata_size(rc, node) * 2;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
trans->block_rsv = rc->block_rsv;
rc->reserved_bytes += num_bytes;
/*
* We are under a transaction here so we can only do limited flushing.
* If we get an enospc just kick back -EAGAIN so we know to drop the
* transaction and try to refill when we can flush all the things.
*/
ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
BTRFS_RESERVE_FLUSH_LIMIT);
if (ret) {
tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
while (tmp <= rc->reserved_bytes)
tmp <<= 1;
/*
* only one thread can access block_rsv at this point,
* so we don't need hold lock to protect block_rsv.
* we expand more reservation size here to allow enough
* space for relocation and we will return earlier in
* enospc case.
*/
rc->block_rsv->size = tmp + fs_info->nodesize *
RELOCATION_RESERVED_NODES;
return -EAGAIN;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
return 0;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* relocate a block tree, and then update pointers in upper level
* blocks that reference the block to point to the new location.
*
* if called by link_to_upper, the block has already been relocated.
* in that case this function just updates pointers.
*/
static int do_relocation(struct btrfs_trans_handle *trans,
struct reloc_control *rc,
struct btrfs_backref_node *node,
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_key *key,
struct btrfs_path *path, int lowest)
{
struct btrfs_backref_node *upper;
struct btrfs_backref_edge *edge;
struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_root *root;
struct extent_buffer *eb;
u32 blocksize;
u64 bytenr;
int slot;
int ret = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* If we are lowest then this is the first time we're processing this
* block, and thus shouldn't have an eb associated with it yet.
*/
ASSERT(!lowest || !node->eb);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
path->lowest_level = node->level + 1;
rc->backref_cache.path[node->level] = node;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
list_for_each_entry(edge, &node->upper, list[LOWER]) {
cond_resched();
upper = edge->node[UPPER];
root = select_reloc_root(trans, rc, upper, edges);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
goto next;
}
if (upper->eb && !upper->locked) {
if (!lowest) {
ret = btrfs_bin_search(upper->eb, 0, key, &slot);
if (ret < 0)
goto next;
BUG_ON(ret);
bytenr = btrfs_node_blockptr(upper->eb, slot);
if (node->eb->start == bytenr)
goto next;
}
btrfs_backref_drop_node_buffer(upper);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (!upper->eb) {
ret = btrfs_search_slot(trans, root, key, path, 0, 1);
if (ret) {
if (ret > 0)
ret = -ENOENT;
btrfs_release_path(path);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
break;
}
if (!upper->eb) {
upper->eb = path->nodes[upper->level];
path->nodes[upper->level] = NULL;
} else {
BUG_ON(upper->eb != path->nodes[upper->level]);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
upper->locked = 1;
path->locks[upper->level] = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
slot = path->slots[upper->level];
btrfs_release_path(path);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
} else {
ret = btrfs_bin_search(upper->eb, 0, key, &slot);
if (ret < 0)
goto next;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
BUG_ON(ret);
}
bytenr = btrfs_node_blockptr(upper->eb, slot);
if (lowest) {
if (bytenr != node->bytenr) {
btrfs_err(root->fs_info,
"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
bytenr, node->bytenr, slot,
upper->eb->start);
ret = -EIO;
goto next;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
} else {
if (node->eb->start == bytenr)
goto next;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
blocksize = root->fs_info->nodesize;
eb = btrfs_read_node_slot(upper->eb, slot);
if (IS_ERR(eb)) {
ret = PTR_ERR(eb);
goto next;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_tree_lock(eb);
if (!node->eb) {
ret = btrfs_cow_block(trans, root, eb, upper->eb,
slot, &eb, BTRFS_NESTING_COW);
btrfs_tree_unlock(eb);
free_extent_buffer(eb);
if (ret < 0)
goto next;
/*
* We've just COWed this block, it should have updated
* the correct backref node entry.
*/
ASSERT(node->eb == eb);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
} else {
struct btrfs_ref ref = {
.action = BTRFS_ADD_DELAYED_REF,
.bytenr = node->eb->start,
.num_bytes = blocksize,
.parent = upper->eb->start,
.owning_root = btrfs_header_owner(upper->eb),
.ref_root = btrfs_header_owner(upper->eb),
};
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_set_node_blockptr(upper->eb, slot,
node->eb->start);
btrfs_set_node_ptr_generation(upper->eb, slot,
trans->transid);
btrfs_mark_buffer_dirty(trans, upper->eb);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_init_tree_ref(&ref, node->level,
btrfs_root_id(root), false);
ret = btrfs_inc_extent_ref(trans, &ref);
if (!ret)
ret = btrfs_drop_subtree(trans, root, eb,
upper->eb);
if (ret)
btrfs_abort_transaction(trans, ret);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
next:
if (!upper->pending)
btrfs_backref_drop_node_buffer(upper);
else
btrfs_backref_unlock_node_buffer(upper);
if (ret)
break;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
if (!ret && node->pending) {
btrfs_backref_drop_node_buffer(node);
list_move_tail(&node->list, &rc->backref_cache.changed);
node->pending = 0;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
path->lowest_level = 0;
/*
* We should have allocated all of our space in the block rsv and thus
* shouldn't ENOSPC.
*/
ASSERT(ret != -ENOSPC);
return ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static int link_to_upper(struct btrfs_trans_handle *trans,
struct reloc_control *rc,
struct btrfs_backref_node *node,
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_path *path)
{
struct btrfs_key key;
btrfs_node_key_to_cpu(node->eb, &key, 0);
return do_relocation(trans, rc, node, &key, path, 0);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static int finish_pending_nodes(struct btrfs_trans_handle *trans,
struct reloc_control *rc,
struct btrfs_path *path, int err)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
LIST_HEAD(list);
struct btrfs_backref_cache *cache = &rc->backref_cache;
struct btrfs_backref_node *node;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
int level;
int ret;
for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
while (!list_empty(&cache->pending[level])) {
node = list_entry(cache->pending[level].next,
struct btrfs_backref_node, list);
list_move_tail(&node->list, &list);
BUG_ON(!node->pending);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (!err) {
ret = link_to_upper(trans, rc, node, path);
if (ret < 0)
err = ret;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
list_splice_init(&list, &cache->pending[level]);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
return err;
}
/*
* mark a block and all blocks directly/indirectly reference the block
* as processed.
*/
static void update_processed_blocks(struct reloc_control *rc,
struct btrfs_backref_node *node)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_backref_node *next = node;
struct btrfs_backref_edge *edge;
struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
int index = 0;
while (next) {
cond_resched();
while (1) {
if (next->processed)
break;
mark_block_processed(rc, next);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (list_empty(&next->upper))
break;
edge = list_entry(next->upper.next,
struct btrfs_backref_edge, list[LOWER]);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
edges[index++] = edge;
next = edge->node[UPPER];
}
next = walk_down_backref(edges, &index);
}
}
static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
{
u32 blocksize = rc->extent_root->fs_info->nodesize;
if (test_range_bit(&rc->processed_blocks, bytenr,
bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
return 1;
return 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static int get_tree_block_key(struct btrfs_fs_info *fs_info,
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct tree_block *block)
{
struct btrfs_tree_parent_check check = {
.level = block->level,
.owner_root = block->owner,
.transid = block->key.offset
};
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct extent_buffer *eb;
eb = read_tree_block(fs_info, block->bytenr, &check);
if (IS_ERR(eb))
return PTR_ERR(eb);
if (!extent_buffer_uptodate(eb)) {
free_extent_buffer(eb);
return -EIO;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (block->level == 0)
btrfs_item_key_to_cpu(eb, &block->key, 0);
else
btrfs_node_key_to_cpu(eb, &block->key, 0);
free_extent_buffer(eb);
block->key_ready = true;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return 0;
}
/*
* helper function to relocate a tree block
*/
static int relocate_tree_block(struct btrfs_trans_handle *trans,
struct reloc_control *rc,
struct btrfs_backref_node *node,
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_key *key,
struct btrfs_path *path)
{
struct btrfs_root *root;
int ret = 0;
if (!node)
return 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* If we fail here we want to drop our backref_node because we are going
* to start over and regenerate the tree for it.
*/
ret = reserve_metadata_space(trans, rc, node);
if (ret)
goto out;
BUG_ON(node->processed);
root = select_one_root(node);
if (IS_ERR(root)) {
ret = PTR_ERR(root);
/* See explanation in select_one_root for the -EUCLEAN case. */
ASSERT(ret == -ENOENT);
if (ret == -ENOENT) {
ret = 0;
update_processed_blocks(rc, node);
}
goto out;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
if (root) {
if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
/*
* This block was the root block of a root, and this is
* the first time we're processing the block and thus it
* should not have had the ->new_bytenr modified and
* should have not been included on the changed list.
*
* However in the case of corruption we could have
* multiple refs pointing to the same block improperly,
* and thus we would trip over these checks. ASSERT()
* for the developer case, because it could indicate a
* bug in the backref code, however error out for a
* normal user in the case of corruption.
*/
ASSERT(node->new_bytenr == 0);
ASSERT(list_empty(&node->list));
if (node->new_bytenr || !list_empty(&node->list)) {
btrfs_err(root->fs_info,
"bytenr %llu has improper references to it",
node->bytenr);
ret = -EUCLEAN;
goto out;
}
ret = btrfs_record_root_in_trans(trans, root);
if (ret)
goto out;
/*
* Another thread could have failed, need to check if we
* have reloc_root actually set.
*/
if (!root->reloc_root) {
ret = -ENOENT;
goto out;
}
root = root->reloc_root;
node->new_bytenr = root->node->start;
btrfs_put_root(node->root);
node->root = btrfs_grab_root(root);
ASSERT(node->root);
list_add_tail(&node->list, &rc->backref_cache.changed);
} else {
path->lowest_level = node->level;
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
if (root == root->fs_info->chunk_root)
btrfs_reserve_chunk_metadata(trans, false);
ret = btrfs_search_slot(trans, root, key, path, 0, 1);
btrfs_release_path(path);
btrfs: fix deadlock between chunk allocation and chunk btree modifications When a task is doing some modification to the chunk btree and it is not in the context of a chunk allocation or a chunk removal, it can deadlock with another task that is currently allocating a new data or metadata chunk. These contexts are the following: * When relocating a system chunk, when we need to COW the extent buffers that belong to the chunk btree; * When adding a new device (ioctl), where we need to add a new device item to the chunk btree; * When removing a device (ioctl), where we need to remove a device item from the chunk btree; * When resizing a device (ioctl), where we need to update a device item in the chunk btree and may need to relocate a system chunk that lies beyond the new device size when shrinking a device. The problem happens due to a sequence of steps like the following: 1) Task A starts a data or metadata chunk allocation and it locks the chunk mutex; 2) Task B is relocating a system chunk, and when it needs to COW an extent buffer of the chunk btree, it has locked both that extent buffer as well as its parent extent buffer; 3) Since there is not enough available system space, either because none of the existing system block groups have enough free space or because the only one with enough free space is in RO mode due to the relocation, task B triggers a new system chunk allocation. It blocks when trying to acquire the chunk mutex, currently held by task A; 4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert the new chunk item into the chunk btree and update the existing device items there. But in order to do that, it has to lock the extent buffer that task B locked at step 2, or its parent extent buffer, but task B is waiting on the chunk mutex, which is currently locked by task A, therefore resulting in a deadlock. One example report when the deadlock happens with system chunk relocation: INFO: task kworker/u9:5:546 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000 Workqueue: events_unbound btrfs_async_reclaim_metadata_space Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993 __down_read_common kernel/locking/rwsem.c:1214 [inline] __down_read kernel/locking/rwsem.c:1223 [inline] down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590 __btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47 btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline] btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191 btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline] btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728 btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794 btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504 do_chunk_alloc fs/btrfs/block-group.c:3408 [inline] btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653 flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670 btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953 process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297 worker_thread+0x90/0xed0 kernel/workqueue.c:2444 kthread+0x3e5/0x4d0 kernel/kthread.c:319 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295 INFO: task syz-executor:9107 blocked for more than 143 seconds. Not tainted 5.15.0-rc3+ #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004 Call Trace: context_switch kernel/sched/core.c:4940 [inline] __schedule+0xcd9/0x2530 kernel/sched/core.c:6287 schedule+0xd3/0x270 kernel/sched/core.c:6366 schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425 __mutex_lock_common kernel/locking/mutex.c:669 [inline] __mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729 btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631 find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline] find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335 btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415 btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813 __btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415 btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570 btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768 relocate_tree_block fs/btrfs/relocation.c:2694 [inline] relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757 relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673 btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070 btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181 __btrfs_balance fs/btrfs/volumes.c:3911 [inline] btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301 btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137 btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:874 [inline] __se_sys_ioctl fs/ioctl.c:860 [inline] __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae So fix this by making sure that whenever we try to modify the chunk btree and we are neither in a chunk allocation context nor in a chunk remove context, we reserve system space before modifying the chunk btree. Reported-by: Hao Sun <sunhao.th@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/ Fixes: 79bd37120b1495 ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array") CC: stable@vger.kernel.org # 5.14+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-10-13 09:12:49 +00:00
if (root == root->fs_info->chunk_root)
btrfs_trans_release_chunk_metadata(trans);
if (ret > 0)
ret = 0;
}
if (!ret)
update_processed_blocks(rc, node);
} else {
ret = do_relocation(trans, rc, node, key, path, 1);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
out:
if (ret || node->level == 0 || node->cowonly)
btrfs_backref_cleanup_node(&rc->backref_cache, node);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return ret;
}
/*
* relocate a list of blocks
*/
static noinline_for_stack
int relocate_tree_blocks(struct btrfs_trans_handle *trans,
struct reloc_control *rc, struct rb_root *blocks)
{
struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
struct btrfs_backref_node *node;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_path *path;
struct tree_block *block;
struct tree_block *next;
int ret = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out_free_blocks;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/* Kick in readahead for tree blocks with missing keys */
rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (!block->key_ready)
btrfs: keep track of the root owner for relocation reads While testing the error paths in relocation, I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc3+ #206 Not tainted ------------------------------------------------------ btrfs-balance/1571 is trying to acquire lock: ffff8cdbcc8f77d0 (&head_ref->mutex){+.+.}-{3:3}, at: btrfs_lookup_extent_info+0x156/0x3b0 but task is already holding lock: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-00){++++}-{3:3}: down_write_nested+0x43/0x80 __btrfs_tree_lock+0x27/0x100 btrfs_search_slot+0x248/0x890 relocate_tree_blocks+0x490/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 -> #1 (btrfs-csum-01){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x5ab/0x890 btrfs_del_csums+0x10b/0x3c0 __btrfs_free_extent+0x49d/0x8e0 __btrfs_run_delayed_refs+0x283/0x11f0 btrfs_run_delayed_refs+0x86/0x220 btrfs_start_dirty_block_groups+0x2ba/0x520 kretprobe_trampoline+0x0/0x50 -> #0 (&head_ref->mutex){+.+.}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 __mutex_lock+0x7e/0x7b0 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 other info that might help us debug this: Chain exists of: &head_ref->mutex --> btrfs-csum-01 --> btrfs-tree-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(btrfs-csum-01); lock(btrfs-tree-00); lock(&head_ref->mutex); *** DEADLOCK *** 5 locks held by btrfs-balance/1571: #0: ffff8cdb89749ff8 (&fs_info->delete_unused_bgs_mutex){+.+.}-{3:3}, at: btrfs_balance+0x563/0xf40 #1: ffff8cdb89748838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x156/0x300 #2: ffff8cdbc2c16650 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x413/0x5c0 #3: ffff8cdbc135f538 (btrfs-treloc-01){+.+.}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 #4: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 stack backtrace: CPU: 1 PID: 1571 Comm: btrfs-balance Not tainted 5.10.0-rc3+ #206 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 ? btrfs_lookup_extent_info+0x156/0x3b0 __mutex_lock+0x7e/0x7b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? release_extent_buffer+0x124/0x170 ? _raw_spin_unlock+0x1f/0x30 ? release_extent_buffer+0x124/0x170 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 ? add_tree_block+0x149/0x1b0 relocate_block_group+0x1ba/0x5d0 elfcorehdr_read+0x40/0x40 ? elfcorehdr_read+0x40/0x40 ? btrfs_balance+0x796/0xf40 ? __kthread_parkme+0x66/0x90 ? btrfs_balance+0xf40/0xf40 ? balance_kthread+0x37/0x50 ? kthread+0x137/0x150 ? __kthread_bind_mask+0x60/0x60 ? ret_from_fork+0x1f/0x30 As you can see this is bogus, we never take another tree's lock under the csum lock. This happens because sometimes we have to read tree blocks from disk without knowing which root they belong to during relocation. We defaulted to an owner of 0, which translates to an fs tree. This is fine as all fs trees have the same class, but obviously isn't fine if the block belongs to a COW only tree. Thankfully COW only trees only have their owners root as a reference to them, and since we already look up the extent information during relocation, go ahead and check and see if this block might belong to a COW only tree, and if so save the owner in the tree_block struct. This allows us to read_tree_block with the proper owner, which gets rid of this lockdep splat. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-16 16:22:15 +00:00
btrfs_readahead_tree_block(fs_info, block->bytenr,
block->owner, 0,
block->level);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
/* Get first keys */
rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
if (!block->key_ready) {
ret = get_tree_block_key(fs_info, block);
if (ret)
goto out_free_path;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
/* Do tree relocation */
rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
btrfs: fix unwritten extent buffer after snapshotting a new subvolume When creating a snapshot of a subvolume that was created in the current transaction, we can end up not persisting a dirty extent buffer that is referenced by the snapshot, resulting in IO errors due to checksum failures when trying to read the extent buffer later from disk. A sequence of steps that leads to this is the following: 1) At ioctl.c:create_subvol() we allocate an extent buffer, with logical address 36007936, for the leaf/root of a new subvolume that has an ID of 291. We mark the extent buffer as dirty, and at this point the subvolume tree has a single node/leaf which is also its root (level 0); 2) We no longer commit the transaction used to create the subvolume at create_subvol(). We used to, but that was recently removed in commit 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create"); 3) The transaction used to create the subvolume has an ID of 33, so the extent buffer 36007936 has a generation of 33; 4) Several updates happen to subvolume 291 during transaction 33, several files created and its tree height changes from 0 to 1, so we end up with a new root at level 1 and the extent buffer 36007936 is now a leaf of that new root node, which is extent buffer 36048896. The commit root remains as 36007936, since we are still at transaction 33; 5) Creation of a snapshot of subvolume 291, with an ID of 292, starts at ioctl.c:create_snapshot(). This triggers a commit of transaction 33 and we end up at transaction.c:create_pending_snapshot(), in the critical section of a transaction commit. There we COW the root of subvolume 291, which is extent buffer 36048896. The COW operation returns extent buffer 36048896, since there's no need to COW because the extent buffer was created in this transaction and it was not written yet. The we call btrfs_copy_root() against the root node 36048896. During this operation we allocate a new extent buffer to turn into the root node of the snapshot, copy the contents of the root node 36048896 into this snapshot root extent buffer, set the owner to 292 (the ID of the snapshot), etc, and then we call btrfs_inc_ref(). This will create a delayed reference for each leaf pointed by the root node with a reference root of 292 - this includes a reference for the leaf 36007936. After that we set the bit BTRFS_ROOT_FORCE_COW in the root's state. Then we call btrfs_insert_dir_item(), to create the directory entry in in the tree of subvolume 291 that points to the snapshot. This ends up needing to modify leaf 36007936 to insert the respective directory items. Because the bit BTRFS_ROOT_FORCE_COW is set for the root's state, we need to COW the leaf. We end up at btrfs_force_cow_block() and then at update_ref_for_cow(). At update_ref_for_cow() we call btrfs_block_can_be_shared() which returns false, despite the fact the leaf 36007936 is shared - the subvolume's root and the snapshot's root point to that leaf. The reason that it incorrectly returns false is because the commit root of the subvolume is extent buffer 36007936 - it was the initial root of the subvolume when we created it. So btrfs_block_can_be_shared() which has the following logic: int btrfs_block_can_be_shared(struct btrfs_root *root, struct extent_buffer *buf) { if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && buf != root->node && buf != root->commit_root && (btrfs_header_generation(buf) <= btrfs_root_last_snapshot(&root->root_item) || btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) return 1; return 0; } Returns false (0) since 'buf' (extent buffer 36007936) matches the root's commit root. As a result, at update_ref_for_cow(), we don't check for the number of references for extent buffer 36007936, we just assume it's not shared and therefore that it has only 1 reference, so we set the local variable 'refs' to 1. Later on, in the final if-else statement at update_ref_for_cow(): static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, struct btrfs_root *root, struct extent_buffer *buf, struct extent_buffer *cow, int *last_ref) { (...) if (refs > 1) { (...) } else { (...) btrfs_clear_buffer_dirty(trans, buf); *last_ref = 1; } } So we mark the extent buffer 36007936 as not dirty, and as a result we don't write it to disk later in the transaction commit, despite the fact that the snapshot's root points to it. Attempting to access the leaf or dumping the tree for example shows that the extent buffer was not written: $ btrfs inspect-internal dump-tree -t 292 /dev/sdb btrfs-progs v6.2.2 file tree key (292 ROOT_ITEM 33) node 36110336 level 1 items 2 free space 119 generation 33 owner 292 node 36110336 flags 0x1(WRITTEN) backref revision 1 checksum stored a8103e3e checksum calced a8103e3e fs uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 chunk uuid e8c9c885-78f4-4d31-85fe-89e5f5fd4a07 key (256 INODE_ITEM 0) block 36007936 gen 33 key (257 EXTENT_DATA 0) block 36052992 gen 33 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 total bytes 107374182400 bytes used 38572032 uuid 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 The respective on disk region is full of zeroes as the device was trimmed at mkfs time. Obviously 'btrfs check' also detects and complains about this: $ btrfs check /dev/sdb Opening filesystem to check... Checking filesystem on /dev/sdb UUID: 90c9a46f-ae9f-4626-9aff-0cbf3e2e3a79 generation: 33 (33) [1/7] checking root items [2/7] checking extents checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 bad tree block 36007936, bytenr mismatch, want=36007936, have=0 owner ref check failed [36007936 4096] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space tree [4/7] checking fs roots checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 checksum verify failed on 36007936 wanted 0x00000000 found 0x86005f29 bad tree block 36007936, bytenr mismatch, want=36007936, have=0 The following tree block(s) is corrupted in tree 292: tree block bytenr: 36110336, level: 1, node key: (256, 1, 0) root 292 root dir 256 not found ERROR: errors found in fs roots found 38572032 bytes used, error(s) found total csum bytes: 16048 total tree bytes: 1265664 total fs tree bytes: 1118208 total extent tree bytes: 65536 btree space waste bytes: 562598 file data blocks allocated: 65978368 referenced 36569088 Fix this by updating btrfs_block_can_be_shared() to consider that an extent buffer may be shared if it matches the commit root and if its generation matches the current transaction's generation. This can be reproduced with the following script: $ cat test.sh #!/bin/bash MNT=/mnt/sdi DEV=/dev/sdi # Use a filesystem with a 64K node size so that we have the same node # size on every machine regardless of its page size (on x86_64 default # node size is 16K due to the 4K page size, while on PPC it's 64K by # default). This way we can make sure we are able to create a btree for # the subvolume with a height of 2. mkfs.btrfs -f -n 64K $DEV mount $DEV $MNT btrfs subvolume create $MNT/subvol # Create a few empty files on the subvolume, this bumps its btree # height to 2 (root node at level 1 and 2 leaves). for ((i = 1; i <= 300; i++)); do echo -n > $MNT/subvol/file_$i done btrfs subvolume snapshot -r $MNT/subvol $MNT/subvol/snap umount $DEV btrfs check $DEV Running it on a 6.5 kernel (or any 6.6-rc kernel at the moment): $ ./test.sh Create subvolume '/mnt/sdi/subvol' Create a readonly snapshot of '/mnt/sdi/subvol' in '/mnt/sdi/subvol/snap' Opening filesystem to check... Checking filesystem on /dev/sdi UUID: bbdde2ff-7d02-45ca-8a73-3c36f23755a1 [1/7] checking root items [2/7] checking extents parent transid verify failed on 30539776 wanted 7 found 5 parent transid verify failed on 30539776 wanted 7 found 5 parent transid verify failed on 30539776 wanted 7 found 5 Ignoring transid failure owner ref check failed [30539776 65536] ERROR: errors found in extent allocation tree or chunk allocation [3/7] checking free space tree [4/7] checking fs roots parent transid verify failed on 30539776 wanted 7 found 5 Ignoring transid failure Wrong key of child node/leaf, wanted: (256, 1, 0), have: (2, 132, 0) Wrong generation of child node/leaf, wanted: 5, have: 7 root 257 root dir 256 not found ERROR: errors found in fs roots found 917504 bytes used, error(s) found total csum bytes: 0 total tree bytes: 851968 total fs tree bytes: 393216 total extent tree bytes: 65536 btree space waste bytes: 736550 file data blocks allocated: 0 referenced 0 A test case for fstests will follow soon. Fixes: 1b53e51a4a8f ("btrfs: don't commit transaction for every subvol create") CC: stable@vger.kernel.org # 6.5+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-10-19 12:19:28 +00:00
node = build_backref_tree(trans, rc, &block->key,
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
block->level, block->bytenr);
if (IS_ERR(node)) {
ret = PTR_ERR(node);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
goto out;
}
ret = relocate_tree_block(trans, rc, node, &block->key,
path);
if (ret < 0)
break;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
out:
ret = finish_pending_nodes(trans, rc, path, ret);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
out_free_path:
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_free_path(path);
out_free_blocks:
free_block_list(blocks);
return ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static noinline_for_stack int prealloc_file_extent_cluster(struct reloc_control *rc)
{
const struct file_extent_cluster *cluster = &rc->cluster;
struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
u64 alloc_hint = 0;
u64 start;
u64 end;
u64 offset = inode->reloc_block_group_start;
u64 num_bytes;
int nr;
int ret = 0;
btrfs: subpage: fix relocation potentially overwriting last page data [BUG] When using the following script, btrfs will report data corruption after one data balance with subpage support: mkfs.btrfs -f -s 4k $dev mount $dev -o nospace_cache $mnt $fsstress -w -n 8 -s 1620948986 -d $mnt/ -v > /tmp/fsstress sync btrfs balance start -d $mnt btrfs scrub start -B $mnt Similar problem can be easily observed in btrfs/028 test case, there will be tons of balance failure with -EIO. [CAUSE] Above fsstress will result the following data extents layout in extent tree: item 10 key (13631488 EXTENT_ITEM 98304) itemoff 15889 itemsize 82 refs 2 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 1339392 count 1 extent data backref root FS_TREE objectid 259 offset 647168 count 1 item 11 key (13631488 BLOCK_GROUP_ITEM 8388608) itemoff 15865 itemsize 24 block group used 102400 chunk_objectid 256 flags DATA item 12 key (13733888 EXTENT_ITEM 4096) itemoff 15812 itemsize 53 refs 1 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 729088 count 1 Then when creating the data reloc inode, the data reloc inode will look like this: 0 32K 64K 96K 100K 104K |<------ Extent A ----->| |<- Ext B ->| Then when we first try to relocate extent A, we setup the data reloc inode with i_size 96K, then read both page [0, 64K) and page [64K, 128K). For page 64K, since the i_size is just 96K, we fill range [96K, 128K) with 0 and set it uptodate. Then when we come to extent B, we update i_size to 104K, then try to read page [64K, 128K). Then we find the page is already uptodate, so we skip the read. But range [96K, 128K) is filled with 0, not the real data. Then we writeback the data reloc inode to disk, with 0 filling range [96K, 128K), corrupting the content of extent B. The behavior is caused by the fact that we still do full page read for subpage case. The bug won't really happen for regular sectorsize, as one page only contains one sector. [FIX] This patch will fix the problem by invalidating range [i_size, PAGE_END] in prealloc_file_extent_cluster(). So that if above example happens, when we preallocate the file extent for extent B, we will clear the uptodate bits for range [96K, 128K), allowing later relocate_one_page() to re-read the needed range. There is a special note for the invalidating part. Since we're not calling real btrfs_invalidatepage(), but just clearing the subpage and page uptodate bits, we can leave a page half dirty and half out of date. Reading such page can cause a deadlock, as we normally expect a dirty page to be fully uptodate. Thus here we flush and wait the data reloc inode before doing the hacked invalidating. This won't cause extra overhead, as we're going to writeback the data later anyway. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:35:05 +00:00
u64 i_size = i_size_read(&inode->vfs_inode);
u64 prealloc_start = cluster->start - offset;
u64 prealloc_end = cluster->end - offset;
u64 cur_offset = prealloc_start;
btrfs: subpage: fix relocation potentially overwriting last page data [BUG] When using the following script, btrfs will report data corruption after one data balance with subpage support: mkfs.btrfs -f -s 4k $dev mount $dev -o nospace_cache $mnt $fsstress -w -n 8 -s 1620948986 -d $mnt/ -v > /tmp/fsstress sync btrfs balance start -d $mnt btrfs scrub start -B $mnt Similar problem can be easily observed in btrfs/028 test case, there will be tons of balance failure with -EIO. [CAUSE] Above fsstress will result the following data extents layout in extent tree: item 10 key (13631488 EXTENT_ITEM 98304) itemoff 15889 itemsize 82 refs 2 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 1339392 count 1 extent data backref root FS_TREE objectid 259 offset 647168 count 1 item 11 key (13631488 BLOCK_GROUP_ITEM 8388608) itemoff 15865 itemsize 24 block group used 102400 chunk_objectid 256 flags DATA item 12 key (13733888 EXTENT_ITEM 4096) itemoff 15812 itemsize 53 refs 1 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 729088 count 1 Then when creating the data reloc inode, the data reloc inode will look like this: 0 32K 64K 96K 100K 104K |<------ Extent A ----->| |<- Ext B ->| Then when we first try to relocate extent A, we setup the data reloc inode with i_size 96K, then read both page [0, 64K) and page [64K, 128K). For page 64K, since the i_size is just 96K, we fill range [96K, 128K) with 0 and set it uptodate. Then when we come to extent B, we update i_size to 104K, then try to read page [64K, 128K). Then we find the page is already uptodate, so we skip the read. But range [96K, 128K) is filled with 0, not the real data. Then we writeback the data reloc inode to disk, with 0 filling range [96K, 128K), corrupting the content of extent B. The behavior is caused by the fact that we still do full page read for subpage case. The bug won't really happen for regular sectorsize, as one page only contains one sector. [FIX] This patch will fix the problem by invalidating range [i_size, PAGE_END] in prealloc_file_extent_cluster(). So that if above example happens, when we preallocate the file extent for extent B, we will clear the uptodate bits for range [96K, 128K), allowing later relocate_one_page() to re-read the needed range. There is a special note for the invalidating part. Since we're not calling real btrfs_invalidatepage(), but just clearing the subpage and page uptodate bits, we can leave a page half dirty and half out of date. Reading such page can cause a deadlock, as we normally expect a dirty page to be fully uptodate. Thus here we flush and wait the data reloc inode before doing the hacked invalidating. This won't cause extra overhead, as we're going to writeback the data later anyway. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:35:05 +00:00
/*
* For subpage case, previous i_size may not be aligned to PAGE_SIZE.
* This means the range [i_size, PAGE_END + 1) is filled with zeros by
* btrfs_do_readpage() call of previously relocated file cluster.
*
* If the current cluster starts in the above range, btrfs_do_readpage()
* will skip the read, and relocate_one_folio() will later writeback
btrfs: subpage: fix relocation potentially overwriting last page data [BUG] When using the following script, btrfs will report data corruption after one data balance with subpage support: mkfs.btrfs -f -s 4k $dev mount $dev -o nospace_cache $mnt $fsstress -w -n 8 -s 1620948986 -d $mnt/ -v > /tmp/fsstress sync btrfs balance start -d $mnt btrfs scrub start -B $mnt Similar problem can be easily observed in btrfs/028 test case, there will be tons of balance failure with -EIO. [CAUSE] Above fsstress will result the following data extents layout in extent tree: item 10 key (13631488 EXTENT_ITEM 98304) itemoff 15889 itemsize 82 refs 2 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 1339392 count 1 extent data backref root FS_TREE objectid 259 offset 647168 count 1 item 11 key (13631488 BLOCK_GROUP_ITEM 8388608) itemoff 15865 itemsize 24 block group used 102400 chunk_objectid 256 flags DATA item 12 key (13733888 EXTENT_ITEM 4096) itemoff 15812 itemsize 53 refs 1 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 729088 count 1 Then when creating the data reloc inode, the data reloc inode will look like this: 0 32K 64K 96K 100K 104K |<------ Extent A ----->| |<- Ext B ->| Then when we first try to relocate extent A, we setup the data reloc inode with i_size 96K, then read both page [0, 64K) and page [64K, 128K). For page 64K, since the i_size is just 96K, we fill range [96K, 128K) with 0 and set it uptodate. Then when we come to extent B, we update i_size to 104K, then try to read page [64K, 128K). Then we find the page is already uptodate, so we skip the read. But range [96K, 128K) is filled with 0, not the real data. Then we writeback the data reloc inode to disk, with 0 filling range [96K, 128K), corrupting the content of extent B. The behavior is caused by the fact that we still do full page read for subpage case. The bug won't really happen for regular sectorsize, as one page only contains one sector. [FIX] This patch will fix the problem by invalidating range [i_size, PAGE_END] in prealloc_file_extent_cluster(). So that if above example happens, when we preallocate the file extent for extent B, we will clear the uptodate bits for range [96K, 128K), allowing later relocate_one_page() to re-read the needed range. There is a special note for the invalidating part. Since we're not calling real btrfs_invalidatepage(), but just clearing the subpage and page uptodate bits, we can leave a page half dirty and half out of date. Reading such page can cause a deadlock, as we normally expect a dirty page to be fully uptodate. Thus here we flush and wait the data reloc inode before doing the hacked invalidating. This won't cause extra overhead, as we're going to writeback the data later anyway. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:35:05 +00:00
* the padding zeros as new data, causing data corruption.
*
* Here we have to manually invalidate the range (i_size, PAGE_END + 1).
*/
if (!PAGE_ALIGNED(i_size)) {
btrfs: subpage: fix relocation potentially overwriting last page data [BUG] When using the following script, btrfs will report data corruption after one data balance with subpage support: mkfs.btrfs -f -s 4k $dev mount $dev -o nospace_cache $mnt $fsstress -w -n 8 -s 1620948986 -d $mnt/ -v > /tmp/fsstress sync btrfs balance start -d $mnt btrfs scrub start -B $mnt Similar problem can be easily observed in btrfs/028 test case, there will be tons of balance failure with -EIO. [CAUSE] Above fsstress will result the following data extents layout in extent tree: item 10 key (13631488 EXTENT_ITEM 98304) itemoff 15889 itemsize 82 refs 2 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 1339392 count 1 extent data backref root FS_TREE objectid 259 offset 647168 count 1 item 11 key (13631488 BLOCK_GROUP_ITEM 8388608) itemoff 15865 itemsize 24 block group used 102400 chunk_objectid 256 flags DATA item 12 key (13733888 EXTENT_ITEM 4096) itemoff 15812 itemsize 53 refs 1 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 729088 count 1 Then when creating the data reloc inode, the data reloc inode will look like this: 0 32K 64K 96K 100K 104K |<------ Extent A ----->| |<- Ext B ->| Then when we first try to relocate extent A, we setup the data reloc inode with i_size 96K, then read both page [0, 64K) and page [64K, 128K). For page 64K, since the i_size is just 96K, we fill range [96K, 128K) with 0 and set it uptodate. Then when we come to extent B, we update i_size to 104K, then try to read page [64K, 128K). Then we find the page is already uptodate, so we skip the read. But range [96K, 128K) is filled with 0, not the real data. Then we writeback the data reloc inode to disk, with 0 filling range [96K, 128K), corrupting the content of extent B. The behavior is caused by the fact that we still do full page read for subpage case. The bug won't really happen for regular sectorsize, as one page only contains one sector. [FIX] This patch will fix the problem by invalidating range [i_size, PAGE_END] in prealloc_file_extent_cluster(). So that if above example happens, when we preallocate the file extent for extent B, we will clear the uptodate bits for range [96K, 128K), allowing later relocate_one_page() to re-read the needed range. There is a special note for the invalidating part. Since we're not calling real btrfs_invalidatepage(), but just clearing the subpage and page uptodate bits, we can leave a page half dirty and half out of date. Reading such page can cause a deadlock, as we normally expect a dirty page to be fully uptodate. Thus here we flush and wait the data reloc inode before doing the hacked invalidating. This won't cause extra overhead, as we're going to writeback the data later anyway. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:35:05 +00:00
struct address_space *mapping = inode->vfs_inode.i_mapping;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
const u32 sectorsize = fs_info->sectorsize;
struct folio *folio;
btrfs: subpage: fix relocation potentially overwriting last page data [BUG] When using the following script, btrfs will report data corruption after one data balance with subpage support: mkfs.btrfs -f -s 4k $dev mount $dev -o nospace_cache $mnt $fsstress -w -n 8 -s 1620948986 -d $mnt/ -v > /tmp/fsstress sync btrfs balance start -d $mnt btrfs scrub start -B $mnt Similar problem can be easily observed in btrfs/028 test case, there will be tons of balance failure with -EIO. [CAUSE] Above fsstress will result the following data extents layout in extent tree: item 10 key (13631488 EXTENT_ITEM 98304) itemoff 15889 itemsize 82 refs 2 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 1339392 count 1 extent data backref root FS_TREE objectid 259 offset 647168 count 1 item 11 key (13631488 BLOCK_GROUP_ITEM 8388608) itemoff 15865 itemsize 24 block group used 102400 chunk_objectid 256 flags DATA item 12 key (13733888 EXTENT_ITEM 4096) itemoff 15812 itemsize 53 refs 1 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 729088 count 1 Then when creating the data reloc inode, the data reloc inode will look like this: 0 32K 64K 96K 100K 104K |<------ Extent A ----->| |<- Ext B ->| Then when we first try to relocate extent A, we setup the data reloc inode with i_size 96K, then read both page [0, 64K) and page [64K, 128K). For page 64K, since the i_size is just 96K, we fill range [96K, 128K) with 0 and set it uptodate. Then when we come to extent B, we update i_size to 104K, then try to read page [64K, 128K). Then we find the page is already uptodate, so we skip the read. But range [96K, 128K) is filled with 0, not the real data. Then we writeback the data reloc inode to disk, with 0 filling range [96K, 128K), corrupting the content of extent B. The behavior is caused by the fact that we still do full page read for subpage case. The bug won't really happen for regular sectorsize, as one page only contains one sector. [FIX] This patch will fix the problem by invalidating range [i_size, PAGE_END] in prealloc_file_extent_cluster(). So that if above example happens, when we preallocate the file extent for extent B, we will clear the uptodate bits for range [96K, 128K), allowing later relocate_one_page() to re-read the needed range. There is a special note for the invalidating part. Since we're not calling real btrfs_invalidatepage(), but just clearing the subpage and page uptodate bits, we can leave a page half dirty and half out of date. Reading such page can cause a deadlock, as we normally expect a dirty page to be fully uptodate. Thus here we flush and wait the data reloc inode before doing the hacked invalidating. This won't cause extra overhead, as we're going to writeback the data later anyway. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:35:05 +00:00
ASSERT(sectorsize < PAGE_SIZE);
ASSERT(IS_ALIGNED(i_size, sectorsize));
/*
* Subpage can't handle page with DIRTY but without UPTODATE
* bit as it can lead to the following deadlock:
*
* btrfs_read_folio()
btrfs: subpage: fix relocation potentially overwriting last page data [BUG] When using the following script, btrfs will report data corruption after one data balance with subpage support: mkfs.btrfs -f -s 4k $dev mount $dev -o nospace_cache $mnt $fsstress -w -n 8 -s 1620948986 -d $mnt/ -v > /tmp/fsstress sync btrfs balance start -d $mnt btrfs scrub start -B $mnt Similar problem can be easily observed in btrfs/028 test case, there will be tons of balance failure with -EIO. [CAUSE] Above fsstress will result the following data extents layout in extent tree: item 10 key (13631488 EXTENT_ITEM 98304) itemoff 15889 itemsize 82 refs 2 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 1339392 count 1 extent data backref root FS_TREE objectid 259 offset 647168 count 1 item 11 key (13631488 BLOCK_GROUP_ITEM 8388608) itemoff 15865 itemsize 24 block group used 102400 chunk_objectid 256 flags DATA item 12 key (13733888 EXTENT_ITEM 4096) itemoff 15812 itemsize 53 refs 1 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 729088 count 1 Then when creating the data reloc inode, the data reloc inode will look like this: 0 32K 64K 96K 100K 104K |<------ Extent A ----->| |<- Ext B ->| Then when we first try to relocate extent A, we setup the data reloc inode with i_size 96K, then read both page [0, 64K) and page [64K, 128K). For page 64K, since the i_size is just 96K, we fill range [96K, 128K) with 0 and set it uptodate. Then when we come to extent B, we update i_size to 104K, then try to read page [64K, 128K). Then we find the page is already uptodate, so we skip the read. But range [96K, 128K) is filled with 0, not the real data. Then we writeback the data reloc inode to disk, with 0 filling range [96K, 128K), corrupting the content of extent B. The behavior is caused by the fact that we still do full page read for subpage case. The bug won't really happen for regular sectorsize, as one page only contains one sector. [FIX] This patch will fix the problem by invalidating range [i_size, PAGE_END] in prealloc_file_extent_cluster(). So that if above example happens, when we preallocate the file extent for extent B, we will clear the uptodate bits for range [96K, 128K), allowing later relocate_one_page() to re-read the needed range. There is a special note for the invalidating part. Since we're not calling real btrfs_invalidatepage(), but just clearing the subpage and page uptodate bits, we can leave a page half dirty and half out of date. Reading such page can cause a deadlock, as we normally expect a dirty page to be fully uptodate. Thus here we flush and wait the data reloc inode before doing the hacked invalidating. This won't cause extra overhead, as we're going to writeback the data later anyway. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:35:05 +00:00
* | Page already *locked*
* |- btrfs_lock_and_flush_ordered_range()
* |- btrfs_start_ordered_extent()
* |- extent_write_cache_pages()
* |- lock_page()
* We try to lock the page we already hold.
*
* Here we just writeback the whole data reloc inode, so that
* we will be ensured to have no dirty range in the page, and
* are safe to clear the uptodate bits.
*
* This shouldn't cause too much overhead, as we need to write
* the data back anyway.
*/
ret = filemap_write_and_wait(mapping);
if (ret < 0)
return ret;
clear_extent_bits(&inode->io_tree, i_size,
round_up(i_size, PAGE_SIZE) - 1,
EXTENT_UPTODATE);
folio = filemap_lock_folio(mapping, i_size >> PAGE_SHIFT);
btrfs: subpage: fix relocation potentially overwriting last page data [BUG] When using the following script, btrfs will report data corruption after one data balance with subpage support: mkfs.btrfs -f -s 4k $dev mount $dev -o nospace_cache $mnt $fsstress -w -n 8 -s 1620948986 -d $mnt/ -v > /tmp/fsstress sync btrfs balance start -d $mnt btrfs scrub start -B $mnt Similar problem can be easily observed in btrfs/028 test case, there will be tons of balance failure with -EIO. [CAUSE] Above fsstress will result the following data extents layout in extent tree: item 10 key (13631488 EXTENT_ITEM 98304) itemoff 15889 itemsize 82 refs 2 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 1339392 count 1 extent data backref root FS_TREE objectid 259 offset 647168 count 1 item 11 key (13631488 BLOCK_GROUP_ITEM 8388608) itemoff 15865 itemsize 24 block group used 102400 chunk_objectid 256 flags DATA item 12 key (13733888 EXTENT_ITEM 4096) itemoff 15812 itemsize 53 refs 1 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 729088 count 1 Then when creating the data reloc inode, the data reloc inode will look like this: 0 32K 64K 96K 100K 104K |<------ Extent A ----->| |<- Ext B ->| Then when we first try to relocate extent A, we setup the data reloc inode with i_size 96K, then read both page [0, 64K) and page [64K, 128K). For page 64K, since the i_size is just 96K, we fill range [96K, 128K) with 0 and set it uptodate. Then when we come to extent B, we update i_size to 104K, then try to read page [64K, 128K). Then we find the page is already uptodate, so we skip the read. But range [96K, 128K) is filled with 0, not the real data. Then we writeback the data reloc inode to disk, with 0 filling range [96K, 128K), corrupting the content of extent B. The behavior is caused by the fact that we still do full page read for subpage case. The bug won't really happen for regular sectorsize, as one page only contains one sector. [FIX] This patch will fix the problem by invalidating range [i_size, PAGE_END] in prealloc_file_extent_cluster(). So that if above example happens, when we preallocate the file extent for extent B, we will clear the uptodate bits for range [96K, 128K), allowing later relocate_one_page() to re-read the needed range. There is a special note for the invalidating part. Since we're not calling real btrfs_invalidatepage(), but just clearing the subpage and page uptodate bits, we can leave a page half dirty and half out of date. Reading such page can cause a deadlock, as we normally expect a dirty page to be fully uptodate. Thus here we flush and wait the data reloc inode before doing the hacked invalidating. This won't cause extra overhead, as we're going to writeback the data later anyway. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:35:05 +00:00
/*
* If page is freed we don't need to do anything then, as we
* will re-read the whole page anyway.
*/
if (!IS_ERR(folio)) {
btrfs_subpage_clear_uptodate(fs_info, folio, i_size,
btrfs: subpage: fix relocation potentially overwriting last page data [BUG] When using the following script, btrfs will report data corruption after one data balance with subpage support: mkfs.btrfs -f -s 4k $dev mount $dev -o nospace_cache $mnt $fsstress -w -n 8 -s 1620948986 -d $mnt/ -v > /tmp/fsstress sync btrfs balance start -d $mnt btrfs scrub start -B $mnt Similar problem can be easily observed in btrfs/028 test case, there will be tons of balance failure with -EIO. [CAUSE] Above fsstress will result the following data extents layout in extent tree: item 10 key (13631488 EXTENT_ITEM 98304) itemoff 15889 itemsize 82 refs 2 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 1339392 count 1 extent data backref root FS_TREE objectid 259 offset 647168 count 1 item 11 key (13631488 BLOCK_GROUP_ITEM 8388608) itemoff 15865 itemsize 24 block group used 102400 chunk_objectid 256 flags DATA item 12 key (13733888 EXTENT_ITEM 4096) itemoff 15812 itemsize 53 refs 1 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 729088 count 1 Then when creating the data reloc inode, the data reloc inode will look like this: 0 32K 64K 96K 100K 104K |<------ Extent A ----->| |<- Ext B ->| Then when we first try to relocate extent A, we setup the data reloc inode with i_size 96K, then read both page [0, 64K) and page [64K, 128K). For page 64K, since the i_size is just 96K, we fill range [96K, 128K) with 0 and set it uptodate. Then when we come to extent B, we update i_size to 104K, then try to read page [64K, 128K). Then we find the page is already uptodate, so we skip the read. But range [96K, 128K) is filled with 0, not the real data. Then we writeback the data reloc inode to disk, with 0 filling range [96K, 128K), corrupting the content of extent B. The behavior is caused by the fact that we still do full page read for subpage case. The bug won't really happen for regular sectorsize, as one page only contains one sector. [FIX] This patch will fix the problem by invalidating range [i_size, PAGE_END] in prealloc_file_extent_cluster(). So that if above example happens, when we preallocate the file extent for extent B, we will clear the uptodate bits for range [96K, 128K), allowing later relocate_one_page() to re-read the needed range. There is a special note for the invalidating part. Since we're not calling real btrfs_invalidatepage(), but just clearing the subpage and page uptodate bits, we can leave a page half dirty and half out of date. Reading such page can cause a deadlock, as we normally expect a dirty page to be fully uptodate. Thus here we flush and wait the data reloc inode before doing the hacked invalidating. This won't cause extra overhead, as we're going to writeback the data later anyway. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:35:05 +00:00
round_up(i_size, PAGE_SIZE) - i_size);
folio_unlock(folio);
folio_put(folio);
btrfs: subpage: fix relocation potentially overwriting last page data [BUG] When using the following script, btrfs will report data corruption after one data balance with subpage support: mkfs.btrfs -f -s 4k $dev mount $dev -o nospace_cache $mnt $fsstress -w -n 8 -s 1620948986 -d $mnt/ -v > /tmp/fsstress sync btrfs balance start -d $mnt btrfs scrub start -B $mnt Similar problem can be easily observed in btrfs/028 test case, there will be tons of balance failure with -EIO. [CAUSE] Above fsstress will result the following data extents layout in extent tree: item 10 key (13631488 EXTENT_ITEM 98304) itemoff 15889 itemsize 82 refs 2 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 1339392 count 1 extent data backref root FS_TREE objectid 259 offset 647168 count 1 item 11 key (13631488 BLOCK_GROUP_ITEM 8388608) itemoff 15865 itemsize 24 block group used 102400 chunk_objectid 256 flags DATA item 12 key (13733888 EXTENT_ITEM 4096) itemoff 15812 itemsize 53 refs 1 gen 7 flags DATA extent data backref root FS_TREE objectid 259 offset 729088 count 1 Then when creating the data reloc inode, the data reloc inode will look like this: 0 32K 64K 96K 100K 104K |<------ Extent A ----->| |<- Ext B ->| Then when we first try to relocate extent A, we setup the data reloc inode with i_size 96K, then read both page [0, 64K) and page [64K, 128K). For page 64K, since the i_size is just 96K, we fill range [96K, 128K) with 0 and set it uptodate. Then when we come to extent B, we update i_size to 104K, then try to read page [64K, 128K). Then we find the page is already uptodate, so we skip the read. But range [96K, 128K) is filled with 0, not the real data. Then we writeback the data reloc inode to disk, with 0 filling range [96K, 128K), corrupting the content of extent B. The behavior is caused by the fact that we still do full page read for subpage case. The bug won't really happen for regular sectorsize, as one page only contains one sector. [FIX] This patch will fix the problem by invalidating range [i_size, PAGE_END] in prealloc_file_extent_cluster(). So that if above example happens, when we preallocate the file extent for extent B, we will clear the uptodate bits for range [96K, 128K), allowing later relocate_one_page() to re-read the needed range. There is a special note for the invalidating part. Since we're not calling real btrfs_invalidatepage(), but just clearing the subpage and page uptodate bits, we can leave a page half dirty and half out of date. Reading such page can cause a deadlock, as we normally expect a dirty page to be fully uptodate. Thus here we flush and wait the data reloc inode before doing the hacked invalidating. This won't cause extra overhead, as we're going to writeback the data later anyway. Reported-by: Ritesh Harjani <riteshh@linux.ibm.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:35:05 +00:00
}
}
BUG_ON(cluster->start != cluster->boundary[0]);
ret = btrfs_alloc_data_chunk_ondemand(inode,
prealloc_end + 1 - prealloc_start);
if (ret)
return ret;
btrfs_inode_lock(inode, 0);
for (nr = 0; nr < cluster->nr; nr++) {
struct extent_state *cached_state = NULL;
start = cluster->boundary[nr] - offset;
if (nr + 1 < cluster->nr)
end = cluster->boundary[nr + 1] - 1 - offset;
else
end = cluster->end - offset;
lock_extent(&inode->io_tree, start, end, &cached_state);
num_bytes = end + 1 - start;
ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
num_bytes, num_bytes,
end + 1, &alloc_hint);
btrfs: update btrfs_space_info's bytes_may_use timely This patch can fix some false ENOSPC errors, below test script can reproduce one false ENOSPC error: #!/bin/bash dd if=/dev/zero of=fs.img bs=$((1024*1024)) count=128 dev=$(losetup --show -f fs.img) mkfs.btrfs -f -M $dev mkdir /tmp/mntpoint mount $dev /tmp/mntpoint cd /tmp/mntpoint xfs_io -f -c "falloc 0 $((64*1024*1024))" testfile Above script will fail for ENOSPC reason, but indeed fs still has free space to satisfy this request. Please see call graph: btrfs_fallocate() |-> btrfs_alloc_data_chunk_ondemand() | bytes_may_use += 64M |-> btrfs_prealloc_file_range() |-> btrfs_reserve_extent() |-> btrfs_add_reserved_bytes() | alloc_type is RESERVE_ALLOC_NO_ACCOUNT, so it does not | change bytes_may_use, and bytes_reserved += 64M. Now | bytes_may_use + bytes_reserved == 128M, which is greater | than btrfs_space_info's total_bytes, false enospc occurs. | Note, the bytes_may_use decrease operation will be done in | end of btrfs_fallocate(), which is too late. Here is another simple case for buffered write: CPU 1 | CPU 2 | |-> cow_file_range() |-> __btrfs_buffered_write() |-> btrfs_reserve_extent() | | | | | | | | | ..... | |-> btrfs_check_data_free_space() | | | | |-> extent_clear_unlock_delalloc() | In CPU 1, btrfs_reserve_extent()->find_free_extent()-> btrfs_add_reserved_bytes() do not decrease bytes_may_use, the decrease operation will be delayed to be done in extent_clear_unlock_delalloc(). Assume in this case, btrfs_reserve_extent() reserved 128MB data, CPU2's btrfs_check_data_free_space() tries to reserve 100MB data space. If 100MB > data_sinfo->total_bytes - data_sinfo->bytes_used - data_sinfo->bytes_reserved - data_sinfo->bytes_pinned - data_sinfo->bytes_readonly - data_sinfo->bytes_may_use btrfs_check_data_free_space() will try to allcate new data chunk or call btrfs_start_delalloc_roots(), or commit current transaction in order to reserve some free space, obviously a lot of work. But indeed it's not necessary as long as decreasing bytes_may_use timely, we still have free space, decreasing 128M from bytes_may_use. To fix this issue, this patch chooses to update bytes_may_use for both data and metadata in btrfs_add_reserved_bytes(). For compress path, real extent length may not be equal to file content length, so introduce a ram_bytes argument for btrfs_reserve_extent(), find_free_extent() and btrfs_add_reserved_bytes(), it's becasue bytes_may_use is increased by file content length. Then compress path can update bytes_may_use correctly. Also now we can discard RESERVE_ALLOC_NO_ACCOUNT, RESERVE_ALLOC and RESERVE_FREE. As we know, usually EXTENT_DO_ACCOUNTING is used for error path. In run_delalloc_nocow(), for inode marked as NODATACOW or extent marked as PREALLOC, we also need to update bytes_may_use, but can not pass EXTENT_DO_ACCOUNTING, because it also clears metadata reservation, so here we introduce EXTENT_CLEAR_DATA_RESV flag to indicate btrfs_clear_bit_hook() to update btrfs_space_info's bytes_may_use. Meanwhile __btrfs_prealloc_file_range() will call btrfs_free_reserved_data_space() internally for both sucessful and failed path, btrfs_prealloc_file_range()'s callers does not need to call btrfs_free_reserved_data_space() any more. Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com> Reviewed-by: Josef Bacik <jbacik@fb.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2016-07-25 07:51:40 +00:00
cur_offset = end + 1;
unlock_extent(&inode->io_tree, start, end, &cached_state);
if (ret)
break;
}
btrfs_inode_unlock(inode, 0);
btrfs: update btrfs_space_info's bytes_may_use timely This patch can fix some false ENOSPC errors, below test script can reproduce one false ENOSPC error: #!/bin/bash dd if=/dev/zero of=fs.img bs=$((1024*1024)) count=128 dev=$(losetup --show -f fs.img) mkfs.btrfs -f -M $dev mkdir /tmp/mntpoint mount $dev /tmp/mntpoint cd /tmp/mntpoint xfs_io -f -c "falloc 0 $((64*1024*1024))" testfile Above script will fail for ENOSPC reason, but indeed fs still has free space to satisfy this request. Please see call graph: btrfs_fallocate() |-> btrfs_alloc_data_chunk_ondemand() | bytes_may_use += 64M |-> btrfs_prealloc_file_range() |-> btrfs_reserve_extent() |-> btrfs_add_reserved_bytes() | alloc_type is RESERVE_ALLOC_NO_ACCOUNT, so it does not | change bytes_may_use, and bytes_reserved += 64M. Now | bytes_may_use + bytes_reserved == 128M, which is greater | than btrfs_space_info's total_bytes, false enospc occurs. | Note, the bytes_may_use decrease operation will be done in | end of btrfs_fallocate(), which is too late. Here is another simple case for buffered write: CPU 1 | CPU 2 | |-> cow_file_range() |-> __btrfs_buffered_write() |-> btrfs_reserve_extent() | | | | | | | | | ..... | |-> btrfs_check_data_free_space() | | | | |-> extent_clear_unlock_delalloc() | In CPU 1, btrfs_reserve_extent()->find_free_extent()-> btrfs_add_reserved_bytes() do not decrease bytes_may_use, the decrease operation will be delayed to be done in extent_clear_unlock_delalloc(). Assume in this case, btrfs_reserve_extent() reserved 128MB data, CPU2's btrfs_check_data_free_space() tries to reserve 100MB data space. If 100MB > data_sinfo->total_bytes - data_sinfo->bytes_used - data_sinfo->bytes_reserved - data_sinfo->bytes_pinned - data_sinfo->bytes_readonly - data_sinfo->bytes_may_use btrfs_check_data_free_space() will try to allcate new data chunk or call btrfs_start_delalloc_roots(), or commit current transaction in order to reserve some free space, obviously a lot of work. But indeed it's not necessary as long as decreasing bytes_may_use timely, we still have free space, decreasing 128M from bytes_may_use. To fix this issue, this patch chooses to update bytes_may_use for both data and metadata in btrfs_add_reserved_bytes(). For compress path, real extent length may not be equal to file content length, so introduce a ram_bytes argument for btrfs_reserve_extent(), find_free_extent() and btrfs_add_reserved_bytes(), it's becasue bytes_may_use is increased by file content length. Then compress path can update bytes_may_use correctly. Also now we can discard RESERVE_ALLOC_NO_ACCOUNT, RESERVE_ALLOC and RESERVE_FREE. As we know, usually EXTENT_DO_ACCOUNTING is used for error path. In run_delalloc_nocow(), for inode marked as NODATACOW or extent marked as PREALLOC, we also need to update bytes_may_use, but can not pass EXTENT_DO_ACCOUNTING, because it also clears metadata reservation, so here we introduce EXTENT_CLEAR_DATA_RESV flag to indicate btrfs_clear_bit_hook() to update btrfs_space_info's bytes_may_use. Meanwhile __btrfs_prealloc_file_range() will call btrfs_free_reserved_data_space() internally for both sucessful and failed path, btrfs_prealloc_file_range()'s callers does not need to call btrfs_free_reserved_data_space() any more. Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com> Reviewed-by: Josef Bacik <jbacik@fb.com> Signed-off-by: David Sterba <dsterba@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2016-07-25 07:51:40 +00:00
if (cur_offset < prealloc_end)
btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
prealloc_end + 1 - cur_offset);
return ret;
}
static noinline_for_stack int setup_relocation_extent_mapping(struct reloc_control *rc)
{
struct btrfs_inode *inode = BTRFS_I(rc->data_inode);
struct extent_map *em;
struct extent_state *cached_state = NULL;
u64 offset = inode->reloc_block_group_start;
u64 start = rc->cluster.start - offset;
u64 end = rc->cluster.end - offset;
int ret = 0;
em = alloc_extent_map();
if (!em)
return -ENOMEM;
em->start = start;
em->len = end + 1 - start;
em->disk_bytenr = rc->cluster.start;
btrfs: introduce extra sanity checks for extent maps Since extent_map structure has the all the needed members to represent a file extent directly, we can apply all the file extent sanity checks to an extent map. The new sanity checks will cross check both the old members (block_start/block_len/orig_start) and the new members (disk_bytenr/disk_num_bytes/offset). There is a special case for offset/orig_start/start cross check, we only do such sanity check for compressed extent, as only compressed read/encoded write really utilize orig_start. This can be proved by the cleanup patch of orig_start. The checks happens at the following times: - add_extent_mapping() This is for newly added extent map - replace_extent_mapping() This is for btrfs_drop_extent_map_range() and split_extent_map() - try_merge_map() For a lot of call sites we have to properly populate all the members to pass the sanity check, meanwhile the following code needs extra modification: - setup_file_extents() from inode-tests The file extents layout of setup_file_extents() is already too invalid that tree-checker would reject most of them in real world. However there is just a special unaligned regular extent which has mismatched disk_num_bytes (4096) and ram_bytes (4096 - 1). So instead of dropping the whole test case, here we just unify disk_num_bytes and ram_bytes to 4096 - 1. - test_case_7() from extent-map-tests An extent is inserted with 16K length, but on-disk extent size is only 4K. This means it must be a compressed extent, so set the compressed flag for it. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-04-29 22:23:03 +00:00
em->disk_num_bytes = em->len;
em->ram_bytes = em->len;
btrfs: use the flags of an extent map to identify the compression type Currently, in struct extent_map, we use an unsigned int (32 bits) to identify the compression type of an extent and an unsigned long (64 bits on a 64 bits platform, 32 bits otherwise) for flags. We are only using 6 different flags, so an unsigned long is excessive and we can use flags to identify the compression type instead of using a dedicated 32 bits field. We can easily have tens or hundreds of thousands (or more) of extent maps on busy and large filesystems, specially with compression enabled or many or large files with tons of small extents. So it's convenient to have the extent_map structure as small as possible in order to use less memory. So remove the compression type field from struct extent_map, use flags to identify the compression type and shorten the flags field from an unsigned long to a u32. This saves 8 bytes (on 64 bits platforms) and reduces the size of the structure from 136 bytes down to 128 bytes, using now only two cache lines, and increases the number of extent maps we can have per 4K page from 30 to 32. By using a u32 for the flags instead of an unsigned long, we no longer use test_bit(), set_bit() and clear_bit(), but that level of atomicity is not needed as most flags are never cleared once set (before adding an extent map to the tree), and the ones that can be cleared or set after an extent map is added to the tree, are always performed while holding the write lock on the extent map tree, while the reader holds a lock on the tree or tests for a flag that never changes once the extent map is in the tree (such as compression flags). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-04 16:20:33 +00:00
em->flags |= EXTENT_FLAG_PINNED;
lock_extent(&inode->io_tree, start, end, &cached_state);
ret = btrfs_replace_extent_map_range(inode, em, false);
unlock_extent(&inode->io_tree, start, end, &cached_state);
free_extent_map(em);
return ret;
}
/*
* Allow error injection to test balance/relocation cancellation
*/
noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
{
return atomic_read(&fs_info->balance_cancel_req) ||
atomic_read(&fs_info->reloc_cancel_req) ||
fatal_signal_pending(current);
}
ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
int cluster_nr)
{
/* Last extent, use cluster end directly */
if (cluster_nr >= cluster->nr - 1)
return cluster->end;
/* Use next boundary start*/
return cluster->boundary[cluster_nr + 1] - 1;
}
static int relocate_one_folio(struct reloc_control *rc,
struct file_ra_state *ra,
int *cluster_nr, unsigned long index)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
const struct file_extent_cluster *cluster = &rc->cluster;
struct inode *inode = rc->data_inode;
struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
u64 offset = BTRFS_I(inode)->reloc_block_group_start;
const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
struct folio *folio;
u64 folio_start;
u64 folio_end;
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
u64 cur;
int ret;
btrfs: don't readahead the relocation inode on RST On relocation we're doing readahead on the relocation inode, but if the filesystem is backed by a RAID stripe tree we can get ENOENT (e.g. due to preallocated extents not being mapped in the RST) from the lookup. But readahead doesn't handle the error and submits invalid reads to the device, causing an assertion in the scatter-gather list code: BTRFS info (device nvme1n1): balance: start -d -m -s BTRFS info (device nvme1n1): relocating block group 6480920576 flags data|raid0 BTRFS error (device nvme1n1): cannot find raid-stripe for logical [6481928192, 6481969152] devid 2, profile raid0 ------------[ cut here ]------------ kernel BUG at include/linux/scatterlist.h:115! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1012 Comm: btrfs Not tainted 6.10.0-rc7+ #567 RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000002cd11000 CR3: 00000001109ea001 CR4: 0000000000370eb0 Call Trace: <TASK> ? __die_body.cold+0x14/0x25 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x65/0x80 ? __blk_rq_map_sg+0x339/0x4a0 ? exc_invalid_op+0x50/0x70 ? __blk_rq_map_sg+0x339/0x4a0 ? asm_exc_invalid_op+0x1a/0x20 ? __blk_rq_map_sg+0x339/0x4a0 nvme_prep_rq.part.0+0x9d/0x770 nvme_queue_rq+0x7d/0x1e0 __blk_mq_issue_directly+0x2a/0x90 ? blk_mq_get_budget_and_tag+0x61/0x90 blk_mq_try_issue_list_directly+0x56/0xf0 blk_mq_flush_plug_list.part.0+0x52b/0x5d0 __blk_flush_plug+0xc6/0x110 blk_finish_plug+0x28/0x40 read_pages+0x160/0x1c0 page_cache_ra_unbounded+0x109/0x180 relocate_file_extent_cluster+0x611/0x6a0 ? btrfs_search_slot+0xba4/0xd20 ? balance_dirty_pages_ratelimited_flags+0x26/0xb00 relocate_data_extent.constprop.0+0x134/0x160 relocate_block_group+0x3f2/0x500 btrfs_relocate_block_group+0x250/0x430 btrfs_relocate_chunk+0x3f/0x130 btrfs_balance+0x71b/0xef0 ? kmalloc_trace_noprof+0x13b/0x280 btrfs_ioctl+0x2c2e/0x3030 ? kvfree_call_rcu+0x1e6/0x340 ? list_lru_add_obj+0x66/0x80 ? mntput_no_expire+0x3a/0x220 __x64_sys_ioctl+0x96/0xc0 do_syscall_64+0x54/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fcc04514f9b Code: Unable to access opcode bytes at 0x7fcc04514f71. RSP: 002b:00007ffeba923370 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fcc04514f9b RDX: 00007ffeba923460 RSI: 00000000c4009420 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000013 R09: 0000000000000001 R10: 00007fcc043fbba8 R11: 0000000000000246 R12: 00007ffeba924fc5 R13: 00007ffeba923460 R14: 0000000000000002 R15: 00000000004d4bb0 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fcc04514f71 CR3: 00000001109ea001 CR4: 0000000000370eb0 Kernel panic - not syncing: Fatal exception Kernel Offset: disabled ---[ end Kernel panic - not syncing: Fatal exception ]--- So in case of a relocation on a RAID stripe-tree based file system, skip the readahead. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-31 20:43:06 +00:00
const bool use_rst = btrfs_need_stripe_tree_update(fs_info, rc->block_group->flags);
ASSERT(index <= last_index);
folio = filemap_lock_folio(inode->i_mapping, index);
if (IS_ERR(folio)) {
btrfs: don't readahead the relocation inode on RST On relocation we're doing readahead on the relocation inode, but if the filesystem is backed by a RAID stripe tree we can get ENOENT (e.g. due to preallocated extents not being mapped in the RST) from the lookup. But readahead doesn't handle the error and submits invalid reads to the device, causing an assertion in the scatter-gather list code: BTRFS info (device nvme1n1): balance: start -d -m -s BTRFS info (device nvme1n1): relocating block group 6480920576 flags data|raid0 BTRFS error (device nvme1n1): cannot find raid-stripe for logical [6481928192, 6481969152] devid 2, profile raid0 ------------[ cut here ]------------ kernel BUG at include/linux/scatterlist.h:115! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1012 Comm: btrfs Not tainted 6.10.0-rc7+ #567 RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000002cd11000 CR3: 00000001109ea001 CR4: 0000000000370eb0 Call Trace: <TASK> ? __die_body.cold+0x14/0x25 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x65/0x80 ? __blk_rq_map_sg+0x339/0x4a0 ? exc_invalid_op+0x50/0x70 ? __blk_rq_map_sg+0x339/0x4a0 ? asm_exc_invalid_op+0x1a/0x20 ? __blk_rq_map_sg+0x339/0x4a0 nvme_prep_rq.part.0+0x9d/0x770 nvme_queue_rq+0x7d/0x1e0 __blk_mq_issue_directly+0x2a/0x90 ? blk_mq_get_budget_and_tag+0x61/0x90 blk_mq_try_issue_list_directly+0x56/0xf0 blk_mq_flush_plug_list.part.0+0x52b/0x5d0 __blk_flush_plug+0xc6/0x110 blk_finish_plug+0x28/0x40 read_pages+0x160/0x1c0 page_cache_ra_unbounded+0x109/0x180 relocate_file_extent_cluster+0x611/0x6a0 ? btrfs_search_slot+0xba4/0xd20 ? balance_dirty_pages_ratelimited_flags+0x26/0xb00 relocate_data_extent.constprop.0+0x134/0x160 relocate_block_group+0x3f2/0x500 btrfs_relocate_block_group+0x250/0x430 btrfs_relocate_chunk+0x3f/0x130 btrfs_balance+0x71b/0xef0 ? kmalloc_trace_noprof+0x13b/0x280 btrfs_ioctl+0x2c2e/0x3030 ? kvfree_call_rcu+0x1e6/0x340 ? list_lru_add_obj+0x66/0x80 ? mntput_no_expire+0x3a/0x220 __x64_sys_ioctl+0x96/0xc0 do_syscall_64+0x54/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fcc04514f9b Code: Unable to access opcode bytes at 0x7fcc04514f71. RSP: 002b:00007ffeba923370 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fcc04514f9b RDX: 00007ffeba923460 RSI: 00000000c4009420 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000013 R09: 0000000000000001 R10: 00007fcc043fbba8 R11: 0000000000000246 R12: 00007ffeba924fc5 R13: 00007ffeba923460 R14: 0000000000000002 R15: 00000000004d4bb0 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fcc04514f71 CR3: 00000001109ea001 CR4: 0000000000370eb0 Kernel panic - not syncing: Fatal exception Kernel Offset: disabled ---[ end Kernel panic - not syncing: Fatal exception ]--- So in case of a relocation on a RAID stripe-tree based file system, skip the readahead. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-31 20:43:06 +00:00
/*
* On relocation we're doing readahead on the relocation inode,
* but if the filesystem is backed by a RAID stripe tree we can
* get ENOENT (e.g. due to preallocated extents not being
* mapped in the RST) from the lookup.
*
* But readahead doesn't handle the error and submits invalid
* reads to the device, causing a assertion failures.
*/
if (!use_rst)
page_cache_sync_readahead(inode->i_mapping, ra, NULL,
index, last_index + 1 - index);
folio = __filemap_get_folio(inode->i_mapping, index,
btrfs: don't readahead the relocation inode on RST On relocation we're doing readahead on the relocation inode, but if the filesystem is backed by a RAID stripe tree we can get ENOENT (e.g. due to preallocated extents not being mapped in the RST) from the lookup. But readahead doesn't handle the error and submits invalid reads to the device, causing an assertion in the scatter-gather list code: BTRFS info (device nvme1n1): balance: start -d -m -s BTRFS info (device nvme1n1): relocating block group 6480920576 flags data|raid0 BTRFS error (device nvme1n1): cannot find raid-stripe for logical [6481928192, 6481969152] devid 2, profile raid0 ------------[ cut here ]------------ kernel BUG at include/linux/scatterlist.h:115! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1012 Comm: btrfs Not tainted 6.10.0-rc7+ #567 RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000002cd11000 CR3: 00000001109ea001 CR4: 0000000000370eb0 Call Trace: <TASK> ? __die_body.cold+0x14/0x25 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x65/0x80 ? __blk_rq_map_sg+0x339/0x4a0 ? exc_invalid_op+0x50/0x70 ? __blk_rq_map_sg+0x339/0x4a0 ? asm_exc_invalid_op+0x1a/0x20 ? __blk_rq_map_sg+0x339/0x4a0 nvme_prep_rq.part.0+0x9d/0x770 nvme_queue_rq+0x7d/0x1e0 __blk_mq_issue_directly+0x2a/0x90 ? blk_mq_get_budget_and_tag+0x61/0x90 blk_mq_try_issue_list_directly+0x56/0xf0 blk_mq_flush_plug_list.part.0+0x52b/0x5d0 __blk_flush_plug+0xc6/0x110 blk_finish_plug+0x28/0x40 read_pages+0x160/0x1c0 page_cache_ra_unbounded+0x109/0x180 relocate_file_extent_cluster+0x611/0x6a0 ? btrfs_search_slot+0xba4/0xd20 ? balance_dirty_pages_ratelimited_flags+0x26/0xb00 relocate_data_extent.constprop.0+0x134/0x160 relocate_block_group+0x3f2/0x500 btrfs_relocate_block_group+0x250/0x430 btrfs_relocate_chunk+0x3f/0x130 btrfs_balance+0x71b/0xef0 ? kmalloc_trace_noprof+0x13b/0x280 btrfs_ioctl+0x2c2e/0x3030 ? kvfree_call_rcu+0x1e6/0x340 ? list_lru_add_obj+0x66/0x80 ? mntput_no_expire+0x3a/0x220 __x64_sys_ioctl+0x96/0xc0 do_syscall_64+0x54/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fcc04514f9b Code: Unable to access opcode bytes at 0x7fcc04514f71. RSP: 002b:00007ffeba923370 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fcc04514f9b RDX: 00007ffeba923460 RSI: 00000000c4009420 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000013 R09: 0000000000000001 R10: 00007fcc043fbba8 R11: 0000000000000246 R12: 00007ffeba924fc5 R13: 00007ffeba923460 R14: 0000000000000002 R15: 00000000004d4bb0 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fcc04514f71 CR3: 00000001109ea001 CR4: 0000000000370eb0 Kernel panic - not syncing: Fatal exception Kernel Offset: disabled ---[ end Kernel panic - not syncing: Fatal exception ]--- So in case of a relocation on a RAID stripe-tree based file system, skip the readahead. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-31 20:43:06 +00:00
FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
mask);
if (IS_ERR(folio))
return PTR_ERR(folio);
}
WARN_ON(folio_order(folio));
btrfs: don't readahead the relocation inode on RST On relocation we're doing readahead on the relocation inode, but if the filesystem is backed by a RAID stripe tree we can get ENOENT (e.g. due to preallocated extents not being mapped in the RST) from the lookup. But readahead doesn't handle the error and submits invalid reads to the device, causing an assertion in the scatter-gather list code: BTRFS info (device nvme1n1): balance: start -d -m -s BTRFS info (device nvme1n1): relocating block group 6480920576 flags data|raid0 BTRFS error (device nvme1n1): cannot find raid-stripe for logical [6481928192, 6481969152] devid 2, profile raid0 ------------[ cut here ]------------ kernel BUG at include/linux/scatterlist.h:115! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1012 Comm: btrfs Not tainted 6.10.0-rc7+ #567 RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000002cd11000 CR3: 00000001109ea001 CR4: 0000000000370eb0 Call Trace: <TASK> ? __die_body.cold+0x14/0x25 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x65/0x80 ? __blk_rq_map_sg+0x339/0x4a0 ? exc_invalid_op+0x50/0x70 ? __blk_rq_map_sg+0x339/0x4a0 ? asm_exc_invalid_op+0x1a/0x20 ? __blk_rq_map_sg+0x339/0x4a0 nvme_prep_rq.part.0+0x9d/0x770 nvme_queue_rq+0x7d/0x1e0 __blk_mq_issue_directly+0x2a/0x90 ? blk_mq_get_budget_and_tag+0x61/0x90 blk_mq_try_issue_list_directly+0x56/0xf0 blk_mq_flush_plug_list.part.0+0x52b/0x5d0 __blk_flush_plug+0xc6/0x110 blk_finish_plug+0x28/0x40 read_pages+0x160/0x1c0 page_cache_ra_unbounded+0x109/0x180 relocate_file_extent_cluster+0x611/0x6a0 ? btrfs_search_slot+0xba4/0xd20 ? balance_dirty_pages_ratelimited_flags+0x26/0xb00 relocate_data_extent.constprop.0+0x134/0x160 relocate_block_group+0x3f2/0x500 btrfs_relocate_block_group+0x250/0x430 btrfs_relocate_chunk+0x3f/0x130 btrfs_balance+0x71b/0xef0 ? kmalloc_trace_noprof+0x13b/0x280 btrfs_ioctl+0x2c2e/0x3030 ? kvfree_call_rcu+0x1e6/0x340 ? list_lru_add_obj+0x66/0x80 ? mntput_no_expire+0x3a/0x220 __x64_sys_ioctl+0x96/0xc0 do_syscall_64+0x54/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fcc04514f9b Code: Unable to access opcode bytes at 0x7fcc04514f71. RSP: 002b:00007ffeba923370 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fcc04514f9b RDX: 00007ffeba923460 RSI: 00000000c4009420 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000013 R09: 0000000000000001 R10: 00007fcc043fbba8 R11: 0000000000000246 R12: 00007ffeba924fc5 R13: 00007ffeba923460 R14: 0000000000000002 R15: 00000000004d4bb0 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fcc04514f71 CR3: 00000001109ea001 CR4: 0000000000370eb0 Kernel panic - not syncing: Fatal exception Kernel Offset: disabled ---[ end Kernel panic - not syncing: Fatal exception ]--- So in case of a relocation on a RAID stripe-tree based file system, skip the readahead. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-07-31 20:43:06 +00:00
if (folio_test_readahead(folio) && !use_rst)
page_cache_async_readahead(inode->i_mapping, ra, NULL,
folio, last_index + 1 - index);
if (!folio_test_uptodate(folio)) {
btrfs_read_folio(NULL, folio);
folio_lock(folio);
if (!folio_test_uptodate(folio)) {
ret = -EIO;
goto release_folio;
}
}
btrfs: set page extent mapped after read_folio in relocate_one_page One of the CI runs triggered the following panic assertion failed: PagePrivate(page) && page->private, in fs/btrfs/subpage.c:229 ------------[ cut here ]------------ kernel BUG at fs/btrfs/subpage.c:229! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 0 PID: 923660 Comm: btrfs Not tainted 6.5.0-rc3+ #1 pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) pc : btrfs_subpage_assert+0xbc/0xf0 lr : btrfs_subpage_assert+0xbc/0xf0 sp : ffff800093213720 x29: ffff800093213720 x28: ffff8000932138b4 x27: 000000000c280000 x26: 00000001b5d00000 x25: 000000000c281000 x24: 000000000c281fff x23: 0000000000001000 x22: 0000000000000000 x21: ffffff42b95bf880 x20: ffff42b9528e0000 x19: 0000000000001000 x18: ffffffffffffffff x17: 667274622f736620 x16: 6e69202c65746176 x15: 0000000000000028 x14: 0000000000000003 x13: 00000000002672d7 x12: 0000000000000000 x11: ffffcd3f0ccd9204 x10: ffffcd3f0554ae50 x9 : ffffcd3f0379528c x8 : ffff800093213428 x7 : 0000000000000000 x6 : ffffcd3f091771e8 x5 : ffff42b97f333948 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : ffff42b9556cde80 x0 : 000000000000004f Call trace: btrfs_subpage_assert+0xbc/0xf0 btrfs_subpage_set_dirty+0x38/0xa0 btrfs_page_set_dirty+0x58/0x88 relocate_one_page+0x204/0x5f0 relocate_file_extent_cluster+0x11c/0x180 relocate_data_extent+0xd0/0xf8 relocate_block_group+0x3d0/0x4e8 btrfs_relocate_block_group+0x2d8/0x490 btrfs_relocate_chunk+0x54/0x1a8 btrfs_balance+0x7f4/0x1150 btrfs_ioctl+0x10f0/0x20b8 __arm64_sys_ioctl+0x120/0x11d8 invoke_syscall.constprop.0+0x80/0xd8 do_el0_svc+0x6c/0x158 el0_svc+0x50/0x1b0 el0t_64_sync_handler+0x120/0x130 el0t_64_sync+0x194/0x198 Code: 91098021 b0007fa0 91346000 97e9c6d2 (d4210000) This is the same problem outlined in 17b17fcd6d44 ("btrfs: set_page_extent_mapped after read_folio in btrfs_cont_expand") , and the fix is the same. I originally looked for the same pattern elsewhere in our code, but mistakenly skipped over this code because I saw the page cache readahead before we set_page_extent_mapped, not realizing that this was only in the !page case, that we can still end up with a !uptodate page and then do the btrfs_read_folio further down. The fix here is the same as the above mentioned patch, move the set_page_extent_mapped call to after the btrfs_read_folio() block to make sure that we have the subpage blocksize stuff setup properly before using the page. CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-07-31 15:13:00 +00:00
/*
* We could have lost folio private when we dropped the lock to read the
* folio above, make sure we set_page_extent_mapped here so we have any
btrfs: set page extent mapped after read_folio in relocate_one_page One of the CI runs triggered the following panic assertion failed: PagePrivate(page) && page->private, in fs/btrfs/subpage.c:229 ------------[ cut here ]------------ kernel BUG at fs/btrfs/subpage.c:229! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 0 PID: 923660 Comm: btrfs Not tainted 6.5.0-rc3+ #1 pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) pc : btrfs_subpage_assert+0xbc/0xf0 lr : btrfs_subpage_assert+0xbc/0xf0 sp : ffff800093213720 x29: ffff800093213720 x28: ffff8000932138b4 x27: 000000000c280000 x26: 00000001b5d00000 x25: 000000000c281000 x24: 000000000c281fff x23: 0000000000001000 x22: 0000000000000000 x21: ffffff42b95bf880 x20: ffff42b9528e0000 x19: 0000000000001000 x18: ffffffffffffffff x17: 667274622f736620 x16: 6e69202c65746176 x15: 0000000000000028 x14: 0000000000000003 x13: 00000000002672d7 x12: 0000000000000000 x11: ffffcd3f0ccd9204 x10: ffffcd3f0554ae50 x9 : ffffcd3f0379528c x8 : ffff800093213428 x7 : 0000000000000000 x6 : ffffcd3f091771e8 x5 : ffff42b97f333948 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : ffff42b9556cde80 x0 : 000000000000004f Call trace: btrfs_subpage_assert+0xbc/0xf0 btrfs_subpage_set_dirty+0x38/0xa0 btrfs_page_set_dirty+0x58/0x88 relocate_one_page+0x204/0x5f0 relocate_file_extent_cluster+0x11c/0x180 relocate_data_extent+0xd0/0xf8 relocate_block_group+0x3d0/0x4e8 btrfs_relocate_block_group+0x2d8/0x490 btrfs_relocate_chunk+0x54/0x1a8 btrfs_balance+0x7f4/0x1150 btrfs_ioctl+0x10f0/0x20b8 __arm64_sys_ioctl+0x120/0x11d8 invoke_syscall.constprop.0+0x80/0xd8 do_el0_svc+0x6c/0x158 el0_svc+0x50/0x1b0 el0t_64_sync_handler+0x120/0x130 el0t_64_sync+0x194/0x198 Code: 91098021 b0007fa0 91346000 97e9c6d2 (d4210000) This is the same problem outlined in 17b17fcd6d44 ("btrfs: set_page_extent_mapped after read_folio in btrfs_cont_expand") , and the fix is the same. I originally looked for the same pattern elsewhere in our code, but mistakenly skipped over this code because I saw the page cache readahead before we set_page_extent_mapped, not realizing that this was only in the !page case, that we can still end up with a !uptodate page and then do the btrfs_read_folio further down. The fix here is the same as the above mentioned patch, move the set_page_extent_mapped call to after the btrfs_read_folio() block to make sure that we have the subpage blocksize stuff setup properly before using the page. CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-07-31 15:13:00 +00:00
* of the subpage blocksize stuff we need in place.
*/
ret = set_folio_extent_mapped(folio);
btrfs: set page extent mapped after read_folio in relocate_one_page One of the CI runs triggered the following panic assertion failed: PagePrivate(page) && page->private, in fs/btrfs/subpage.c:229 ------------[ cut here ]------------ kernel BUG at fs/btrfs/subpage.c:229! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 0 PID: 923660 Comm: btrfs Not tainted 6.5.0-rc3+ #1 pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) pc : btrfs_subpage_assert+0xbc/0xf0 lr : btrfs_subpage_assert+0xbc/0xf0 sp : ffff800093213720 x29: ffff800093213720 x28: ffff8000932138b4 x27: 000000000c280000 x26: 00000001b5d00000 x25: 000000000c281000 x24: 000000000c281fff x23: 0000000000001000 x22: 0000000000000000 x21: ffffff42b95bf880 x20: ffff42b9528e0000 x19: 0000000000001000 x18: ffffffffffffffff x17: 667274622f736620 x16: 6e69202c65746176 x15: 0000000000000028 x14: 0000000000000003 x13: 00000000002672d7 x12: 0000000000000000 x11: ffffcd3f0ccd9204 x10: ffffcd3f0554ae50 x9 : ffffcd3f0379528c x8 : ffff800093213428 x7 : 0000000000000000 x6 : ffffcd3f091771e8 x5 : ffff42b97f333948 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : ffff42b9556cde80 x0 : 000000000000004f Call trace: btrfs_subpage_assert+0xbc/0xf0 btrfs_subpage_set_dirty+0x38/0xa0 btrfs_page_set_dirty+0x58/0x88 relocate_one_page+0x204/0x5f0 relocate_file_extent_cluster+0x11c/0x180 relocate_data_extent+0xd0/0xf8 relocate_block_group+0x3d0/0x4e8 btrfs_relocate_block_group+0x2d8/0x490 btrfs_relocate_chunk+0x54/0x1a8 btrfs_balance+0x7f4/0x1150 btrfs_ioctl+0x10f0/0x20b8 __arm64_sys_ioctl+0x120/0x11d8 invoke_syscall.constprop.0+0x80/0xd8 do_el0_svc+0x6c/0x158 el0_svc+0x50/0x1b0 el0t_64_sync_handler+0x120/0x130 el0t_64_sync+0x194/0x198 Code: 91098021 b0007fa0 91346000 97e9c6d2 (d4210000) This is the same problem outlined in 17b17fcd6d44 ("btrfs: set_page_extent_mapped after read_folio in btrfs_cont_expand") , and the fix is the same. I originally looked for the same pattern elsewhere in our code, but mistakenly skipped over this code because I saw the page cache readahead before we set_page_extent_mapped, not realizing that this was only in the !page case, that we can still end up with a !uptodate page and then do the btrfs_read_folio further down. The fix here is the same as the above mentioned patch, move the set_page_extent_mapped call to after the btrfs_read_folio() block to make sure that we have the subpage blocksize stuff setup properly before using the page. CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-07-31 15:13:00 +00:00
if (ret < 0)
goto release_folio;
btrfs: set page extent mapped after read_folio in relocate_one_page One of the CI runs triggered the following panic assertion failed: PagePrivate(page) && page->private, in fs/btrfs/subpage.c:229 ------------[ cut here ]------------ kernel BUG at fs/btrfs/subpage.c:229! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 0 PID: 923660 Comm: btrfs Not tainted 6.5.0-rc3+ #1 pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) pc : btrfs_subpage_assert+0xbc/0xf0 lr : btrfs_subpage_assert+0xbc/0xf0 sp : ffff800093213720 x29: ffff800093213720 x28: ffff8000932138b4 x27: 000000000c280000 x26: 00000001b5d00000 x25: 000000000c281000 x24: 000000000c281fff x23: 0000000000001000 x22: 0000000000000000 x21: ffffff42b95bf880 x20: ffff42b9528e0000 x19: 0000000000001000 x18: ffffffffffffffff x17: 667274622f736620 x16: 6e69202c65746176 x15: 0000000000000028 x14: 0000000000000003 x13: 00000000002672d7 x12: 0000000000000000 x11: ffffcd3f0ccd9204 x10: ffffcd3f0554ae50 x9 : ffffcd3f0379528c x8 : ffff800093213428 x7 : 0000000000000000 x6 : ffffcd3f091771e8 x5 : ffff42b97f333948 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : ffff42b9556cde80 x0 : 000000000000004f Call trace: btrfs_subpage_assert+0xbc/0xf0 btrfs_subpage_set_dirty+0x38/0xa0 btrfs_page_set_dirty+0x58/0x88 relocate_one_page+0x204/0x5f0 relocate_file_extent_cluster+0x11c/0x180 relocate_data_extent+0xd0/0xf8 relocate_block_group+0x3d0/0x4e8 btrfs_relocate_block_group+0x2d8/0x490 btrfs_relocate_chunk+0x54/0x1a8 btrfs_balance+0x7f4/0x1150 btrfs_ioctl+0x10f0/0x20b8 __arm64_sys_ioctl+0x120/0x11d8 invoke_syscall.constprop.0+0x80/0xd8 do_el0_svc+0x6c/0x158 el0_svc+0x50/0x1b0 el0t_64_sync_handler+0x120/0x130 el0t_64_sync+0x194/0x198 Code: 91098021 b0007fa0 91346000 97e9c6d2 (d4210000) This is the same problem outlined in 17b17fcd6d44 ("btrfs: set_page_extent_mapped after read_folio in btrfs_cont_expand") , and the fix is the same. I originally looked for the same pattern elsewhere in our code, but mistakenly skipped over this code because I saw the page cache readahead before we set_page_extent_mapped, not realizing that this was only in the !page case, that we can still end up with a !uptodate page and then do the btrfs_read_folio further down. The fix here is the same as the above mentioned patch, move the set_page_extent_mapped call to after the btrfs_read_folio() block to make sure that we have the subpage blocksize stuff setup properly before using the page. CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-07-31 15:13:00 +00:00
folio_start = folio_pos(folio);
folio_end = folio_start + PAGE_SIZE - 1;
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
/*
* Start from the cluster, as for subpage case, the cluster can start
* inside the folio.
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
*/
cur = max(folio_start, cluster->boundary[*cluster_nr] - offset);
while (cur <= folio_end) {
struct extent_state *cached_state = NULL;
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
u64 extent_start = cluster->boundary[*cluster_nr] - offset;
u64 extent_end = get_cluster_boundary_end(cluster,
*cluster_nr) - offset;
u64 clamped_start = max(folio_start, extent_start);
u64 clamped_end = min(folio_end, extent_end);
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
u32 clamped_len = clamped_end + 1 - clamped_start;
/* Reserve metadata for this range */
ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
btrfs: avoid blocking on space revervation when doing nowait dio writes When doing a NOWAIT direct IO write, if we can NOCOW then it means we can proceed with the non-blocking, NOWAIT path. However reserving the metadata space and qgroup meta space can often result in blocking - flushing delalloc, wait for ordered extents to complete, trigger transaction commits, etc, going against the semantics of a NOWAIT write. So make the NOWAIT write path to try to reserve all the metadata it needs without resulting in a blocking behaviour - if we get -ENOSPC or -EDQUOT then return -EAGAIN to make the caller fallback to a blocking direct IO write. This is part of a patchset comprised of the following patches: btrfs: avoid blocking on page locks with nowait dio on compressed range btrfs: avoid blocking nowait dio when locking file range btrfs: avoid double nocow check when doing nowait dio writes btrfs: stop allocating a path when checking if cross reference exists btrfs: free path at can_nocow_extent() before checking for checksum items btrfs: release path earlier at can_nocow_extent() btrfs: avoid blocking when allocating context for nowait dio read/write btrfs: avoid blocking on space revervation when doing nowait dio writes The following test was run before and after applying this patchset: $ cat io-uring-nodatacow-test.sh #!/bin/bash DEV=/dev/sdc MNT=/mnt/sdc MOUNT_OPTIONS="-o ssd -o nodatacow" MKFS_OPTIONS="-R free-space-tree -O no-holes" NUM_JOBS=4 FILE_SIZE=8G RUN_TIME=300 cat <<EOF > /tmp/fio-job.ini [io_uring_rw] rw=randrw fsync=0 fallocate=posix group_reporting=1 direct=1 ioengine=io_uring iodepth=64 bssplit=4k/20:8k/20:16k/20:32k/10:64k/10:128k/5:256k/5:512k/5:1m/5 filesize=$FILE_SIZE runtime=$RUN_TIME time_based filename=foobar directory=$MNT numjobs=$NUM_JOBS thread EOF echo performance | \ tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor umount $MNT &> /dev/null mkfs.btrfs -f $MKFS_OPTIONS $DEV &> /dev/null mount $MOUNT_OPTIONS $DEV $MNT fio /tmp/fio-job.ini umount $MNT The test was run a 12 cores box with 64G of ram, using a non-debug kernel config (Debian's default config) and a spinning disk. Result before the patchset: READ: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec WRITE: bw=407MiB/s (427MB/s), 407MiB/s-407MiB/s (427MB/s-427MB/s), io=119GiB (128GB), run=300175-300175msec Result after the patchset: READ: bw=436MiB/s (457MB/s), 436MiB/s-436MiB/s (457MB/s-457MB/s), io=128GiB (137GB), run=300044-300044msec WRITE: bw=435MiB/s (456MB/s), 435MiB/s-435MiB/s (456MB/s-456MB/s), io=128GiB (137GB), run=300044-300044msec That's about +7.2% throughput for reads and +6.9% for writes. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-23 16:19:30 +00:00
clamped_len, clamped_len,
false);
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
if (ret)
goto release_folio;
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
/* Mark the range delalloc and dirty for later writeback */
lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
&cached_state);
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
clamped_end, 0, &cached_state);
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
if (ret) {
clear_extent_bit(&BTRFS_I(inode)->io_tree,
clamped_start, clamped_end,
EXTENT_LOCKED | EXTENT_BOUNDARY,
&cached_state);
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
btrfs_delalloc_release_metadata(BTRFS_I(inode),
clamped_len, true);
btrfs_delalloc_release_extents(BTRFS_I(inode),
clamped_len);
goto release_folio;
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
}
btrfs_folio_set_dirty(fs_info, folio, clamped_start, clamped_len);
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
/*
* Set the boundary if it's inside the folio.
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
* Data relocation requires the destination extents to have the
* same size as the source.
* EXTENT_BOUNDARY bit prevents current extent from being merged
* with previous extent.
*/
if (in_range(cluster->boundary[*cluster_nr] - offset, folio_start, PAGE_SIZE)) {
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
u64 boundary_start = cluster->boundary[*cluster_nr] -
offset;
u64 boundary_end = boundary_start +
fs_info->sectorsize - 1;
set_extent_bit(&BTRFS_I(inode)->io_tree,
boundary_start, boundary_end,
EXTENT_BOUNDARY, NULL);
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
}
unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
&cached_state);
btrfs: make relocate_one_page() handle subpage case For subpage case, one page of data reloc inode can contain several file extents, like this: |<--- File extent A --->| FE B | FE C |<--- File extent D -->| |<--------- Page --------->| We can no longer use PAGE_SIZE directly for various operations. This patch will relocate_one_page() to handle subpage case by: - Iterating through all extents of a cluster when marking pages When marking pages dirty and delalloc, we need to check the cluster extent boundary. Now we introduce a loop to go extent by extent of a page, until we either finished the last extent, or reach the page end. By this, regular sectorsize == PAGE_SIZE can still work as usual, since we will do that loop only once. - Iteration start from max(page_start, extent_start) Since we can have the following case: | FE B | FE C |<--- File extent D -->| |<--------- Page --------->| Thus we can't always start from page_start, but do a max(page_start, extent_start) - Iteration end when the cluster is exhausted Similar to previous case, the last file extent can end before the page end: |<--- File extent A --->| FE B | FE C | |<--------- Page --------->| In this case, we need to manually exit the loop after we have finished the last extent of the cluster. - Reserve metadata space for each extent range Since now we can hit multiple ranges in one page, we should reserve metadata for each range, not simply PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-07-26 06:34:57 +00:00
btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
cur += clamped_len;
/* Crossed extent end, go to next extent */
if (cur >= extent_end) {
(*cluster_nr)++;
/* Just finished the last extent of the cluster, exit. */
if (*cluster_nr >= cluster->nr)
break;
}
}
folio_unlock(folio);
folio_put(folio);
balance_dirty_pages_ratelimited(inode->i_mapping);
btrfs_throttle(fs_info);
if (btrfs_should_cancel_balance(fs_info))
ret = -ECANCELED;
return ret;
release_folio:
folio_unlock(folio);
folio_put(folio);
return ret;
}
static int relocate_file_extent_cluster(struct reloc_control *rc)
{
struct inode *inode = rc->data_inode;
const struct file_extent_cluster *cluster = &rc->cluster;
u64 offset = BTRFS_I(inode)->reloc_block_group_start;
unsigned long index;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
unsigned long last_index;
struct file_ra_state *ra;
int cluster_nr = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
int ret = 0;
if (!cluster->nr)
return 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ra = kzalloc(sizeof(*ra), GFP_NOFS);
if (!ra)
return -ENOMEM;
ret = prealloc_file_extent_cluster(rc);
if (ret)
goto out;
file_ra_state_init(ra, inode->i_mapping);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = setup_relocation_extent_mapping(rc);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (ret)
goto out;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. We have many places where PAGE_CACHE_SIZE assumed to be equal to PAGE_SIZE. And it's constant source of confusion on whether PAGE_CACHE_* or PAGE_* constant should be used in a particular case, especially on the border between fs and mm. Global switching to PAGE_CACHE_SIZE != PAGE_SIZE would cause to much breakage to be doable. Let's stop pretending that pages in page cache are special. They are not. The changes are pretty straight-forward: - <foo> << (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - <foo> >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) -> <foo>; - PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} -> PAGE_{SIZE,SHIFT,MASK,ALIGN}; - page_cache_get() -> get_page(); - page_cache_release() -> put_page(); This patch contains automated changes generated with coccinelle using script below. For some reason, coccinelle doesn't patch header files. I've called spatch for them manually. The only adjustment after coccinelle is revert of changes to PAGE_CAHCE_ALIGN definition: we are going to drop it later. There are few places in the code where coccinelle didn't reach. I'll fix them manually in a separate patch. Comments and documentation also will be addressed with the separate patch. virtual patch @@ expression E; @@ - E << (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ expression E; @@ - E >> (PAGE_CACHE_SHIFT - PAGE_SHIFT) + E @@ @@ - PAGE_CACHE_SHIFT + PAGE_SHIFT @@ @@ - PAGE_CACHE_SIZE + PAGE_SIZE @@ @@ - PAGE_CACHE_MASK + PAGE_MASK @@ expression E; @@ - PAGE_CACHE_ALIGN(E) + PAGE_ALIGN(E) @@ expression E; @@ - page_cache_get(E) + get_page(E) @@ expression E; @@ - page_cache_release(E) + put_page(E) Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-01 12:29:47 +00:00
last_index = (cluster->end - offset) >> PAGE_SHIFT;
for (index = (cluster->start - offset) >> PAGE_SHIFT;
index <= last_index && !ret; index++)
ret = relocate_one_folio(rc, ra, &cluster_nr, index);
if (ret == 0)
WARN_ON(cluster_nr != cluster->nr);
out:
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
kfree(ra);
return ret;
}
static noinline_for_stack int relocate_data_extent(struct reloc_control *rc,
const struct btrfs_key *extent_key)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct inode *inode = rc->data_inode;
struct file_extent_cluster *cluster = &rc->cluster;
int ret;
btrfs: track data relocation with simple quota Relocation data allocations are quite tricky for simple quotas. The basic data relocation sequence is (ignoring details that aren't relevant to this fix): - create a fake relocation data fs root - create a fake relocation inode in that root - for each data extent: - preallocate a data extent on behalf of the fake inode - copy over the data - for each extent - swap the refs so that the original file extent now refers to the new extent item - drop the fake root, dropping its refs on the old extents, which lets us delete them. Done naively, this results in storing an extent item in the extent tree whose owner_ref points at the relocation data root and a no-op squota recording, since the reloc root is not a legit fstree. So far, that's OK. The problem comes when you do the swap, and leave an extent item owned by this bogus root as the real permanent extents of the file. If the file then drops that ref, we free it and no-op account that against the fake relocation root. Essentially, this means that relocation is simple quota "extent laundering", since we re-own the extents into a fake root. Simple quotas very intentionally doesn't have a mechanism for transferring ownership of extents, as that is exactly the complicated thing we are trying to avoid with the new design. Further, it cannot be correctly done in this case, since at the time you create the new "real" refs, there is no way to know which was the original owner before relocation unless we track it. Therefore, it makes more sense to trick the preallocation to handle relocation as a special case and note the proper owner ref from the beginning. That way, we never write out an extent item without the correct owner ref that it will eventually have. This could be done by wiring a special root parameter all the way through the allocation code path, but to avoid that special case touching all the code, take advantage of the serial nature of relocation to store the src root on the relocation root object. Then when we finish the prealloc, if it happens to be this case, prepare the delayed ref appropriately. We must also add logic to handle relocating adjacent extents with different owning roots. Those cannot be preallocated together in a cluster as it would lose the separate ownership information. This is obviously a smelly bit of code, but I think it is the best solution to the problem, given the relocation implementation. Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-28 21:00:09 +00:00
struct btrfs_root *root = BTRFS_I(inode)->root;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
ret = relocate_file_extent_cluster(rc);
if (ret)
return ret;
cluster->nr = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
btrfs: track data relocation with simple quota Relocation data allocations are quite tricky for simple quotas. The basic data relocation sequence is (ignoring details that aren't relevant to this fix): - create a fake relocation data fs root - create a fake relocation inode in that root - for each data extent: - preallocate a data extent on behalf of the fake inode - copy over the data - for each extent - swap the refs so that the original file extent now refers to the new extent item - drop the fake root, dropping its refs on the old extents, which lets us delete them. Done naively, this results in storing an extent item in the extent tree whose owner_ref points at the relocation data root and a no-op squota recording, since the reloc root is not a legit fstree. So far, that's OK. The problem comes when you do the swap, and leave an extent item owned by this bogus root as the real permanent extents of the file. If the file then drops that ref, we free it and no-op account that against the fake relocation root. Essentially, this means that relocation is simple quota "extent laundering", since we re-own the extents into a fake root. Simple quotas very intentionally doesn't have a mechanism for transferring ownership of extents, as that is exactly the complicated thing we are trying to avoid with the new design. Further, it cannot be correctly done in this case, since at the time you create the new "real" refs, there is no way to know which was the original owner before relocation unless we track it. Therefore, it makes more sense to trick the preallocation to handle relocation as a special case and note the proper owner ref from the beginning. That way, we never write out an extent item without the correct owner ref that it will eventually have. This could be done by wiring a special root parameter all the way through the allocation code path, but to avoid that special case touching all the code, take advantage of the serial nature of relocation to store the src root on the relocation root object. Then when we finish the prealloc, if it happens to be this case, prepare the delayed ref appropriately. We must also add logic to handle relocating adjacent extents with different owning roots. Those cannot be preallocated together in a cluster as it would lose the separate ownership information. This is obviously a smelly bit of code, but I think it is the best solution to the problem, given the relocation implementation. Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-28 21:00:09 +00:00
/*
* Under simple quotas, we set root->relocation_src_root when we find
* the extent. If adjacent extents have different owners, we can't merge
* them while relocating. Handle this by storing the owning root that
* started a cluster and if we see an extent from a different root break
* cluster formation (just like the above case of non-adjacent extents).
*
* Without simple quotas, relocation_src_root is always 0, so we should
* never see a mismatch, and it should have no effect on relocation
* clusters.
*/
if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
u64 tmp = root->relocation_src_root;
/*
* root->relocation_src_root is the state that actually affects
* the preallocation we do here, so set it to the root owning
* the cluster we need to relocate.
*/
root->relocation_src_root = cluster->owning_root;
ret = relocate_file_extent_cluster(rc);
btrfs: track data relocation with simple quota Relocation data allocations are quite tricky for simple quotas. The basic data relocation sequence is (ignoring details that aren't relevant to this fix): - create a fake relocation data fs root - create a fake relocation inode in that root - for each data extent: - preallocate a data extent on behalf of the fake inode - copy over the data - for each extent - swap the refs so that the original file extent now refers to the new extent item - drop the fake root, dropping its refs on the old extents, which lets us delete them. Done naively, this results in storing an extent item in the extent tree whose owner_ref points at the relocation data root and a no-op squota recording, since the reloc root is not a legit fstree. So far, that's OK. The problem comes when you do the swap, and leave an extent item owned by this bogus root as the real permanent extents of the file. If the file then drops that ref, we free it and no-op account that against the fake relocation root. Essentially, this means that relocation is simple quota "extent laundering", since we re-own the extents into a fake root. Simple quotas very intentionally doesn't have a mechanism for transferring ownership of extents, as that is exactly the complicated thing we are trying to avoid with the new design. Further, it cannot be correctly done in this case, since at the time you create the new "real" refs, there is no way to know which was the original owner before relocation unless we track it. Therefore, it makes more sense to trick the preallocation to handle relocation as a special case and note the proper owner ref from the beginning. That way, we never write out an extent item without the correct owner ref that it will eventually have. This could be done by wiring a special root parameter all the way through the allocation code path, but to avoid that special case touching all the code, take advantage of the serial nature of relocation to store the src root on the relocation root object. Then when we finish the prealloc, if it happens to be this case, prepare the delayed ref appropriately. We must also add logic to handle relocating adjacent extents with different owning roots. Those cannot be preallocated together in a cluster as it would lose the separate ownership information. This is obviously a smelly bit of code, but I think it is the best solution to the problem, given the relocation implementation. Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-28 21:00:09 +00:00
if (ret)
return ret;
cluster->nr = 0;
/* And reset it back for the current extent's owning root. */
root->relocation_src_root = tmp;
}
if (!cluster->nr) {
cluster->start = extent_key->objectid;
btrfs: track data relocation with simple quota Relocation data allocations are quite tricky for simple quotas. The basic data relocation sequence is (ignoring details that aren't relevant to this fix): - create a fake relocation data fs root - create a fake relocation inode in that root - for each data extent: - preallocate a data extent on behalf of the fake inode - copy over the data - for each extent - swap the refs so that the original file extent now refers to the new extent item - drop the fake root, dropping its refs on the old extents, which lets us delete them. Done naively, this results in storing an extent item in the extent tree whose owner_ref points at the relocation data root and a no-op squota recording, since the reloc root is not a legit fstree. So far, that's OK. The problem comes when you do the swap, and leave an extent item owned by this bogus root as the real permanent extents of the file. If the file then drops that ref, we free it and no-op account that against the fake relocation root. Essentially, this means that relocation is simple quota "extent laundering", since we re-own the extents into a fake root. Simple quotas very intentionally doesn't have a mechanism for transferring ownership of extents, as that is exactly the complicated thing we are trying to avoid with the new design. Further, it cannot be correctly done in this case, since at the time you create the new "real" refs, there is no way to know which was the original owner before relocation unless we track it. Therefore, it makes more sense to trick the preallocation to handle relocation as a special case and note the proper owner ref from the beginning. That way, we never write out an extent item without the correct owner ref that it will eventually have. This could be done by wiring a special root parameter all the way through the allocation code path, but to avoid that special case touching all the code, take advantage of the serial nature of relocation to store the src root on the relocation root object. Then when we finish the prealloc, if it happens to be this case, prepare the delayed ref appropriately. We must also add logic to handle relocating adjacent extents with different owning roots. Those cannot be preallocated together in a cluster as it would lose the separate ownership information. This is obviously a smelly bit of code, but I think it is the best solution to the problem, given the relocation implementation. Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-28 21:00:09 +00:00
cluster->owning_root = root->relocation_src_root;
}
else
BUG_ON(cluster->nr >= MAX_EXTENTS);
cluster->end = extent_key->objectid + extent_key->offset - 1;
cluster->boundary[cluster->nr] = extent_key->objectid;
cluster->nr++;
if (cluster->nr >= MAX_EXTENTS) {
ret = relocate_file_extent_cluster(rc);
if (ret)
return ret;
cluster->nr = 0;
}
return 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
/*
* helper to add a tree block to the list.
* the major work is getting the generation and level of the block
*/
static int add_tree_block(struct reloc_control *rc,
const struct btrfs_key *extent_key,
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_path *path,
struct rb_root *blocks)
{
struct extent_buffer *eb;
struct btrfs_extent_item *ei;
struct btrfs_tree_block_info *bi;
struct tree_block *block;
struct rb_node *rb_node;
u32 item_size;
int level = -1;
u64 generation;
btrfs: keep track of the root owner for relocation reads While testing the error paths in relocation, I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc3+ #206 Not tainted ------------------------------------------------------ btrfs-balance/1571 is trying to acquire lock: ffff8cdbcc8f77d0 (&head_ref->mutex){+.+.}-{3:3}, at: btrfs_lookup_extent_info+0x156/0x3b0 but task is already holding lock: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-00){++++}-{3:3}: down_write_nested+0x43/0x80 __btrfs_tree_lock+0x27/0x100 btrfs_search_slot+0x248/0x890 relocate_tree_blocks+0x490/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 -> #1 (btrfs-csum-01){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x5ab/0x890 btrfs_del_csums+0x10b/0x3c0 __btrfs_free_extent+0x49d/0x8e0 __btrfs_run_delayed_refs+0x283/0x11f0 btrfs_run_delayed_refs+0x86/0x220 btrfs_start_dirty_block_groups+0x2ba/0x520 kretprobe_trampoline+0x0/0x50 -> #0 (&head_ref->mutex){+.+.}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 __mutex_lock+0x7e/0x7b0 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 other info that might help us debug this: Chain exists of: &head_ref->mutex --> btrfs-csum-01 --> btrfs-tree-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(btrfs-csum-01); lock(btrfs-tree-00); lock(&head_ref->mutex); *** DEADLOCK *** 5 locks held by btrfs-balance/1571: #0: ffff8cdb89749ff8 (&fs_info->delete_unused_bgs_mutex){+.+.}-{3:3}, at: btrfs_balance+0x563/0xf40 #1: ffff8cdb89748838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x156/0x300 #2: ffff8cdbc2c16650 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x413/0x5c0 #3: ffff8cdbc135f538 (btrfs-treloc-01){+.+.}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 #4: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 stack backtrace: CPU: 1 PID: 1571 Comm: btrfs-balance Not tainted 5.10.0-rc3+ #206 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 ? btrfs_lookup_extent_info+0x156/0x3b0 __mutex_lock+0x7e/0x7b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? release_extent_buffer+0x124/0x170 ? _raw_spin_unlock+0x1f/0x30 ? release_extent_buffer+0x124/0x170 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 ? add_tree_block+0x149/0x1b0 relocate_block_group+0x1ba/0x5d0 elfcorehdr_read+0x40/0x40 ? elfcorehdr_read+0x40/0x40 ? btrfs_balance+0x796/0xf40 ? __kthread_parkme+0x66/0x90 ? btrfs_balance+0xf40/0xf40 ? balance_kthread+0x37/0x50 ? kthread+0x137/0x150 ? __kthread_bind_mask+0x60/0x60 ? ret_from_fork+0x1f/0x30 As you can see this is bogus, we never take another tree's lock under the csum lock. This happens because sometimes we have to read tree blocks from disk without knowing which root they belong to during relocation. We defaulted to an owner of 0, which translates to an fs tree. This is fine as all fs trees have the same class, but obviously isn't fine if the block belongs to a COW only tree. Thankfully COW only trees only have their owners root as a reference to them, and since we already look up the extent information during relocation, go ahead and check and see if this block might belong to a COW only tree, and if so save the owner in the tree_block struct. This allows us to read_tree_block with the proper owner, which gets rid of this lockdep splat. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-16 16:22:15 +00:00
u64 owner = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
eb = path->nodes[0];
item_size = btrfs_item_size(eb, path->slots[0]);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
item_size >= sizeof(*ei) + sizeof(*bi)) {
btrfs: keep track of the root owner for relocation reads While testing the error paths in relocation, I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc3+ #206 Not tainted ------------------------------------------------------ btrfs-balance/1571 is trying to acquire lock: ffff8cdbcc8f77d0 (&head_ref->mutex){+.+.}-{3:3}, at: btrfs_lookup_extent_info+0x156/0x3b0 but task is already holding lock: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-00){++++}-{3:3}: down_write_nested+0x43/0x80 __btrfs_tree_lock+0x27/0x100 btrfs_search_slot+0x248/0x890 relocate_tree_blocks+0x490/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 -> #1 (btrfs-csum-01){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x5ab/0x890 btrfs_del_csums+0x10b/0x3c0 __btrfs_free_extent+0x49d/0x8e0 __btrfs_run_delayed_refs+0x283/0x11f0 btrfs_run_delayed_refs+0x86/0x220 btrfs_start_dirty_block_groups+0x2ba/0x520 kretprobe_trampoline+0x0/0x50 -> #0 (&head_ref->mutex){+.+.}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 __mutex_lock+0x7e/0x7b0 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 other info that might help us debug this: Chain exists of: &head_ref->mutex --> btrfs-csum-01 --> btrfs-tree-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(btrfs-csum-01); lock(btrfs-tree-00); lock(&head_ref->mutex); *** DEADLOCK *** 5 locks held by btrfs-balance/1571: #0: ffff8cdb89749ff8 (&fs_info->delete_unused_bgs_mutex){+.+.}-{3:3}, at: btrfs_balance+0x563/0xf40 #1: ffff8cdb89748838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x156/0x300 #2: ffff8cdbc2c16650 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x413/0x5c0 #3: ffff8cdbc135f538 (btrfs-treloc-01){+.+.}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 #4: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 stack backtrace: CPU: 1 PID: 1571 Comm: btrfs-balance Not tainted 5.10.0-rc3+ #206 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 ? btrfs_lookup_extent_info+0x156/0x3b0 __mutex_lock+0x7e/0x7b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? release_extent_buffer+0x124/0x170 ? _raw_spin_unlock+0x1f/0x30 ? release_extent_buffer+0x124/0x170 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 ? add_tree_block+0x149/0x1b0 relocate_block_group+0x1ba/0x5d0 elfcorehdr_read+0x40/0x40 ? elfcorehdr_read+0x40/0x40 ? btrfs_balance+0x796/0xf40 ? __kthread_parkme+0x66/0x90 ? btrfs_balance+0xf40/0xf40 ? balance_kthread+0x37/0x50 ? kthread+0x137/0x150 ? __kthread_bind_mask+0x60/0x60 ? ret_from_fork+0x1f/0x30 As you can see this is bogus, we never take another tree's lock under the csum lock. This happens because sometimes we have to read tree blocks from disk without knowing which root they belong to during relocation. We defaulted to an owner of 0, which translates to an fs tree. This is fine as all fs trees have the same class, but obviously isn't fine if the block belongs to a COW only tree. Thankfully COW only trees only have their owners root as a reference to them, and since we already look up the extent information during relocation, go ahead and check and see if this block might belong to a COW only tree, and if so save the owner in the tree_block struct. This allows us to read_tree_block with the proper owner, which gets rid of this lockdep splat. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-16 16:22:15 +00:00
unsigned long ptr = 0, end;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ei = btrfs_item_ptr(eb, path->slots[0],
struct btrfs_extent_item);
btrfs: keep track of the root owner for relocation reads While testing the error paths in relocation, I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc3+ #206 Not tainted ------------------------------------------------------ btrfs-balance/1571 is trying to acquire lock: ffff8cdbcc8f77d0 (&head_ref->mutex){+.+.}-{3:3}, at: btrfs_lookup_extent_info+0x156/0x3b0 but task is already holding lock: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-00){++++}-{3:3}: down_write_nested+0x43/0x80 __btrfs_tree_lock+0x27/0x100 btrfs_search_slot+0x248/0x890 relocate_tree_blocks+0x490/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 -> #1 (btrfs-csum-01){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x5ab/0x890 btrfs_del_csums+0x10b/0x3c0 __btrfs_free_extent+0x49d/0x8e0 __btrfs_run_delayed_refs+0x283/0x11f0 btrfs_run_delayed_refs+0x86/0x220 btrfs_start_dirty_block_groups+0x2ba/0x520 kretprobe_trampoline+0x0/0x50 -> #0 (&head_ref->mutex){+.+.}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 __mutex_lock+0x7e/0x7b0 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 other info that might help us debug this: Chain exists of: &head_ref->mutex --> btrfs-csum-01 --> btrfs-tree-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(btrfs-csum-01); lock(btrfs-tree-00); lock(&head_ref->mutex); *** DEADLOCK *** 5 locks held by btrfs-balance/1571: #0: ffff8cdb89749ff8 (&fs_info->delete_unused_bgs_mutex){+.+.}-{3:3}, at: btrfs_balance+0x563/0xf40 #1: ffff8cdb89748838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x156/0x300 #2: ffff8cdbc2c16650 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x413/0x5c0 #3: ffff8cdbc135f538 (btrfs-treloc-01){+.+.}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 #4: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 stack backtrace: CPU: 1 PID: 1571 Comm: btrfs-balance Not tainted 5.10.0-rc3+ #206 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 ? btrfs_lookup_extent_info+0x156/0x3b0 __mutex_lock+0x7e/0x7b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? release_extent_buffer+0x124/0x170 ? _raw_spin_unlock+0x1f/0x30 ? release_extent_buffer+0x124/0x170 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 ? add_tree_block+0x149/0x1b0 relocate_block_group+0x1ba/0x5d0 elfcorehdr_read+0x40/0x40 ? elfcorehdr_read+0x40/0x40 ? btrfs_balance+0x796/0xf40 ? __kthread_parkme+0x66/0x90 ? btrfs_balance+0xf40/0xf40 ? balance_kthread+0x37/0x50 ? kthread+0x137/0x150 ? __kthread_bind_mask+0x60/0x60 ? ret_from_fork+0x1f/0x30 As you can see this is bogus, we never take another tree's lock under the csum lock. This happens because sometimes we have to read tree blocks from disk without knowing which root they belong to during relocation. We defaulted to an owner of 0, which translates to an fs tree. This is fine as all fs trees have the same class, but obviously isn't fine if the block belongs to a COW only tree. Thankfully COW only trees only have their owners root as a reference to them, and since we already look up the extent information during relocation, go ahead and check and see if this block might belong to a COW only tree, and if so save the owner in the tree_block struct. This allows us to read_tree_block with the proper owner, which gets rid of this lockdep splat. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-16 16:22:15 +00:00
end = (unsigned long)ei + item_size;
if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
bi = (struct btrfs_tree_block_info *)(ei + 1);
level = btrfs_tree_block_level(eb, bi);
btrfs: keep track of the root owner for relocation reads While testing the error paths in relocation, I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc3+ #206 Not tainted ------------------------------------------------------ btrfs-balance/1571 is trying to acquire lock: ffff8cdbcc8f77d0 (&head_ref->mutex){+.+.}-{3:3}, at: btrfs_lookup_extent_info+0x156/0x3b0 but task is already holding lock: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-00){++++}-{3:3}: down_write_nested+0x43/0x80 __btrfs_tree_lock+0x27/0x100 btrfs_search_slot+0x248/0x890 relocate_tree_blocks+0x490/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 -> #1 (btrfs-csum-01){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x5ab/0x890 btrfs_del_csums+0x10b/0x3c0 __btrfs_free_extent+0x49d/0x8e0 __btrfs_run_delayed_refs+0x283/0x11f0 btrfs_run_delayed_refs+0x86/0x220 btrfs_start_dirty_block_groups+0x2ba/0x520 kretprobe_trampoline+0x0/0x50 -> #0 (&head_ref->mutex){+.+.}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 __mutex_lock+0x7e/0x7b0 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 other info that might help us debug this: Chain exists of: &head_ref->mutex --> btrfs-csum-01 --> btrfs-tree-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(btrfs-csum-01); lock(btrfs-tree-00); lock(&head_ref->mutex); *** DEADLOCK *** 5 locks held by btrfs-balance/1571: #0: ffff8cdb89749ff8 (&fs_info->delete_unused_bgs_mutex){+.+.}-{3:3}, at: btrfs_balance+0x563/0xf40 #1: ffff8cdb89748838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x156/0x300 #2: ffff8cdbc2c16650 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x413/0x5c0 #3: ffff8cdbc135f538 (btrfs-treloc-01){+.+.}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 #4: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 stack backtrace: CPU: 1 PID: 1571 Comm: btrfs-balance Not tainted 5.10.0-rc3+ #206 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 ? btrfs_lookup_extent_info+0x156/0x3b0 __mutex_lock+0x7e/0x7b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? release_extent_buffer+0x124/0x170 ? _raw_spin_unlock+0x1f/0x30 ? release_extent_buffer+0x124/0x170 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 ? add_tree_block+0x149/0x1b0 relocate_block_group+0x1ba/0x5d0 elfcorehdr_read+0x40/0x40 ? elfcorehdr_read+0x40/0x40 ? btrfs_balance+0x796/0xf40 ? __kthread_parkme+0x66/0x90 ? btrfs_balance+0xf40/0xf40 ? balance_kthread+0x37/0x50 ? kthread+0x137/0x150 ? __kthread_bind_mask+0x60/0x60 ? ret_from_fork+0x1f/0x30 As you can see this is bogus, we never take another tree's lock under the csum lock. This happens because sometimes we have to read tree blocks from disk without knowing which root they belong to during relocation. We defaulted to an owner of 0, which translates to an fs tree. This is fine as all fs trees have the same class, but obviously isn't fine if the block belongs to a COW only tree. Thankfully COW only trees only have their owners root as a reference to them, and since we already look up the extent information during relocation, go ahead and check and see if this block might belong to a COW only tree, and if so save the owner in the tree_block struct. This allows us to read_tree_block with the proper owner, which gets rid of this lockdep splat. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-16 16:22:15 +00:00
ptr = (unsigned long)(bi + 1);
} else {
level = (int)extent_key->offset;
btrfs: keep track of the root owner for relocation reads While testing the error paths in relocation, I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc3+ #206 Not tainted ------------------------------------------------------ btrfs-balance/1571 is trying to acquire lock: ffff8cdbcc8f77d0 (&head_ref->mutex){+.+.}-{3:3}, at: btrfs_lookup_extent_info+0x156/0x3b0 but task is already holding lock: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-00){++++}-{3:3}: down_write_nested+0x43/0x80 __btrfs_tree_lock+0x27/0x100 btrfs_search_slot+0x248/0x890 relocate_tree_blocks+0x490/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 -> #1 (btrfs-csum-01){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x5ab/0x890 btrfs_del_csums+0x10b/0x3c0 __btrfs_free_extent+0x49d/0x8e0 __btrfs_run_delayed_refs+0x283/0x11f0 btrfs_run_delayed_refs+0x86/0x220 btrfs_start_dirty_block_groups+0x2ba/0x520 kretprobe_trampoline+0x0/0x50 -> #0 (&head_ref->mutex){+.+.}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 __mutex_lock+0x7e/0x7b0 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 other info that might help us debug this: Chain exists of: &head_ref->mutex --> btrfs-csum-01 --> btrfs-tree-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(btrfs-csum-01); lock(btrfs-tree-00); lock(&head_ref->mutex); *** DEADLOCK *** 5 locks held by btrfs-balance/1571: #0: ffff8cdb89749ff8 (&fs_info->delete_unused_bgs_mutex){+.+.}-{3:3}, at: btrfs_balance+0x563/0xf40 #1: ffff8cdb89748838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x156/0x300 #2: ffff8cdbc2c16650 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x413/0x5c0 #3: ffff8cdbc135f538 (btrfs-treloc-01){+.+.}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 #4: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 stack backtrace: CPU: 1 PID: 1571 Comm: btrfs-balance Not tainted 5.10.0-rc3+ #206 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 ? btrfs_lookup_extent_info+0x156/0x3b0 __mutex_lock+0x7e/0x7b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? release_extent_buffer+0x124/0x170 ? _raw_spin_unlock+0x1f/0x30 ? release_extent_buffer+0x124/0x170 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 ? add_tree_block+0x149/0x1b0 relocate_block_group+0x1ba/0x5d0 elfcorehdr_read+0x40/0x40 ? elfcorehdr_read+0x40/0x40 ? btrfs_balance+0x796/0xf40 ? __kthread_parkme+0x66/0x90 ? btrfs_balance+0xf40/0xf40 ? balance_kthread+0x37/0x50 ? kthread+0x137/0x150 ? __kthread_bind_mask+0x60/0x60 ? ret_from_fork+0x1f/0x30 As you can see this is bogus, we never take another tree's lock under the csum lock. This happens because sometimes we have to read tree blocks from disk without knowing which root they belong to during relocation. We defaulted to an owner of 0, which translates to an fs tree. This is fine as all fs trees have the same class, but obviously isn't fine if the block belongs to a COW only tree. Thankfully COW only trees only have their owners root as a reference to them, and since we already look up the extent information during relocation, go ahead and check and see if this block might belong to a COW only tree, and if so save the owner in the tree_block struct. This allows us to read_tree_block with the proper owner, which gets rid of this lockdep splat. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-16 16:22:15 +00:00
ptr = (unsigned long)(ei + 1);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
generation = btrfs_extent_generation(eb, ei);
btrfs: keep track of the root owner for relocation reads While testing the error paths in relocation, I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc3+ #206 Not tainted ------------------------------------------------------ btrfs-balance/1571 is trying to acquire lock: ffff8cdbcc8f77d0 (&head_ref->mutex){+.+.}-{3:3}, at: btrfs_lookup_extent_info+0x156/0x3b0 but task is already holding lock: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-00){++++}-{3:3}: down_write_nested+0x43/0x80 __btrfs_tree_lock+0x27/0x100 btrfs_search_slot+0x248/0x890 relocate_tree_blocks+0x490/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 -> #1 (btrfs-csum-01){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x5ab/0x890 btrfs_del_csums+0x10b/0x3c0 __btrfs_free_extent+0x49d/0x8e0 __btrfs_run_delayed_refs+0x283/0x11f0 btrfs_run_delayed_refs+0x86/0x220 btrfs_start_dirty_block_groups+0x2ba/0x520 kretprobe_trampoline+0x0/0x50 -> #0 (&head_ref->mutex){+.+.}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 __mutex_lock+0x7e/0x7b0 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 other info that might help us debug this: Chain exists of: &head_ref->mutex --> btrfs-csum-01 --> btrfs-tree-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(btrfs-csum-01); lock(btrfs-tree-00); lock(&head_ref->mutex); *** DEADLOCK *** 5 locks held by btrfs-balance/1571: #0: ffff8cdb89749ff8 (&fs_info->delete_unused_bgs_mutex){+.+.}-{3:3}, at: btrfs_balance+0x563/0xf40 #1: ffff8cdb89748838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x156/0x300 #2: ffff8cdbc2c16650 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x413/0x5c0 #3: ffff8cdbc135f538 (btrfs-treloc-01){+.+.}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 #4: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 stack backtrace: CPU: 1 PID: 1571 Comm: btrfs-balance Not tainted 5.10.0-rc3+ #206 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 ? btrfs_lookup_extent_info+0x156/0x3b0 __mutex_lock+0x7e/0x7b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? release_extent_buffer+0x124/0x170 ? _raw_spin_unlock+0x1f/0x30 ? release_extent_buffer+0x124/0x170 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 ? add_tree_block+0x149/0x1b0 relocate_block_group+0x1ba/0x5d0 elfcorehdr_read+0x40/0x40 ? elfcorehdr_read+0x40/0x40 ? btrfs_balance+0x796/0xf40 ? __kthread_parkme+0x66/0x90 ? btrfs_balance+0xf40/0xf40 ? balance_kthread+0x37/0x50 ? kthread+0x137/0x150 ? __kthread_bind_mask+0x60/0x60 ? ret_from_fork+0x1f/0x30 As you can see this is bogus, we never take another tree's lock under the csum lock. This happens because sometimes we have to read tree blocks from disk without knowing which root they belong to during relocation. We defaulted to an owner of 0, which translates to an fs tree. This is fine as all fs trees have the same class, but obviously isn't fine if the block belongs to a COW only tree. Thankfully COW only trees only have their owners root as a reference to them, and since we already look up the extent information during relocation, go ahead and check and see if this block might belong to a COW only tree, and if so save the owner in the tree_block struct. This allows us to read_tree_block with the proper owner, which gets rid of this lockdep splat. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-16 16:22:15 +00:00
/*
* We're reading random blocks without knowing their owner ahead
* of time. This is ok most of the time, as all reloc roots and
* fs roots have the same lock type. However normal trees do
* not, and the only way to know ahead of time is to read the
* inline ref offset. We know it's an fs root if
*
* 1. There's more than one ref.
* 2. There's a SHARED_DATA_REF_KEY set.
* 3. FULL_BACKREF is set on the flags.
*
* Otherwise it's safe to assume that the ref offset == the
* owner of this block, so we can use that when calling
* read_tree_block.
*/
if (btrfs_extent_refs(eb, ei) == 1 &&
!(btrfs_extent_flags(eb, ei) &
BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
ptr < end) {
struct btrfs_extent_inline_ref *iref;
int type;
iref = (struct btrfs_extent_inline_ref *)ptr;
type = btrfs_get_extent_inline_ref_type(eb, iref,
BTRFS_REF_TYPE_BLOCK);
if (type == BTRFS_REF_TYPE_INVALID)
return -EINVAL;
if (type == BTRFS_TREE_BLOCK_REF_KEY)
owner = btrfs_extent_inline_ref_offset(eb, iref);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
} else {
btrfs: remove v0 extent handling The v0 extent item has been deprecated for a long time, and we don't have any report from the community either. So it's time to remove the v0 extent specific error handling, and just treat them as regular extent tree corruption. This patch would remove the btrfs_print_v0_err() helper, and enhance the involved error handling to treat them just as any extent tree corruption. No reports regarding v0 extents have been seen since the graceful handling was added in 2018. This involves: - btrfs_backref_add_tree_node() This change is a little tricky, the new code is changed to only handle BTRFS_TREE_BLOCK_REF_KEY and BTRFS_SHARED_BLOCK_REF_KEY. But this is safe, as we have rejected any unknown inline refs through btrfs_get_extent_inline_ref_type(). For keyed backrefs, we're safe to skip anything we don't know (that's if it can pass tree-checker in the first place). - btrfs_lookup_extent_info() - lookup_inline_extent_backref() - run_delayed_extent_op() - __btrfs_free_extent() - add_tree_block() Regular error handling of unexpected extent tree item, and abort transaction (if we have a trans handle). - remove_extent_data_ref() It's pretty much the same as the regular rejection of unknown backref key. But for this particular case, we can also remove a BUG_ON(). - extent_data_ref_count() We can remove the BTRFS_EXTENT_REF_V0_KEY BUG_ON(), as it would be rejected by the only caller. - btrfs_print_leaf() Remove the handling for BTRFS_EXTENT_REF_V0_KEY. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-11 11:02:11 +00:00
btrfs_print_leaf(eb);
btrfs_err(rc->block_group->fs_info,
"unrecognized tree backref at tree block %llu slot %u",
eb->start, path->slots[0]);
btrfs_release_path(path);
return -EUCLEAN;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
btrfs_release_path(path);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
BUG_ON(level == -1);
block = kmalloc(sizeof(*block), GFP_NOFS);
if (!block)
return -ENOMEM;
block->bytenr = extent_key->objectid;
block->key.objectid = rc->extent_root->fs_info->nodesize;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
block->key.offset = generation;
block->level = level;
block->key_ready = false;
btrfs: keep track of the root owner for relocation reads While testing the error paths in relocation, I hit the following lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 5.10.0-rc3+ #206 Not tainted ------------------------------------------------------ btrfs-balance/1571 is trying to acquire lock: ffff8cdbcc8f77d0 (&head_ref->mutex){+.+.}-{3:3}, at: btrfs_lookup_extent_info+0x156/0x3b0 but task is already holding lock: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #2 (btrfs-tree-00){++++}-{3:3}: down_write_nested+0x43/0x80 __btrfs_tree_lock+0x27/0x100 btrfs_search_slot+0x248/0x890 relocate_tree_blocks+0x490/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 -> #1 (btrfs-csum-01){++++}-{3:3}: down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x27/0x100 btrfs_read_lock_root_node+0x31/0x40 btrfs_search_slot+0x5ab/0x890 btrfs_del_csums+0x10b/0x3c0 __btrfs_free_extent+0x49d/0x8e0 __btrfs_run_delayed_refs+0x283/0x11f0 btrfs_run_delayed_refs+0x86/0x220 btrfs_start_dirty_block_groups+0x2ba/0x520 kretprobe_trampoline+0x0/0x50 -> #0 (&head_ref->mutex){+.+.}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 __mutex_lock+0x7e/0x7b0 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 relocate_block_group+0x1ba/0x5d0 kretprobe_trampoline+0x0/0x50 other info that might help us debug this: Chain exists of: &head_ref->mutex --> btrfs-csum-01 --> btrfs-tree-00 Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(btrfs-tree-00); lock(btrfs-csum-01); lock(btrfs-tree-00); lock(&head_ref->mutex); *** DEADLOCK *** 5 locks held by btrfs-balance/1571: #0: ffff8cdb89749ff8 (&fs_info->delete_unused_bgs_mutex){+.+.}-{3:3}, at: btrfs_balance+0x563/0xf40 #1: ffff8cdb89748838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: btrfs_relocate_block_group+0x156/0x300 #2: ffff8cdbc2c16650 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x413/0x5c0 #3: ffff8cdbc135f538 (btrfs-treloc-01){+.+.}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 #4: ffff8cdbc54adbf8 (btrfs-tree-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x100 stack backtrace: CPU: 1 PID: 1571 Comm: btrfs-balance Not tainted 5.10.0-rc3+ #206 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 ? trace_call_bpf+0x139/0x260 __lock_acquire+0x1167/0x2150 lock_acquire+0x116/0x3e0 ? btrfs_lookup_extent_info+0x156/0x3b0 __mutex_lock+0x7e/0x7b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? btrfs_lookup_extent_info+0x156/0x3b0 ? release_extent_buffer+0x124/0x170 ? _raw_spin_unlock+0x1f/0x30 ? release_extent_buffer+0x124/0x170 btrfs_lookup_extent_info+0x156/0x3b0 walk_down_proc+0x1c3/0x280 walk_down_tree+0x64/0xe0 btrfs_drop_subtree+0x182/0x260 do_relocation+0x52e/0x660 relocate_tree_blocks+0x2ae/0x650 ? add_tree_block+0x149/0x1b0 relocate_block_group+0x1ba/0x5d0 elfcorehdr_read+0x40/0x40 ? elfcorehdr_read+0x40/0x40 ? btrfs_balance+0x796/0xf40 ? __kthread_parkme+0x66/0x90 ? btrfs_balance+0xf40/0xf40 ? balance_kthread+0x37/0x50 ? kthread+0x137/0x150 ? __kthread_bind_mask+0x60/0x60 ? ret_from_fork+0x1f/0x30 As you can see this is bogus, we never take another tree's lock under the csum lock. This happens because sometimes we have to read tree blocks from disk without knowing which root they belong to during relocation. We defaulted to an owner of 0, which translates to an fs tree. This is fine as all fs trees have the same class, but obviously isn't fine if the block belongs to a COW only tree. Thankfully COW only trees only have their owners root as a reference to them, and since we already look up the extent information during relocation, go ahead and check and see if this block might belong to a COW only tree, and if so save the owner in the tree_block struct. This allows us to read_tree_block with the proper owner, which gets rid of this lockdep splat. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-16 16:22:15 +00:00
block->owner = owner;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
if (rb_node)
btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
-EEXIST);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return 0;
}
/*
* helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
*/
static int __add_tree_block(struct reloc_control *rc,
u64 bytenr, u32 blocksize,
struct rb_root *blocks)
{
struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_path *path;
struct btrfs_key key;
int ret;
bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (tree_block_processed(bytenr, rc))
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return 0;
if (rb_simple_search(blocks, bytenr))
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
again:
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
key.objectid = bytenr;
if (skinny) {
key.type = BTRFS_METADATA_ITEM_KEY;
key.offset = (u64)-1;
} else {
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = blocksize;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
path->search_commit_root = 1;
path->skip_locking = 1;
ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
if (ret < 0)
goto out;
if (ret > 0 && skinny) {
if (path->slots[0]) {
path->slots[0]--;
btrfs_item_key_to_cpu(path->nodes[0], &key,
path->slots[0]);
if (key.objectid == bytenr &&
(key.type == BTRFS_METADATA_ITEM_KEY ||
(key.type == BTRFS_EXTENT_ITEM_KEY &&
key.offset == blocksize)))
ret = 0;
}
if (ret) {
skinny = false;
btrfs_release_path(path);
goto again;
}
}
if (ret) {
ASSERT(ret == 1);
btrfs_print_leaf(path->nodes[0]);
btrfs_err(fs_info,
"tree block extent item (%llu) is not found in extent tree",
bytenr);
WARN_ON(1);
ret = -EINVAL;
goto out;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = add_tree_block(rc, &key, path, blocks);
out:
btrfs_free_path(path);
return ret;
}
static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
struct btrfs_block_group *block_group,
struct inode *inode,
u64 ino)
{
struct btrfs_root *root = fs_info->tree_root;
struct btrfs_trans_handle *trans;
int ret = 0;
if (inode)
goto truncate;
inode = btrfs_iget(ino, root);
if (IS_ERR(inode))
return -ENOENT;
truncate:
ret = btrfs_check_trunc_cache_free_space(fs_info,
&fs_info->global_block_rsv);
if (ret)
goto out;
trans = btrfs_join_transaction(root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out;
}
ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
btrfs_end_transaction(trans);
btrfs_btree_balance_dirty(fs_info);
out:
iput(inode);
return ret;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* Locate the free space cache EXTENT_DATA in root tree leaf and delete the
* cache inode, to avoid free space cache data extent blocking data relocation.
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
*/
static int delete_v1_space_cache(struct extent_buffer *leaf,
struct btrfs_block_group *block_group,
u64 data_bytenr)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
u64 space_cache_ino;
struct btrfs_file_extent_item *ei;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_key key;
bool found = false;
int i;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
int ret;
if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
return 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
for (i = 0; i < btrfs_header_nritems(leaf); i++) {
btrfs: reloc: fix wrong file extent type check to avoid false ENOENT [BUG] There are several bug reports about recent kernel unable to relocate certain data block groups. Sometimes the error just goes away, but there is one reporter who can reproduce it reliably. The dmesg would look like: [438.260483] BTRFS info (device dm-10): balance: start -dvrange=34625344765952..34625344765953 [438.269018] BTRFS info (device dm-10): relocating block group 34625344765952 flags data|raid1 [450.439609] BTRFS info (device dm-10): found 167 extents, stage: move data extents [463.501781] BTRFS info (device dm-10): balance: ended with status: -2 [CAUSE] The ENOENT error is returned from the following call chain: add_data_references() |- delete_v1_space_cache(); |- if (!found) return -ENOENT; The variable @found is set to true if we find a data extent whose disk bytenr matches parameter @data_bytes. With extra debugging, the offending tree block looks like this: leaf bytenr = 42676709441536, data_bytenr = 34626327621632 ctime 1567904822.739884119 (2019-09-08 03:07:02) mtime 0.0 (1970-01-01 01:00:00) otime 0.0 (1970-01-01 01:00:00) item 27 key (51933 EXTENT_DATA 0) itemoff 9854 itemsize 53 generation 1517381 type 2 (prealloc) prealloc data disk byte 34626327621632 nr 262144 <<< prealloc data offset 0 nr 262144 item 28 key (52262 ROOT_ITEM 0) itemoff 9415 itemsize 439 generation 2618893 root_dirid 256 bytenr 42677048360960 level 3 refs 1 lastsnap 2618893 byte_limit 0 bytes_used 5557338112 flags 0x0(none) uuid d0d4361f-d231-6d40-8901-fe506e4b2b53 Although item 27 has disk bytenr 34626327621632, which matches the data_bytenr, its type is prealloc, not reg. This makes the existing code skip that item, and return ENOENT. [FIX] The code is modified in commit 19b546d7a1b2 ("btrfs: relocation: Use btrfs_find_all_leafs to locate data extent parent tree leaves"), before that commit, we use something like "if (type == BTRFS_FILE_EXTENT_INLINE) continue;" But in that offending commit, we use (type == BTRFS_FILE_EXTENT_REG), ignoring BTRFS_FILE_EXTENT_PREALLOC. Fix it by also checking BTRFS_FILE_EXTENT_PREALLOC. Reported-by: Stéphane Lesimple <stephane_btrfs2@lesimple.fr> Link: https://lore.kernel.org/linux-btrfs/505cabfa88575ed6dbe7cb922d8914fb@lesimple.fr Fixes: 19b546d7a1b2 ("btrfs: relocation: Use btrfs_find_all_leafs to locate data extent parent tree leaves") CC: stable@vger.kernel.org # 5.6+ Tested-By: Stéphane Lesimple <stephane_btrfs2@lesimple.fr> Reviewed-by: Su Yue <l@damenly.su> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-29 13:29:34 +00:00
u8 type;
btrfs_item_key_to_cpu(leaf, &key, i);
if (key.type != BTRFS_EXTENT_DATA_KEY)
continue;
ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
btrfs: reloc: fix wrong file extent type check to avoid false ENOENT [BUG] There are several bug reports about recent kernel unable to relocate certain data block groups. Sometimes the error just goes away, but there is one reporter who can reproduce it reliably. The dmesg would look like: [438.260483] BTRFS info (device dm-10): balance: start -dvrange=34625344765952..34625344765953 [438.269018] BTRFS info (device dm-10): relocating block group 34625344765952 flags data|raid1 [450.439609] BTRFS info (device dm-10): found 167 extents, stage: move data extents [463.501781] BTRFS info (device dm-10): balance: ended with status: -2 [CAUSE] The ENOENT error is returned from the following call chain: add_data_references() |- delete_v1_space_cache(); |- if (!found) return -ENOENT; The variable @found is set to true if we find a data extent whose disk bytenr matches parameter @data_bytes. With extra debugging, the offending tree block looks like this: leaf bytenr = 42676709441536, data_bytenr = 34626327621632 ctime 1567904822.739884119 (2019-09-08 03:07:02) mtime 0.0 (1970-01-01 01:00:00) otime 0.0 (1970-01-01 01:00:00) item 27 key (51933 EXTENT_DATA 0) itemoff 9854 itemsize 53 generation 1517381 type 2 (prealloc) prealloc data disk byte 34626327621632 nr 262144 <<< prealloc data offset 0 nr 262144 item 28 key (52262 ROOT_ITEM 0) itemoff 9415 itemsize 439 generation 2618893 root_dirid 256 bytenr 42677048360960 level 3 refs 1 lastsnap 2618893 byte_limit 0 bytes_used 5557338112 flags 0x0(none) uuid d0d4361f-d231-6d40-8901-fe506e4b2b53 Although item 27 has disk bytenr 34626327621632, which matches the data_bytenr, its type is prealloc, not reg. This makes the existing code skip that item, and return ENOENT. [FIX] The code is modified in commit 19b546d7a1b2 ("btrfs: relocation: Use btrfs_find_all_leafs to locate data extent parent tree leaves"), before that commit, we use something like "if (type == BTRFS_FILE_EXTENT_INLINE) continue;" But in that offending commit, we use (type == BTRFS_FILE_EXTENT_REG), ignoring BTRFS_FILE_EXTENT_PREALLOC. Fix it by also checking BTRFS_FILE_EXTENT_PREALLOC. Reported-by: Stéphane Lesimple <stephane_btrfs2@lesimple.fr> Link: https://lore.kernel.org/linux-btrfs/505cabfa88575ed6dbe7cb922d8914fb@lesimple.fr Fixes: 19b546d7a1b2 ("btrfs: relocation: Use btrfs_find_all_leafs to locate data extent parent tree leaves") CC: stable@vger.kernel.org # 5.6+ Tested-By: Stéphane Lesimple <stephane_btrfs2@lesimple.fr> Reviewed-by: Su Yue <l@damenly.su> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-29 13:29:34 +00:00
type = btrfs_file_extent_type(leaf, ei);
if ((type == BTRFS_FILE_EXTENT_REG ||
type == BTRFS_FILE_EXTENT_PREALLOC) &&
btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
found = true;
space_cache_ino = key.objectid;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
break;
}
}
if (!found)
return -ENOENT;
ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
space_cache_ino);
return ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
/*
* helper to find all tree blocks that reference a given data extent
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
*/
static noinline_for_stack int add_data_references(struct reloc_control *rc,
const struct btrfs_key *extent_key,
struct btrfs_path *path,
struct rb_root *blocks)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_backref_walk_ctx ctx = { 0 };
struct ulist_iterator leaf_uiter;
struct ulist_node *ref_node = NULL;
const u32 blocksize = rc->extent_root->fs_info->nodesize;
int ret = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_release_path(path);
ctx.bytenr = extent_key->objectid;
btrfs: fix backref walking not returning all inode refs When using the logical to ino ioctl v2, if the flag to ignore offsets of file extent items (BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET) is given, the backref walking code ends up not returning references for all file offsets of an inode that point to the given logical bytenr. This happens since kernel 6.2, commit 6ce6ba534418 ("btrfs: use a single argument for extent offset in backref walking functions") because: 1) It mistakenly skipped the search for file extent items in a leaf that point to the target extent if that flag is given. Instead it should only skip the filtering done by check_extent_in_eb() - that is, it should not avoid the calls to that function (or find_extent_in_eb(), which uses it). 2) It was also not building a list of inode extent elements (struct extent_inode_elem) if we have multiple inode references for an extent when the ignore offset flag is given to the logical to ino ioctl - it would leave a single element, only the last one that was found. These stem from the confusing old interface for backref walking functions where we had an extent item offset argument that was a pointer to a u64 and another boolean argument that indicated if the offset should be ignored, but the pointer could be NULL. That NULL case is used by relocation, qgroup extent accounting and fiemap, simply to avoid building the inode extent list for each reference, as it's not necessary for those use cases and therefore avoids memory allocations and some computations. Fix this by adding a boolean argument to the backref walk context structure to indicate that the inode extent list should not be built, make relocation set that argument to true and fix the backref walking logic to skip the calls to check_extent_in_eb() and find_extent_in_eb() only if this new argument is true, instead of 'ignore_extent_item_pos' being true. A test case for fstests will be added soon, to provide cover not only for these cases but to the logical to ino ioctl in general as well, as currently we do not have a test case for it. Reported-by: Vladimir Panteleev <git@vladimir.panteleev.md> Link: https://lore.kernel.org/linux-btrfs/CAHhfkvwo=nmzrJSqZ2qMfF-rZB-ab6ahHnCD_sq9h4o8v+M7QQ@mail.gmail.com/ Fixes: 6ce6ba534418 ("btrfs: use a single argument for extent offset in backref walking functions") CC: stable@vger.kernel.org # 6.2+ Tested-by: Vladimir Panteleev <git@vladimir.panteleev.md> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-09 11:50:02 +00:00
ctx.skip_inode_ref_list = true;
ctx.fs_info = rc->extent_root->fs_info;
ret = btrfs_find_all_leafs(&ctx);
if (ret < 0)
return ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ULIST_ITER_INIT(&leaf_uiter);
while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
struct btrfs_tree_parent_check check = { 0 };
struct extent_buffer *eb;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
if (IS_ERR(eb)) {
ret = PTR_ERR(eb);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
break;
}
ret = delete_v1_space_cache(eb, rc->block_group,
extent_key->objectid);
free_extent_buffer(eb);
if (ret < 0)
break;
ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
if (ret < 0)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
break;
}
if (ret < 0)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
free_block_list(blocks);
ulist_free(ctx.refs);
return ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
/*
* helper to find next unprocessed extent
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
*/
static noinline_for_stack
int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
struct btrfs_key *extent_key)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct btrfs_key key;
struct extent_buffer *leaf;
u64 start, end, last;
int ret;
last = rc->block_group->start + rc->block_group->length;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
while (1) {
bool block_found;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
cond_resched();
if (rc->search_start >= last) {
ret = 1;
break;
}
key.objectid = rc->search_start;
key.type = BTRFS_EXTENT_ITEM_KEY;
key.offset = 0;
path->search_commit_root = 1;
path->skip_locking = 1;
ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
0, 0);
if (ret < 0)
break;
next:
leaf = path->nodes[0];
if (path->slots[0] >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(rc->extent_root, path);
if (ret != 0)
break;
leaf = path->nodes[0];
}
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid >= last) {
ret = 1;
break;
}
if (key.type != BTRFS_EXTENT_ITEM_KEY &&
key.type != BTRFS_METADATA_ITEM_KEY) {
path->slots[0]++;
goto next;
}
if (key.type == BTRFS_EXTENT_ITEM_KEY &&
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
key.objectid + key.offset <= rc->search_start) {
path->slots[0]++;
goto next;
}
if (key.type == BTRFS_METADATA_ITEM_KEY &&
key.objectid + fs_info->nodesize <=
rc->search_start) {
path->slots[0]++;
goto next;
}
block_found = find_first_extent_bit(&rc->processed_blocks,
key.objectid, &start, &end,
EXTENT_DIRTY, NULL);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (block_found && start <= key.objectid) {
btrfs_release_path(path);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
rc->search_start = end + 1;
} else {
if (key.type == BTRFS_EXTENT_ITEM_KEY)
rc->search_start = key.objectid + key.offset;
else
rc->search_start = key.objectid +
fs_info->nodesize;
memcpy(extent_key, &key, sizeof(key));
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return 0;
}
}
btrfs_release_path(path);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return ret;
}
static void set_reloc_control(struct reloc_control *rc)
{
struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
mutex_lock(&fs_info->reloc_mutex);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
fs_info->reloc_ctl = rc;
mutex_unlock(&fs_info->reloc_mutex);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static void unset_reloc_control(struct reloc_control *rc)
{
struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
mutex_lock(&fs_info->reloc_mutex);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
fs_info->reloc_ctl = NULL;
mutex_unlock(&fs_info->reloc_mutex);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
static noinline_for_stack
int prepare_to_relocate(struct reloc_control *rc)
{
struct btrfs_trans_handle *trans;
int ret;
rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
BTRFS_BLOCK_RSV_TEMP);
if (!rc->block_rsv)
return -ENOMEM;
memset(&rc->cluster, 0, sizeof(rc->cluster));
rc->search_start = rc->block_group->start;
rc->extents_found = 0;
rc->nodes_relocated = 0;
rc->merging_rsv_size = 0;
rc->reserved_bytes = 0;
rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
RELOCATION_RESERVED_NODES;
ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
rc->block_rsv, rc->block_rsv->size,
BTRFS_RESERVE_FLUSH_ALL);
if (ret)
return ret;
rc->create_reloc_tree = true;
set_reloc_control(rc);
trans = btrfs_join_transaction(rc->extent_root);
if (IS_ERR(trans)) {
unset_reloc_control(rc);
/*
* extent tree is not a ref_cow tree and has no reloc_root to
* cleanup. And callers are responsible to free the above
* block rsv.
*/
return PTR_ERR(trans);
}
btrfs: unset reloc control if transaction commit fails in prepare_to_relocate() In btrfs_relocate_block_group(), the rc is allocated. Then btrfs_relocate_block_group() calls relocate_block_group() prepare_to_relocate() set_reloc_control() that assigns rc to the variable fs_info->reloc_ctl. When prepare_to_relocate() returns, it calls btrfs_commit_transaction() btrfs_start_dirty_block_groups() btrfs_alloc_path() kmem_cache_zalloc() which may fail for example (or other errors could happen). When the failure occurs, btrfs_relocate_block_group() detects the error and frees rc and doesn't set fs_info->reloc_ctl to NULL. After that, in btrfs_init_reloc_root(), rc is retrieved from fs_info->reloc_ctl and then used, which may cause a use-after-free bug. This possible bug can be triggered by calling btrfs_ioctl_balance() before calling btrfs_ioctl_defrag(). To fix this possible bug, in prepare_to_relocate(), check if btrfs_commit_transaction() fails. If the failure occurs, unset_reloc_control() is called to set fs_info->reloc_ctl to NULL. The error log in our fault-injection testing is shown as follows: [ 58.751070] BUG: KASAN: use-after-free in btrfs_init_reloc_root+0x7ca/0x920 [btrfs] ... [ 58.753577] Call Trace: ... [ 58.755800] kasan_report+0x45/0x60 [ 58.756066] btrfs_init_reloc_root+0x7ca/0x920 [btrfs] [ 58.757304] record_root_in_trans+0x792/0xa10 [btrfs] [ 58.757748] btrfs_record_root_in_trans+0x463/0x4f0 [btrfs] [ 58.758231] start_transaction+0x896/0x2950 [btrfs] [ 58.758661] btrfs_defrag_root+0x250/0xc00 [btrfs] [ 58.759083] btrfs_ioctl_defrag+0x467/0xa00 [btrfs] [ 58.759513] btrfs_ioctl+0x3c95/0x114e0 [btrfs] ... [ 58.768510] Allocated by task 23683: [ 58.768777] ____kasan_kmalloc+0xb5/0xf0 [ 58.769069] __kmalloc+0x227/0x3d0 [ 58.769325] alloc_reloc_control+0x10a/0x3d0 [btrfs] [ 58.769755] btrfs_relocate_block_group+0x7aa/0x1e20 [btrfs] [ 58.770228] btrfs_relocate_chunk+0xf1/0x760 [btrfs] [ 58.770655] __btrfs_balance+0x1326/0x1f10 [btrfs] [ 58.771071] btrfs_balance+0x3150/0x3d30 [btrfs] [ 58.771472] btrfs_ioctl_balance+0xd84/0x1410 [btrfs] [ 58.771902] btrfs_ioctl+0x4caa/0x114e0 [btrfs] ... [ 58.773337] Freed by task 23683: ... [ 58.774815] kfree+0xda/0x2b0 [ 58.775038] free_reloc_control+0x1d6/0x220 [btrfs] [ 58.775465] btrfs_relocate_block_group+0x115c/0x1e20 [btrfs] [ 58.775944] btrfs_relocate_chunk+0xf1/0x760 [btrfs] [ 58.776369] __btrfs_balance+0x1326/0x1f10 [btrfs] [ 58.776784] btrfs_balance+0x3150/0x3d30 [btrfs] [ 58.777185] btrfs_ioctl_balance+0xd84/0x1410 [btrfs] [ 58.777621] btrfs_ioctl+0x4caa/0x114e0 [btrfs] ... Reported-by: TOTE Robot <oslab@tsinghua.edu.cn> CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Zixuan Fu <r33s3n6@gmail.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-21 07:48:29 +00:00
ret = btrfs_commit_transaction(trans);
if (ret)
unset_reloc_control(rc);
return ret;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
{
struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct rb_root blocks = RB_ROOT;
struct btrfs_key key;
struct btrfs_trans_handle *trans = NULL;
struct btrfs_path *path;
struct btrfs_extent_item *ei;
u64 flags;
int ret;
int err = 0;
int progress = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
path = btrfs_alloc_path();
if (!path)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return -ENOMEM;
path->reada = READA_FORWARD;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = prepare_to_relocate(rc);
if (ret) {
err = ret;
goto out_free;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
while (1) {
rc->reserved_bytes = 0;
ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
rc->block_rsv->size,
BTRFS_RESERVE_FLUSH_ALL);
if (ret) {
err = ret;
break;
}
progress++;
trans = btrfs_start_transaction(rc->extent_root, 0);
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
trans = NULL;
break;
}
restart:
btrfs: drop the backref cache during relocation if we commit Since the inception of relocation we have maintained the backref cache across transaction commits, updating the backref cache with the new bytenr whenever we COWed blocks that were in the cache, and then updating their bytenr once we detected a transaction id change. This works as long as we're only ever modifying blocks, not changing the structure of the tree. However relocation does in fact change the structure of the tree. For example, if we are relocating a data extent, we will look up all the leaves that point to this data extent. We will then call do_relocation() on each of these leaves, which will COW down to the leaf and then update the file extent location. But, a key feature of do_relocation() is the pending list. This is all the pending nodes that we modified when we updated the file extent item. We will then process all of these blocks via finish_pending_nodes, which calls do_relocation() on all of the nodes that led up to that leaf. The purpose of this is to make sure we don't break sharing unless we absolutely have to. Consider the case that we have 3 snapshots that all point to this leaf through the same nodes, the initial COW would have created a whole new path. If we did this for all 3 snapshots we would end up with 3x the number of nodes we had originally. To avoid this we will cycle through each of the snapshots that point to each of these nodes and update their pointers to point at the new nodes. Once we update the pointer to the new node we will drop the node we removed the link for and all of its children via btrfs_drop_subtree(). This is essentially just btrfs_drop_snapshot(), but for an arbitrary point in the snapshot. The problem with this is that we will never reflect this in the backref cache. If we do this btrfs_drop_snapshot() for a node that is in the backref tree, we will leave the node in the backref tree. This becomes a problem when we change the transid, as now the backref cache has entire subtrees that no longer exist, but exist as if they still are pointed to by the same roots. In the best case scenario you end up with "adding refs to an existing tree ref" errors from insert_inline_extent_backref(), where we attempt to link in nodes on roots that are no longer valid. Worst case you will double free some random block and re-use it when there's still references to the block. This is extremely subtle, and the consequences are quite bad. There isn't a way to make sure our backref cache is consistent between transid's. In order to fix this we need to simply evict the entire backref cache anytime we cross transid's. This reduces performance in that we have to rebuild this backref cache every time we change transid's, but fixes the bug. This has existed since relocation was added, and is a pretty critical bug. There's a lot more cleanup that can be done now that this functionality is going away, but this patch is as small as possible in order to fix the problem and make it easy for us to backport it to all the kernels it needs to be backported to. Followup series will dismantle more of this code and simplify relocation drastically to remove this functionality. We have a reproducer that reproduced the corruption within a few minutes of running. With this patch it survives several iterations/hours of running the reproducer. Fixes: 3fd0a5585eb9 ("Btrfs: Metadata ENOSPC handling for balance") CC: stable@vger.kernel.org Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-24 20:50:22 +00:00
if (rc->backref_cache.last_trans != trans->transid)
btrfs_backref_release_cache(&rc->backref_cache);
rc->backref_cache.last_trans = trans->transid;
ret = find_next_extent(rc, path, &key);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (ret < 0)
err = ret;
if (ret != 0)
break;
rc->extents_found++;
ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_extent_item);
flags = btrfs_extent_flags(path->nodes[0], ei);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs: track data relocation with simple quota Relocation data allocations are quite tricky for simple quotas. The basic data relocation sequence is (ignoring details that aren't relevant to this fix): - create a fake relocation data fs root - create a fake relocation inode in that root - for each data extent: - preallocate a data extent on behalf of the fake inode - copy over the data - for each extent - swap the refs so that the original file extent now refers to the new extent item - drop the fake root, dropping its refs on the old extents, which lets us delete them. Done naively, this results in storing an extent item in the extent tree whose owner_ref points at the relocation data root and a no-op squota recording, since the reloc root is not a legit fstree. So far, that's OK. The problem comes when you do the swap, and leave an extent item owned by this bogus root as the real permanent extents of the file. If the file then drops that ref, we free it and no-op account that against the fake relocation root. Essentially, this means that relocation is simple quota "extent laundering", since we re-own the extents into a fake root. Simple quotas very intentionally doesn't have a mechanism for transferring ownership of extents, as that is exactly the complicated thing we are trying to avoid with the new design. Further, it cannot be correctly done in this case, since at the time you create the new "real" refs, there is no way to know which was the original owner before relocation unless we track it. Therefore, it makes more sense to trick the preallocation to handle relocation as a special case and note the proper owner ref from the beginning. That way, we never write out an extent item without the correct owner ref that it will eventually have. This could be done by wiring a special root parameter all the way through the allocation code path, but to avoid that special case touching all the code, take advantage of the serial nature of relocation to store the src root on the relocation root object. Then when we finish the prealloc, if it happens to be this case, prepare the delayed ref appropriately. We must also add logic to handle relocating adjacent extents with different owning roots. Those cannot be preallocated together in a cluster as it would lose the separate ownership information. This is obviously a smelly bit of code, but I think it is the best solution to the problem, given the relocation implementation. Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-28 21:00:09 +00:00
/*
* If we are relocating a simple quota owned extent item, we
* need to note the owner on the reloc data root so that when
* we allocate the replacement item, we can attribute it to the
* correct eventual owner (rather than the reloc data root).
*/
if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
path->nodes[0],
path->slots[0]);
root->relocation_src_root = owning_root_id;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
ret = add_tree_block(rc, &key, path, &blocks);
} else if (rc->stage == UPDATE_DATA_PTRS &&
(flags & BTRFS_EXTENT_FLAG_DATA)) {
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = add_data_references(rc, &key, path, &blocks);
} else {
btrfs_release_path(path);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = 0;
}
if (ret < 0) {
err = ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
break;
}
if (!RB_EMPTY_ROOT(&blocks)) {
ret = relocate_tree_blocks(trans, rc, &blocks);
if (ret < 0) {
if (ret != -EAGAIN) {
err = ret;
break;
}
rc->extents_found--;
rc->search_start = key.objectid;
}
}
btrfs_end_transaction_throttle(trans);
btrfs_btree_balance_dirty(fs_info);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
trans = NULL;
if (rc->stage == MOVE_DATA_EXTENTS &&
(flags & BTRFS_EXTENT_FLAG_DATA)) {
rc->found_file_extent = true;
ret = relocate_data_extent(rc, &key);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (ret < 0) {
err = ret;
break;
}
}
if (btrfs_should_cancel_balance(fs_info)) {
err = -ECANCELED;
break;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
if (trans && progress && err == -ENOSPC) {
ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
if (ret == 1) {
err = 0;
progress = 0;
goto restart;
}
}
btrfs_release_path(path);
clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (trans) {
btrfs_end_transaction_throttle(trans);
btrfs_btree_balance_dirty(fs_info);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
if (!err) {
ret = relocate_file_extent_cluster(rc);
if (ret < 0)
err = ret;
}
rc->create_reloc_tree = false;
set_reloc_control(rc);
btrfs_backref_release_cache(&rc->backref_cache);
btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* Even in the case when the relocation is cancelled, we should all go
* through prepare_to_merge() and merge_reloc_roots().
*
* For error (including cancelled balance), prepare_to_merge() will
* mark all reloc trees orphan, then queue them for cleanup in
* merge_reloc_roots()
*/
err = prepare_to_merge(rc, err);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
merge_reloc_roots(rc);
rc->merge_reloc_tree = false;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
unset_reloc_control(rc);
btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/* get rid of pinned extents */
trans = btrfs_join_transaction(rc->extent_root);
2016-08-15 02:36:51 +00:00
if (IS_ERR(trans)) {
err = PTR_ERR(trans);
2016-08-15 02:36:51 +00:00
goto out_free;
}
ret = btrfs_commit_transaction(trans);
if (ret && !err)
err = ret;
out_free:
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
ret = clean_dirty_subvols(rc);
if (ret < 0 && !err)
err = ret;
btrfs_free_block_rsv(fs_info, rc->block_rsv);
btrfs_free_path(path);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return err;
}
static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_path *path;
struct btrfs_inode_item *item;
struct extent_buffer *leaf;
int ret;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_insert_empty_inode(trans, root, path, objectid);
if (ret)
goto out;
leaf = path->nodes[0];
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_set_inode_generation(leaf, item, 1);
btrfs_set_inode_size(leaf, item, 0);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
BTRFS_INODE_PREALLOC);
btrfs_mark_buffer_dirty(trans, leaf);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
out:
btrfs_free_path(path);
return ret;
}
static void delete_orphan_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 objectid)
{
struct btrfs_path *path;
struct btrfs_key key;
int ret = 0;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto out;
}
key.objectid = objectid;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret) {
if (ret > 0)
ret = -ENOENT;
goto out;
}
ret = btrfs_del_item(trans, root, path);
out:
if (ret)
btrfs_abort_transaction(trans, ret);
btrfs_free_path(path);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* helper to create inode for data relocation.
* the inode is in data relocation tree and its link count is 0
*/
static noinline_for_stack struct inode *create_reloc_inode(
struct btrfs_fs_info *fs_info,
const struct btrfs_block_group *group)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct inode *inode = NULL;
struct btrfs_trans_handle *trans;
struct btrfs_root *root;
u64 objectid;
int ret = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
root = btrfs_grab_root(fs_info->data_reloc_root);
trans = btrfs_start_transaction(root, 6);
if (IS_ERR(trans)) {
btrfs_put_root(root);
return ERR_CAST(trans);
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = btrfs_get_free_objectid(root, &objectid);
if (ret)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
goto out;
ret = __insert_orphan_inode(trans, root, objectid);
if (ret)
goto out;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
inode = btrfs_iget(objectid, root);
if (IS_ERR(inode)) {
delete_orphan_inode(trans, root, objectid);
ret = PTR_ERR(inode);
inode = NULL;
goto out;
}
BTRFS_I(inode)->reloc_block_group_start = group->start;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = btrfs_orphan_add(trans, BTRFS_I(inode));
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
out:
btrfs_put_root(root);
btrfs_end_transaction(trans);
btrfs_btree_balance_dirty(fs_info);
if (ret) {
iput(inode);
inode = ERR_PTR(ret);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
return inode;
}
/*
* Mark start of chunk relocation that is cancellable. Check if the cancellation
* has been requested meanwhile and don't start in that case.
*
* Return:
* 0 success
* -EINPROGRESS operation is already in progress, that's probably a bug
* -ECANCELED cancellation request was set before the operation started
*/
static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
{
if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
/* This should not happen */
btrfs_err(fs_info, "reloc already running, cannot start");
return -EINPROGRESS;
}
if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
btrfs_info(fs_info, "chunk relocation canceled on start");
/*
* On cancel, clear all requests but let the caller mark
* the end after cleanup operations.
*/
atomic_set(&fs_info->reloc_cancel_req, 0);
return -ECANCELED;
}
return 0;
}
/*
* Mark end of chunk relocation that is cancellable and wake any waiters.
*/
static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
{
/* Requested after start, clear bit first so any waiters can continue */
if (atomic_read(&fs_info->reloc_cancel_req) > 0)
btrfs_info(fs_info, "chunk relocation canceled during operation");
clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
atomic_set(&fs_info->reloc_cancel_req, 0);
}
static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
{
struct reloc_control *rc;
rc = kzalloc(sizeof(*rc), GFP_NOFS);
if (!rc)
return NULL;
INIT_LIST_HEAD(&rc->reloc_roots);
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
INIT_LIST_HEAD(&rc->dirty_subvol_roots);
btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
rc->reloc_root_tree.rb_root = RB_ROOT;
spin_lock_init(&rc->reloc_root_tree.lock);
extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
return rc;
}
static void free_reloc_control(struct reloc_control *rc)
{
struct mapping_node *node, *tmp;
free_reloc_roots(&rc->reloc_roots);
rbtree_postorder_for_each_entry_safe(node, tmp,
&rc->reloc_root_tree.rb_root, rb_node)
kfree(node);
kfree(rc);
}
/*
* Print the block group being relocated
*/
static void describe_relocation(struct btrfs_block_group *block_group)
{
char buf[128] = {'\0'};
btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
btrfs_info(block_group->fs_info, "relocating block group %llu flags %s",
block_group->start, buf);
}
static const char *stage_to_string(enum reloc_stage stage)
{
if (stage == MOVE_DATA_EXTENTS)
return "move data extents";
if (stage == UPDATE_DATA_PTRS)
return "update data pointers";
return "unknown";
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* function to relocate all extents in a block group.
*/
int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_block_group *bg;
struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
struct reloc_control *rc;
struct inode *inode;
struct btrfs_path *path;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
int ret;
int rw = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
int err = 0;
btrfs: do not start relocation until in progress drops are done We hit a bug with a recovering relocation on mount for one of our file systems in production. I reproduced this locally by injecting errors into snapshot delete with balance running at the same time. This presented as an error while looking up an extent item WARNING: CPU: 5 PID: 1501 at fs/btrfs/extent-tree.c:866 lookup_inline_extent_backref+0x647/0x680 CPU: 5 PID: 1501 Comm: btrfs-balance Not tainted 5.16.0-rc8+ #8 RIP: 0010:lookup_inline_extent_backref+0x647/0x680 RSP: 0018:ffffae0a023ab960 EFLAGS: 00010202 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000000000 RBP: ffff943fd2a39b60 R08: 0000000000000000 R09: 0000000000000001 R10: 0001434088152de0 R11: 0000000000000000 R12: 0000000001d05000 R13: ffff943fd2a39b60 R14: ffff943fdb96f2a0 R15: ffff9442fc923000 FS: 0000000000000000(0000) GS:ffff944e9eb40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1157b1fca8 CR3: 000000010f092000 CR4: 0000000000350ee0 Call Trace: <TASK> insert_inline_extent_backref+0x46/0xd0 __btrfs_inc_extent_ref.isra.0+0x5f/0x200 ? btrfs_merge_delayed_refs+0x164/0x190 __btrfs_run_delayed_refs+0x561/0xfa0 ? btrfs_search_slot+0x7b4/0xb30 ? btrfs_update_root+0x1a9/0x2c0 btrfs_run_delayed_refs+0x73/0x1f0 ? btrfs_update_root+0x1a9/0x2c0 btrfs_commit_transaction+0x50/0xa50 ? btrfs_update_reloc_root+0x122/0x220 prepare_to_merge+0x29f/0x320 relocate_block_group+0x2b8/0x550 btrfs_relocate_block_group+0x1a6/0x350 btrfs_relocate_chunk+0x27/0xe0 btrfs_balance+0x777/0xe60 balance_kthread+0x35/0x50 ? btrfs_balance+0xe60/0xe60 kthread+0x16b/0x190 ? set_kthread_struct+0x40/0x40 ret_from_fork+0x22/0x30 </TASK> Normally snapshot deletion and relocation are excluded from running at the same time by the fs_info->cleaner_mutex. However if we had a pending balance waiting to get the ->cleaner_mutex, and a snapshot deletion was running, and then the box crashed, we would come up in a state where we have a half deleted snapshot. Again, in the normal case the snapshot deletion needs to complete before relocation can start, but in this case relocation could very well start before the snapshot deletion completes, as we simply add the root to the dead roots list and wait for the next time the cleaner runs to clean up the snapshot. Fix this by setting a bit on the fs_info if we have any DEAD_ROOT's that had a pending drop_progress key. If they do then we know we were in the middle of the drop operation and set a flag on the fs_info. Then balance can wait until this flag is cleared to start up again. If there are DEAD_ROOT's that don't have a drop_progress set then we're safe to start balance right away as we'll be properly protected by the cleaner_mutex. CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-02-18 19:56:10 +00:00
/*
* This only gets set if we had a half-deleted snapshot on mount. We
* cannot allow relocation to start while we're still trying to clean up
* these pending deletions.
*/
ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
if (ret)
return ret;
/* We may have been woken up by close_ctree, so bail if we're closing. */
if (btrfs_fs_closing(fs_info))
return -EINTR;
bg = btrfs_lookup_block_group(fs_info, group_start);
if (!bg)
return -ENOENT;
/*
* Relocation of a data block group creates ordered extents. Without
* sb_start_write(), we can freeze the filesystem while unfinished
* ordered extents are left. Such ordered extents can cause a deadlock
* e.g. when syncfs() is waiting for their completion but they can't
* finish because they block when joining a transaction, due to the
* fact that the freeze locks are being held in write mode.
*/
if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
ASSERT(sb_write_started(fs_info->sb));
if (btrfs_pinned_by_swapfile(fs_info, bg)) {
btrfs_put_block_group(bg);
return -ETXTBSY;
}
rc = alloc_reloc_control(fs_info);
if (!rc) {
btrfs_put_block_group(bg);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return -ENOMEM;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = reloc_chunk_start(fs_info);
if (ret < 0) {
err = ret;
goto out_put_bg;
}
rc->extent_root = extent_root;
rc->block_group = bg;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs: scrub: Don't check free space before marking a block group RO [BUG] When running btrfs/072 with only one online CPU, it has a pretty high chance to fail: btrfs/072 12s ... _check_dmesg: something found in dmesg (see xfstests-dev/results//btrfs/072.dmesg) - output mismatch (see xfstests-dev/results//btrfs/072.out.bad) --- tests/btrfs/072.out 2019-10-22 15:18:14.008965340 +0800 +++ /xfstests-dev/results//btrfs/072.out.bad 2019-11-14 15:56:45.877152240 +0800 @@ -1,2 +1,3 @@ QA output created by 072 Silence is golden +Scrub find errors in "-m dup -d single" test ... And with the following call trace: BTRFS info (device dm-5): scrub: started on devid 1 ------------[ cut here ]------------ BTRFS: Transaction aborted (error -27) WARNING: CPU: 0 PID: 55087 at fs/btrfs/block-group.c:1890 btrfs_create_pending_block_groups+0x3e6/0x470 [btrfs] CPU: 0 PID: 55087 Comm: btrfs Tainted: G W O 5.4.0-rc1-custom+ #13 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 RIP: 0010:btrfs_create_pending_block_groups+0x3e6/0x470 [btrfs] Call Trace: __btrfs_end_transaction+0xdb/0x310 [btrfs] btrfs_end_transaction+0x10/0x20 [btrfs] btrfs_inc_block_group_ro+0x1c9/0x210 [btrfs] scrub_enumerate_chunks+0x264/0x940 [btrfs] btrfs_scrub_dev+0x45c/0x8f0 [btrfs] btrfs_ioctl+0x31a1/0x3fb0 [btrfs] do_vfs_ioctl+0x636/0xaa0 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x43/0x50 do_syscall_64+0x79/0xe0 entry_SYSCALL_64_after_hwframe+0x49/0xbe ---[ end trace 166c865cec7688e7 ]--- [CAUSE] The error number -27 is -EFBIG, returned from the following call chain: btrfs_end_transaction() |- __btrfs_end_transaction() |- btrfs_create_pending_block_groups() |- btrfs_finish_chunk_alloc() |- btrfs_add_system_chunk() This happens because we have used up all space of btrfs_super_block::sys_chunk_array. The root cause is, we have the following bad loop of creating tons of system chunks: 1. The only SYSTEM chunk is being scrubbed It's very common to have only one SYSTEM chunk. 2. New SYSTEM bg will be allocated As btrfs_inc_block_group_ro() will check if we have enough space after marking current bg RO. If not, then allocate a new chunk. 3. New SYSTEM bg is still empty, will be reclaimed During the reclaim, we will mark it RO again. 4. That newly allocated empty SYSTEM bg get scrubbed We go back to step 2, as the bg is already mark RO but still not cleaned up yet. If the cleaner kthread doesn't get executed fast enough (e.g. only one CPU), then we will get more and more empty SYSTEM chunks, using up all the space of btrfs_super_block::sys_chunk_array. [FIX] Since scrub/dev-replace doesn't always need to allocate new extent, especially chunk tree extent, so we don't really need to do chunk pre-allocation. To break above spiral, here we introduce a new parameter to btrfs_inc_block_group(), @do_chunk_alloc, which indicates whether we need extra chunk pre-allocation. For relocation, we pass @do_chunk_alloc=true, while for scrub, we pass @do_chunk_alloc=false. This should keep unnecessary empty chunks from popping up for scrub. Also, since there are two parameters for btrfs_inc_block_group_ro(), add more comment for it. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-11-15 02:09:00 +00:00
ret = btrfs_inc_block_group_ro(rc->block_group, true);
if (ret) {
err = ret;
goto out;
}
rw = 1;
path = btrfs_alloc_path();
if (!path) {
err = -ENOMEM;
goto out;
}
inode = lookup_free_space_inode(rc->block_group, path);
btrfs_free_path(path);
if (!IS_ERR(inode))
ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
else
ret = PTR_ERR(inode);
if (ret && ret != -ENOENT) {
err = ret;
goto out;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
if (IS_ERR(rc->data_inode)) {
err = PTR_ERR(rc->data_inode);
rc->data_inode = NULL;
goto out;
}
describe_relocation(rc->block_group);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
Btrfs: don't do unnecessary delalloc flushes when relocating Before we start the actual relocation process of a block group, we do calls to flush delalloc of all inodes and then wait for ordered extents to complete. However we do these flush calls just to make sure we don't race with concurrent tasks that have actually already started to run delalloc and have allocated an extent from the block group we want to relocate, right before we set it to readonly mode, but have not yet created the respective ordered extents. The flush calls make us wait for such concurrent tasks because they end up calling filemap_fdatawrite_range() (through btrfs_start_delalloc_roots() -> __start_delalloc_inodes() -> btrfs_alloc_delalloc_work() -> btrfs_run_delalloc_work()) which ends up serializing us with those tasks due to attempts to lock the same pages (and the delalloc flush procedure calls the allocator and creates the ordered extents before unlocking the pages). These flushing calls not only make us waste time (cpu, IO) but also reduce the chances of writing larger extents (applications might be writing to contiguous ranges and we flush before they finish dirtying the whole ranges). So make sure we don't flush delalloc and just wait for concurrent tasks that have already started flushing delalloc and have allocated an extent from the block group we are about to relocate. This change also ends up fixing a race with direct IO writes that makes relocation not wait for direct IO ordered extents. This race is illustrated by the following diagram: CPU 1 CPU 2 btrfs_relocate_block_group(bg X) starts direct IO write, target inode currently has no ordered extents ongoing nor dirty pages (delalloc regions), therefore the root for our inode is not in the list fs_info->ordered_roots btrfs_direct_IO() __blockdev_direct_IO() btrfs_get_blocks_direct() btrfs_lock_extent_direct() locks range in the io tree btrfs_new_extent_direct() btrfs_reserve_extent() --> extent allocated from bg X btrfs_inc_block_group_ro(bg X) btrfs_start_delalloc_roots() __start_delalloc_inodes() --> does nothing, no dealloc ranges in the inode's io tree so the inode's root is not in the list fs_info->delalloc_roots btrfs_wait_ordered_roots() --> does not find the inode's root in the list fs_info->ordered_roots --> ends up not waiting for the direct IO write started by the task at CPU 2 relocate_block_group(rc->stage == MOVE_DATA_EXTENTS) prepare_to_relocate() btrfs_commit_transaction() iterates the extent tree, using its commit root and moves extents into new locations btrfs_add_ordered_extent_dio() --> now a ordered extent is created and added to the list root->ordered_extents and the root added to the list fs_info->ordered_roots --> this is too late and the task at CPU 1 already started the relocation btrfs_commit_transaction() btrfs_finish_ordered_io() btrfs_alloc_reserved_file_extent() --> adds delayed data reference for the extent allocated from bg X relocate_block_group(rc->stage == UPDATE_DATA_PTRS) prepare_to_relocate() btrfs_commit_transaction() --> delayed refs are run, so an extent item for the allocated extent from bg X is added to extent tree --> commit roots are switched, so the next scan in the extent tree will see the extent item sees the extent in the extent tree When this happens the relocation produces the following warning when it finishes: [ 7260.832836] ------------[ cut here ]------------ [ 7260.834653] WARNING: CPU: 5 PID: 6765 at fs/btrfs/relocation.c:4318 btrfs_relocate_block_group+0x245/0x2a1 [btrfs]() [ 7260.838268] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc [ 7260.850935] CPU: 5 PID: 6765 Comm: btrfs Not tainted 4.5.0-rc6-btrfs-next-28+ #1 [ 7260.852998] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 7260.852998] 0000000000000000 ffff88020bf57bc0 ffffffff812648b3 0000000000000000 [ 7260.852998] 0000000000000009 ffff88020bf57bf8 ffffffff81051608 ffffffffa03c1b2d [ 7260.852998] ffff8800b2bbb800 0000000000000000 ffff8800b17bcc58 ffff8800399dd000 [ 7260.852998] Call Trace: [ 7260.852998] [<ffffffff812648b3>] dump_stack+0x67/0x90 [ 7260.852998] [<ffffffff81051608>] warn_slowpath_common+0x99/0xb2 [ 7260.852998] [<ffffffffa03c1b2d>] ? btrfs_relocate_block_group+0x245/0x2a1 [btrfs] [ 7260.852998] [<ffffffff810516d4>] warn_slowpath_null+0x1a/0x1c [ 7260.852998] [<ffffffffa03c1b2d>] btrfs_relocate_block_group+0x245/0x2a1 [btrfs] [ 7260.852998] [<ffffffffa039d9de>] btrfs_relocate_chunk.isra.29+0x66/0xdb [btrfs] [ 7260.852998] [<ffffffffa039f314>] btrfs_balance+0xde1/0xe4e [btrfs] [ 7260.852998] [<ffffffff8127d671>] ? debug_smp_processor_id+0x17/0x19 [ 7260.852998] [<ffffffffa03a9583>] btrfs_ioctl_balance+0x255/0x2d3 [btrfs] [ 7260.852998] [<ffffffffa03ac96a>] btrfs_ioctl+0x11e0/0x1dff [btrfs] [ 7260.852998] [<ffffffff811451df>] ? handle_mm_fault+0x443/0xd63 [ 7260.852998] [<ffffffff81491817>] ? _raw_spin_unlock+0x31/0x44 [ 7260.852998] [<ffffffff8108b36a>] ? arch_local_irq_save+0x9/0xc [ 7260.852998] [<ffffffff811876ab>] vfs_ioctl+0x18/0x34 [ 7260.852998] [<ffffffff81187cb2>] do_vfs_ioctl+0x550/0x5be [ 7260.852998] [<ffffffff81190c30>] ? __fget_light+0x4d/0x71 [ 7260.852998] [<ffffffff81187d77>] SyS_ioctl+0x57/0x79 [ 7260.852998] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b [ 7260.893268] ---[ end trace eb7803b24ebab8ad ]--- This is because at the end of the first stage, in relocate_block_group(), we commit the current transaction, which makes delayed refs run, the commit roots are switched and so the second stage will find the extent item that the ordered extent added to the delayed refs. But this extent was not moved (ordered extent completed after first stage finished), so at the end of the relocation our block group item still has a positive used bytes counter, triggering a warning at the end of btrfs_relocate_block_group(). Later on when trying to read the extent contents from disk we hit a BUG_ON() due to the inability to map a block with a logical address that belongs to the block group we relocated and is no longer valid, resulting in the following trace: [ 7344.885290] BTRFS critical (device sdi): unable to find logical 12845056 len 4096 [ 7344.887518] ------------[ cut here ]------------ [ 7344.888431] kernel BUG at fs/btrfs/inode.c:1833! [ 7344.888431] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [ 7344.888431] Modules linked in: btrfs crc32c_generic xor ppdev raid6_pq psmouse sg acpi_cpufreq evdev i2c_piix4 tpm_tis serio_raw tpm i2c_core pcspkr parport_pc [ 7344.888431] CPU: 0 PID: 6831 Comm: od Tainted: G W 4.5.0-rc6-btrfs-next-28+ #1 [ 7344.888431] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 7344.888431] task: ffff880215818600 ti: ffff880204684000 task.ti: ffff880204684000 [ 7344.888431] RIP: 0010:[<ffffffffa037c88c>] [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs] [ 7344.888431] RSP: 0018:ffff8802046878f0 EFLAGS: 00010282 [ 7344.888431] RAX: 00000000ffffffea RBX: 0000000000001000 RCX: 0000000000000001 [ 7344.888431] RDX: ffff88023ec0f950 RSI: ffffffff8183b638 RDI: 00000000ffffffff [ 7344.888431] RBP: ffff880204687908 R08: 0000000000000001 R09: 0000000000000000 [ 7344.888431] R10: ffff880204687770 R11: ffffffff82f2d52d R12: 0000000000001000 [ 7344.888431] R13: ffff88021afbfee8 R14: 0000000000006208 R15: ffff88006cd199b0 [ 7344.888431] FS: 00007f1f9e1d6700(0000) GS:ffff88023ec00000(0000) knlGS:0000000000000000 [ 7344.888431] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 7344.888431] CR2: 00007f1f9dc8cb60 CR3: 000000023e3b6000 CR4: 00000000000006f0 [ 7344.888431] Stack: [ 7344.888431] 0000000000001000 0000000000001000 ffff880204687b98 ffff880204687950 [ 7344.888431] ffffffffa0395c8f ffffea0004d64d48 0000000000000000 0000000000001000 [ 7344.888431] ffffea0004d64d48 0000000000001000 0000000000000000 0000000000000000 [ 7344.888431] Call Trace: [ 7344.888431] [<ffffffffa0395c8f>] submit_extent_page+0xf5/0x16f [btrfs] [ 7344.888431] [<ffffffffa03970ac>] __do_readpage+0x4a0/0x4f1 [btrfs] [ 7344.888431] [<ffffffffa039680d>] ? btrfs_create_repair_bio+0xcb/0xcb [btrfs] [ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs] [ 7344.888431] [<ffffffff8108df55>] ? trace_hardirqs_on+0xd/0xf [ 7344.888431] [<ffffffffa039728c>] __do_contiguous_readpages.constprop.26+0xc2/0xe4 [btrfs] [ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs] [ 7344.888431] [<ffffffffa039739b>] __extent_readpages.constprop.25+0xed/0x100 [btrfs] [ 7344.888431] [<ffffffff81129d24>] ? lru_cache_add+0xe/0x10 [ 7344.888431] [<ffffffffa0397ea8>] extent_readpages+0x160/0x1aa [btrfs] [ 7344.888431] [<ffffffffa037eeb4>] ? btrfs_writepage_start_hook+0xbc/0xbc [btrfs] [ 7344.888431] [<ffffffff8115daad>] ? alloc_pages_current+0xa9/0xcd [ 7344.888431] [<ffffffffa037cdc9>] btrfs_readpages+0x1f/0x21 [btrfs] [ 7344.888431] [<ffffffff81128316>] __do_page_cache_readahead+0x168/0x1fc [ 7344.888431] [<ffffffff811285a0>] ondemand_readahead+0x1f6/0x207 [ 7344.888431] [<ffffffff811285a0>] ? ondemand_readahead+0x1f6/0x207 [ 7344.888431] [<ffffffff8111cf34>] ? pagecache_get_page+0x2b/0x154 [ 7344.888431] [<ffffffff8112870e>] page_cache_sync_readahead+0x3d/0x3f [ 7344.888431] [<ffffffff8111dbf7>] generic_file_read_iter+0x197/0x4e1 [ 7344.888431] [<ffffffff8117773a>] __vfs_read+0x79/0x9d [ 7344.888431] [<ffffffff81178050>] vfs_read+0x8f/0xd2 [ 7344.888431] [<ffffffff81178a38>] SyS_read+0x50/0x7e [ 7344.888431] [<ffffffff81492017>] entry_SYSCALL_64_fastpath+0x12/0x6b [ 7344.888431] Code: 8d 4d e8 45 31 c9 45 31 c0 48 8b 00 48 c1 e2 09 48 8b 80 80 fc ff ff 4c 89 65 e8 48 8b b8 f0 01 00 00 e8 1d 42 02 00 85 c0 79 02 <0f> 0b 4c 0 [ 7344.888431] RIP [<ffffffffa037c88c>] btrfs_merge_bio_hook+0x54/0x6b [btrfs] [ 7344.888431] RSP <ffff8802046878f0> [ 7344.970544] ---[ end trace eb7803b24ebab8ae ]--- Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <jbacik@fb.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2016-04-26 14:39:32 +00:00
btrfs_wait_block_group_reservations(rc->block_group);
Btrfs: fix race between block group relocation and nocow writes Relocation of a block group waits for all existing tasks flushing dellaloc, starting direct IO writes and any ordered extents before starting the relocation process. However for direct IO writes that end up doing nocow (inode either has the flag nodatacow set or the write is against a prealloc extent) we have a short time window that allows for a race that makes relocation proceed without waiting for the direct IO write to complete first, resulting in data loss after the relocation finishes. This is illustrated by the following diagram: CPU 1 CPU 2 btrfs_relocate_block_group(bg X) direct IO write starts against an extent in block group X using nocow mode (inode has the nodatacow flag or the write is for a prealloc extent) btrfs_direct_IO() btrfs_get_blocks_direct() --> can_nocow_extent() returns 1 btrfs_inc_block_group_ro(bg X) --> turns block group into RO mode btrfs_wait_ordered_roots() --> returns and does not know about the DIO write happening at CPU 2 (the task there has not created yet an ordered extent) relocate_block_group(bg X) --> rc->stage == MOVE_DATA_EXTENTS find_next_extent() --> returns extent that the DIO write is going to write to relocate_data_extent() relocate_file_extent_cluster() --> reads the extent from disk into pages belonging to the relocation inode and dirties them --> creates DIO ordered extent btrfs_submit_direct() --> submits bio against a location on disk obtained from an extent map before the relocation started btrfs_wait_ordered_range() --> writes all the pages read before to disk (belonging to the relocation inode) relocation finishes bio completes and wrote new data to the old location of the block group So fix this by tracking the number of nocow writers for a block group and make sure relocation waits for that number to go down to 0 before starting to move the extents. The same race can also happen with buffered writes in nocow mode since the patch I recently made titled "Btrfs: don't do unnecessary delalloc flushes when relocating", because we are no longer flushing all delalloc which served as a synchonization mechanism (due to page locking) and ensured the ordered extents for nocow buffered writes were created before we called btrfs_wait_ordered_roots(). The race with direct IO writes in nocow mode existed before that patch (no pages are locked or used during direct IO) and that fixed only races with direct IO writes that do cow. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Josef Bacik <jbacik@fb.com>
2016-05-09 12:15:41 +00:00
btrfs_wait_nocow_writers(rc->block_group);
btrfs_wait_ordered_roots(fs_info, U64_MAX, rc->block_group);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = btrfs_zone_finish(rc->block_group);
WARN_ON(ret && ret != -EAGAIN);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
while (1) {
enum reloc_stage finishes_stage;
mutex_lock(&fs_info->cleaner_mutex);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = relocate_block_group(rc);
mutex_unlock(&fs_info->cleaner_mutex);
btrfs: fix panic during relocation after ENOSPC before writeback happens We've been seeing the following sporadically throughout our fleet panic: kernel BUG at fs/btrfs/relocation.c:4584! netversion: 5.0-0 Backtrace: #0 [ffffc90003adb880] machine_kexec at ffffffff81041da8 #1 [ffffc90003adb8c8] __crash_kexec at ffffffff8110396c #2 [ffffc90003adb988] crash_kexec at ffffffff811048ad #3 [ffffc90003adb9a0] oops_end at ffffffff8101c19a #4 [ffffc90003adb9c0] do_trap at ffffffff81019114 #5 [ffffc90003adba00] do_error_trap at ffffffff810195d0 #6 [ffffc90003adbab0] invalid_op at ffffffff81a00a9b [exception RIP: btrfs_reloc_cow_block+692] RIP: ffffffff8143b614 RSP: ffffc90003adbb68 RFLAGS: 00010246 RAX: fffffffffffffff7 RBX: ffff8806b9c32000 RCX: ffff8806aad00690 RDX: ffff880850b295e0 RSI: ffff8806b9c32000 RDI: ffff88084f205bd0 RBP: ffff880849415000 R8: ffffc90003adbbe0 R9: ffff88085ac90000 R10: ffff8805f7369140 R11: 0000000000000000 R12: ffff880850b295e0 R13: ffff88084f205bd0 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffffc90003adbbb0] __btrfs_cow_block at ffffffff813bf1cd #8 [ffffc90003adbc28] btrfs_cow_block at ffffffff813bf4b3 #9 [ffffc90003adbc78] btrfs_search_slot at ffffffff813c2e6c The way relocation moves data extents is by creating a reloc inode and preallocating extents in this inode and then copying the data into these preallocated extents. Once we've done this for all of our extents, we'll write out these dirty pages, which marks the extent written, and goes into btrfs_reloc_cow_block(). From here we get our current reloc_control, which _should_ match the reloc_control for the current block group we're relocating. However if we get an ENOSPC in this path at some point we'll bail out, never initiating writeback on this inode. Not a huge deal, unless we happen to be doing relocation on a different block group, and this block group is now rc->stage == UPDATE_DATA_PTRS. This trips the BUG_ON() in btrfs_reloc_cow_block(), because we expect to be done modifying the data inode. We are in fact done modifying the metadata for the data inode we're currently using, but not the one from the failed block group, and thus we BUG_ON(). (This happens when writeback finishes for extents from the previous group, when we are at btrfs_finish_ordered_io() which updates the data reloc tree (inode item, drops/adds extent items, etc).) Fix this by writing out the reloc data inode always, and then breaking out of the loop after that point to keep from tripping this BUG_ON() later. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> [ add note from Filipe ] Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25 16:14:45 +00:00
if (ret < 0)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
err = ret;
finishes_stage = rc->stage;
btrfs: fix panic during relocation after ENOSPC before writeback happens We've been seeing the following sporadically throughout our fleet panic: kernel BUG at fs/btrfs/relocation.c:4584! netversion: 5.0-0 Backtrace: #0 [ffffc90003adb880] machine_kexec at ffffffff81041da8 #1 [ffffc90003adb8c8] __crash_kexec at ffffffff8110396c #2 [ffffc90003adb988] crash_kexec at ffffffff811048ad #3 [ffffc90003adb9a0] oops_end at ffffffff8101c19a #4 [ffffc90003adb9c0] do_trap at ffffffff81019114 #5 [ffffc90003adba00] do_error_trap at ffffffff810195d0 #6 [ffffc90003adbab0] invalid_op at ffffffff81a00a9b [exception RIP: btrfs_reloc_cow_block+692] RIP: ffffffff8143b614 RSP: ffffc90003adbb68 RFLAGS: 00010246 RAX: fffffffffffffff7 RBX: ffff8806b9c32000 RCX: ffff8806aad00690 RDX: ffff880850b295e0 RSI: ffff8806b9c32000 RDI: ffff88084f205bd0 RBP: ffff880849415000 R8: ffffc90003adbbe0 R9: ffff88085ac90000 R10: ffff8805f7369140 R11: 0000000000000000 R12: ffff880850b295e0 R13: ffff88084f205bd0 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffffc90003adbbb0] __btrfs_cow_block at ffffffff813bf1cd #8 [ffffc90003adbc28] btrfs_cow_block at ffffffff813bf4b3 #9 [ffffc90003adbc78] btrfs_search_slot at ffffffff813c2e6c The way relocation moves data extents is by creating a reloc inode and preallocating extents in this inode and then copying the data into these preallocated extents. Once we've done this for all of our extents, we'll write out these dirty pages, which marks the extent written, and goes into btrfs_reloc_cow_block(). From here we get our current reloc_control, which _should_ match the reloc_control for the current block group we're relocating. However if we get an ENOSPC in this path at some point we'll bail out, never initiating writeback on this inode. Not a huge deal, unless we happen to be doing relocation on a different block group, and this block group is now rc->stage == UPDATE_DATA_PTRS. This trips the BUG_ON() in btrfs_reloc_cow_block(), because we expect to be done modifying the data inode. We are in fact done modifying the metadata for the data inode we're currently using, but not the one from the failed block group, and thus we BUG_ON(). (This happens when writeback finishes for extents from the previous group, when we are at btrfs_finish_ordered_io() which updates the data reloc tree (inode item, drops/adds extent items, etc).) Fix this by writing out the reloc data inode always, and then breaking out of the loop after that point to keep from tripping this BUG_ON() later. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> [ add note from Filipe ] Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25 16:14:45 +00:00
/*
* We may have gotten ENOSPC after we already dirtied some
* extents. If writeout happens while we're relocating a
* different block group we could end up hitting the
* BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
* btrfs_reloc_cow_block. Make sure we write everything out
* properly so we don't trip over this problem, and then break
* out of the loop if we hit an error.
*/
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
ret = btrfs_wait_ordered_range(BTRFS_I(rc->data_inode), 0,
(u64)-1);
btrfs: fix panic during relocation after ENOSPC before writeback happens We've been seeing the following sporadically throughout our fleet panic: kernel BUG at fs/btrfs/relocation.c:4584! netversion: 5.0-0 Backtrace: #0 [ffffc90003adb880] machine_kexec at ffffffff81041da8 #1 [ffffc90003adb8c8] __crash_kexec at ffffffff8110396c #2 [ffffc90003adb988] crash_kexec at ffffffff811048ad #3 [ffffc90003adb9a0] oops_end at ffffffff8101c19a #4 [ffffc90003adb9c0] do_trap at ffffffff81019114 #5 [ffffc90003adba00] do_error_trap at ffffffff810195d0 #6 [ffffc90003adbab0] invalid_op at ffffffff81a00a9b [exception RIP: btrfs_reloc_cow_block+692] RIP: ffffffff8143b614 RSP: ffffc90003adbb68 RFLAGS: 00010246 RAX: fffffffffffffff7 RBX: ffff8806b9c32000 RCX: ffff8806aad00690 RDX: ffff880850b295e0 RSI: ffff8806b9c32000 RDI: ffff88084f205bd0 RBP: ffff880849415000 R8: ffffc90003adbbe0 R9: ffff88085ac90000 R10: ffff8805f7369140 R11: 0000000000000000 R12: ffff880850b295e0 R13: ffff88084f205bd0 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffffc90003adbbb0] __btrfs_cow_block at ffffffff813bf1cd #8 [ffffc90003adbc28] btrfs_cow_block at ffffffff813bf4b3 #9 [ffffc90003adbc78] btrfs_search_slot at ffffffff813c2e6c The way relocation moves data extents is by creating a reloc inode and preallocating extents in this inode and then copying the data into these preallocated extents. Once we've done this for all of our extents, we'll write out these dirty pages, which marks the extent written, and goes into btrfs_reloc_cow_block(). From here we get our current reloc_control, which _should_ match the reloc_control for the current block group we're relocating. However if we get an ENOSPC in this path at some point we'll bail out, never initiating writeback on this inode. Not a huge deal, unless we happen to be doing relocation on a different block group, and this block group is now rc->stage == UPDATE_DATA_PTRS. This trips the BUG_ON() in btrfs_reloc_cow_block(), because we expect to be done modifying the data inode. We are in fact done modifying the metadata for the data inode we're currently using, but not the one from the failed block group, and thus we BUG_ON(). (This happens when writeback finishes for extents from the previous group, when we are at btrfs_finish_ordered_io() which updates the data reloc tree (inode item, drops/adds extent items, etc).) Fix this by writing out the reloc data inode always, and then breaking out of the loop after that point to keep from tripping this BUG_ON() later. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> [ add note from Filipe ] Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25 16:14:45 +00:00
if (ret)
err = ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
invalidate_mapping_pages(rc->data_inode->i_mapping,
0, -1);
rc->stage = UPDATE_DATA_PTRS;
}
btrfs: fix panic during relocation after ENOSPC before writeback happens We've been seeing the following sporadically throughout our fleet panic: kernel BUG at fs/btrfs/relocation.c:4584! netversion: 5.0-0 Backtrace: #0 [ffffc90003adb880] machine_kexec at ffffffff81041da8 #1 [ffffc90003adb8c8] __crash_kexec at ffffffff8110396c #2 [ffffc90003adb988] crash_kexec at ffffffff811048ad #3 [ffffc90003adb9a0] oops_end at ffffffff8101c19a #4 [ffffc90003adb9c0] do_trap at ffffffff81019114 #5 [ffffc90003adba00] do_error_trap at ffffffff810195d0 #6 [ffffc90003adbab0] invalid_op at ffffffff81a00a9b [exception RIP: btrfs_reloc_cow_block+692] RIP: ffffffff8143b614 RSP: ffffc90003adbb68 RFLAGS: 00010246 RAX: fffffffffffffff7 RBX: ffff8806b9c32000 RCX: ffff8806aad00690 RDX: ffff880850b295e0 RSI: ffff8806b9c32000 RDI: ffff88084f205bd0 RBP: ffff880849415000 R8: ffffc90003adbbe0 R9: ffff88085ac90000 R10: ffff8805f7369140 R11: 0000000000000000 R12: ffff880850b295e0 R13: ffff88084f205bd0 R14: 0000000000000000 R15: 0000000000000000 ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018 #7 [ffffc90003adbbb0] __btrfs_cow_block at ffffffff813bf1cd #8 [ffffc90003adbc28] btrfs_cow_block at ffffffff813bf4b3 #9 [ffffc90003adbc78] btrfs_search_slot at ffffffff813c2e6c The way relocation moves data extents is by creating a reloc inode and preallocating extents in this inode and then copying the data into these preallocated extents. Once we've done this for all of our extents, we'll write out these dirty pages, which marks the extent written, and goes into btrfs_reloc_cow_block(). From here we get our current reloc_control, which _should_ match the reloc_control for the current block group we're relocating. However if we get an ENOSPC in this path at some point we'll bail out, never initiating writeback on this inode. Not a huge deal, unless we happen to be doing relocation on a different block group, and this block group is now rc->stage == UPDATE_DATA_PTRS. This trips the BUG_ON() in btrfs_reloc_cow_block(), because we expect to be done modifying the data inode. We are in fact done modifying the metadata for the data inode we're currently using, but not the one from the failed block group, and thus we BUG_ON(). (This happens when writeback finishes for extents from the previous group, when we are at btrfs_finish_ordered_io() which updates the data reloc tree (inode item, drops/adds extent items, etc).) Fix this by writing out the reloc data inode always, and then breaking out of the loop after that point to keep from tripping this BUG_ON() later. Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> [ add note from Filipe ] Signed-off-by: David Sterba <dsterba@suse.com>
2019-02-25 16:14:45 +00:00
if (err < 0)
goto out;
if (rc->extents_found == 0)
break;
btrfs_info(fs_info, "found %llu extents, stage: %s",
rc->extents_found, stage_to_string(finishes_stage));
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
WARN_ON(rc->block_group->pinned > 0);
WARN_ON(rc->block_group->reserved > 0);
WARN_ON(rc->block_group->used > 0);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
out:
if (err && rw)
btrfs_dec_block_group_ro(rc->block_group);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
iput(rc->data_inode);
out_put_bg:
btrfs_put_block_group(bg);
reloc_chunk_end(fs_info);
free_reloc_control(rc);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
return err;
}
static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_trans_handle *trans;
int ret, err;
trans = btrfs_start_transaction(fs_info->tree_root, 0);
if (IS_ERR(trans))
return PTR_ERR(trans);
memset(&root->root_item.drop_progress, 0,
sizeof(root->root_item.drop_progress));
btrfs_set_root_drop_level(&root->root_item, 0);
btrfs_set_root_refs(&root->root_item, 0);
ret = btrfs_update_root(trans, fs_info->tree_root,
&root->root_key, &root->root_item);
err = btrfs_end_transaction(trans);
if (err)
return err;
return ret;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/*
* recover relocation interrupted by system crash.
*
* this function resumes merging reloc trees with corresponding fs trees.
* this is important for keeping the sharing of tree blocks
*/
int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
LIST_HEAD(reloc_roots);
struct btrfs_key key;
struct btrfs_root *fs_root;
struct btrfs_root *reloc_root;
struct btrfs_path *path;
struct extent_buffer *leaf;
struct reloc_control *rc = NULL;
struct btrfs_trans_handle *trans;
int ret2;
int ret = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->reada = READA_BACK;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
key.objectid = BTRFS_TREE_RELOC_OBJECTID;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
path, 0, 0);
if (ret < 0)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
goto out;
if (ret > 0) {
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
ret = 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
btrfs_release_path(path);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
key.type != BTRFS_ROOT_ITEM_KEY)
break;
reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (IS_ERR(reloc_root)) {
ret = PTR_ERR(reloc_root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
goto out;
}
set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
list_add(&reloc_root->root_list, &reloc_roots);
if (btrfs_root_refs(&reloc_root->root_item) > 0) {
fs_root = btrfs_get_fs_root(fs_info,
reloc_root->root_key.offset, false);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (IS_ERR(fs_root)) {
ret = PTR_ERR(fs_root);
if (ret != -ENOENT)
goto out;
ret = mark_garbage_root(reloc_root);
if (ret < 0)
goto out;
ret = 0;
} else {
btrfs_put_root(fs_root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
}
if (key.offset == 0)
break;
key.offset--;
}
btrfs_release_path(path);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (list_empty(&reloc_roots))
goto out;
rc = alloc_reloc_control(fs_info);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
if (!rc) {
ret = -ENOMEM;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
goto out;
}
ret = reloc_chunk_start(fs_info);
if (ret < 0)
goto out_end;
rc->extent_root = btrfs_extent_root(fs_info, 0);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
set_reloc_control(rc);
trans = btrfs_join_transaction(rc->extent_root);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_unset;
}
rc->merge_reloc_tree = true;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
while (!list_empty(&reloc_roots)) {
reloc_root = list_entry(reloc_roots.next,
struct btrfs_root, root_list);
list_del(&reloc_root->root_list);
if (btrfs_root_refs(&reloc_root->root_item) == 0) {
list_add_tail(&reloc_root->root_list,
&rc->reloc_roots);
continue;
}
fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
false);
if (IS_ERR(fs_root)) {
ret = PTR_ERR(fs_root);
list_add_tail(&reloc_root->root_list, &reloc_roots);
btrfs_end_transaction(trans);
goto out_unset;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = __add_reloc_root(reloc_root);
ASSERT(ret != -EEXIST);
if (ret) {
list_add_tail(&reloc_root->root_list, &reloc_roots);
btrfs_put_root(fs_root);
btrfs_end_transaction(trans);
goto out_unset;
}
fs_root->reloc_root = btrfs_grab_root(reloc_root);
btrfs_put_root(fs_root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
ret = btrfs_commit_transaction(trans);
if (ret)
goto out_unset;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
merge_reloc_roots(rc);
unset_reloc_control(rc);
trans = btrfs_join_transaction(rc->extent_root);
2016-08-15 02:36:51 +00:00
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto out_clean;
2016-08-15 02:36:51 +00:00
}
ret = btrfs_commit_transaction(trans);
out_clean:
ret2 = clean_dirty_subvols(rc);
if (ret2 < 0 && !ret)
ret = ret2;
out_unset:
unset_reloc_control(rc);
out_end:
reloc_chunk_end(fs_info);
free_reloc_control(rc);
out:
free_reloc_roots(&reloc_roots);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_free_path(path);
if (ret == 0) {
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
/* cleanup orphan inode in data relocation tree */
fs_root = btrfs_grab_root(fs_info->data_reloc_root);
ASSERT(fs_root);
ret = btrfs_orphan_cleanup(fs_root);
btrfs_put_root(fs_root);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
return ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
/*
* helper to add ordered checksum for data relocation.
*
* cloning checksum properly handles the nodatasum extents.
* it also saves CPU time to re-calculate the checksum.
*/
int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
{
struct btrfs_inode *inode = ordered->inode;
struct btrfs_fs_info *fs_info = inode->root->fs_info;
u64 disk_bytenr = ordered->file_offset + inode->reloc_block_group_start;
struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
LIST_HEAD(list);
int ret;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
disk_bytenr + ordered->num_bytes - 1,
&list, false);
if (ret < 0) {
btrfs_mark_ordered_extent_error(ordered);
return ret;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
while (!list_empty(&list)) {
struct btrfs_ordered_sum *sums =
list_entry(list.next, struct btrfs_ordered_sum, list);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
list_del_init(&sums->list);
/*
* We need to offset the new_bytenr based on where the csum is.
* We need to do this because we will read in entire prealloc
* extents but we may have written to say the middle of the
* prealloc extent, so we need to make sure the csum goes with
* the right disk offset.
*
* We can do this because the data reloc inode refers strictly
* to the on disk bytes, so we don't have to worry about
* disk_len vs real len like with real inodes since it's all
* disk length.
*/
sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
btrfs_add_ordered_sum(ordered, sums);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
return 0;
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
}
int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const struct extent_buffer *buf,
struct extent_buffer *cow)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct reloc_control *rc;
struct btrfs_backref_node *node;
int first_cow = 0;
int level;
int ret = 0;
rc = fs_info->reloc_ctl;
if (!rc)
return 0;
BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
level = btrfs_header_level(buf);
if (btrfs_header_generation(buf) <=
btrfs_root_last_snapshot(&root->root_item))
first_cow = 1;
if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID && rc->create_reloc_tree) {
WARN_ON(!first_cow && level == 0);
node = rc->backref_cache.path[level];
BUG_ON(node->bytenr != buf->start &&
node->new_bytenr != buf->start);
btrfs_backref_drop_node_buffer(node);
atomic_inc(&cow->refs);
node->eb = cow;
node->new_bytenr = cow->start;
if (!node->pending) {
list_move_tail(&node->list,
&rc->backref_cache.pending[level]);
node->pending = 1;
}
if (first_cow)
mark_block_processed(rc, node);
if (first_cow && level > 0)
rc->nodes_relocated += buf->len;
}
if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
ret = replace_file_extents(trans, rc, root, cow);
return ret;
}
/*
* called before creating snapshot. it calculates metadata reservation
* required for relocating tree blocks in the snapshot
*/
void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
u64 *bytes_to_reserve)
{
2019-03-18 02:48:19 +00:00
struct btrfs_root *root = pending->root;
struct reloc_control *rc = root->fs_info->reloc_ctl;
btrfs: relocation: fix reloc_root lifespan and access [BUG] There are several different KASAN reports for balance + snapshot workloads. Involved call paths include: should_ignore_root+0x54/0xb0 [btrfs] build_backref_tree+0x11af/0x2280 [btrfs] relocate_tree_blocks+0x391/0xb80 [btrfs] relocate_block_group+0x3e5/0xa00 [btrfs] btrfs_relocate_block_group+0x240/0x4d0 [btrfs] btrfs_relocate_chunk+0x53/0xf0 [btrfs] btrfs_balance+0xc91/0x1840 [btrfs] btrfs_ioctl_balance+0x416/0x4e0 [btrfs] btrfs_ioctl+0x8af/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 create_reloc_root+0x9f/0x460 [btrfs] btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs] create_pending_snapshot+0xa9b/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs] create_pending_snapshot+0x209/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 [CAUSE] All these call sites are only relying on root->reloc_root, which can undergo btrfs_drop_snapshot(), and since we don't have real refcount based protection to reloc roots, we can reach already dropped reloc root, triggering KASAN. [FIX] To avoid such access to unstable root->reloc_root, we should check BTRFS_ROOT_DEAD_RELOC_TREE bit first. This patch introduces wrappers that provide the correct way to check the bit with memory barriers protection. Most callers don't distinguish merged reloc tree and no reloc tree. The only exception is should_ignore_root(), as merged reloc tree can be ignored, while no reloc tree shouldn't. [CRITICAL SECTION ANALYSIS] Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the DEAD_RELOC_TREE bit has extra help from transaction as a higher level barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are: NULL: reloc_root is NULL PTR: reloc_root is not NULL 0: DEAD_RELOC_ROOT bit not set DEAD: DEAD_RELOC_ROOT bit set (NULL, 0) Initial state __ | /\ Section A btrfs_init_reloc_root() \/ | __ (PTR, 0) reloc_root initialized /\ | | btrfs_update_reloc_root() | Section B | | (PTR, DEAD) reloc_root has been merged \/ | __ === btrfs_commit_transaction() ==================== | /\ clean_dirty_subvols() | | | Section C (NULL, DEAD) reloc_root cleanup starts \/ | __ btrfs_drop_snapshot() /\ | | Section D (NULL, 0) Back to initial state \/ Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds transaction handle, so none of such caller can cross transaction boundary. In Section A, every caller just found no DEAD bit, and grab reloc_root. In the cross section A-B, caller may get no DEAD bit, but since reloc_root is still completely valid thus accessing reloc_root is completely safe. No test_bit() caller can cross the boundary of Section B and Section C. In Section C, every caller found the DEAD bit, so no one will access reloc_root. In the cross section C-D, either caller gets the DEAD bit set, avoiding access reloc_root no matter if it's safe or not. Or caller get the DEAD bit cleared, then access reloc_root, which is already NULL, nothing will be wrong. The memory write barriers are between the reloc_root updates and bit set/clear, the pairing read side is before test_bit. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ barriers ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 05:12:00 +00:00
if (!rc || !have_reloc_root(root))
return;
if (!rc->merge_reloc_tree)
return;
root = root->reloc_root;
BUG_ON(btrfs_root_refs(&root->root_item) == 0);
/*
* relocation is in the stage of merging trees. the space
* used by merging a reloc tree is twice the size of
* relocated tree nodes in the worst case. half for cowing
* the reloc tree, half for cowing the fs tree. the space
* used by cowing the reloc tree will be freed after the
* tree is dropped. if we create snapshot, cowing the fs
* tree may use more space than it frees. so we need
* reserve extra space.
*/
*bytes_to_reserve += rc->nodes_relocated;
}
/*
* called after snapshot is created. migrate block reservation
* and create reloc root for the newly created snapshot
*
* This is similar to btrfs_init_reloc_root(), we come out of here with two
* references held on the reloc_root, one for root->reloc_root and one for
* rc->reloc_roots.
*/
int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
struct btrfs_pending_snapshot *pending)
{
struct btrfs_root *root = pending->root;
struct btrfs_root *reloc_root;
struct btrfs_root *new_root;
2019-03-18 02:48:19 +00:00
struct reloc_control *rc = root->fs_info->reloc_ctl;
int ret;
btrfs: relocation: fix reloc_root lifespan and access [BUG] There are several different KASAN reports for balance + snapshot workloads. Involved call paths include: should_ignore_root+0x54/0xb0 [btrfs] build_backref_tree+0x11af/0x2280 [btrfs] relocate_tree_blocks+0x391/0xb80 [btrfs] relocate_block_group+0x3e5/0xa00 [btrfs] btrfs_relocate_block_group+0x240/0x4d0 [btrfs] btrfs_relocate_chunk+0x53/0xf0 [btrfs] btrfs_balance+0xc91/0x1840 [btrfs] btrfs_ioctl_balance+0x416/0x4e0 [btrfs] btrfs_ioctl+0x8af/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 create_reloc_root+0x9f/0x460 [btrfs] btrfs_reloc_post_snapshot+0xff/0x6c0 [btrfs] create_pending_snapshot+0xa9b/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 btrfs_reloc_pre_snapshot+0x85/0xc0 [btrfs] create_pending_snapshot+0x209/0x15f0 [btrfs] create_pending_snapshots+0x111/0x140 [btrfs] btrfs_commit_transaction+0x7a6/0x1360 [btrfs] btrfs_mksubvol+0x915/0x960 [btrfs] btrfs_ioctl_snap_create_transid+0x1d5/0x1e0 [btrfs] btrfs_ioctl_snap_create_v2+0x1d3/0x270 [btrfs] btrfs_ioctl+0x241b/0x3e60 [btrfs] do_vfs_ioctl+0x831/0xb10 [CAUSE] All these call sites are only relying on root->reloc_root, which can undergo btrfs_drop_snapshot(), and since we don't have real refcount based protection to reloc roots, we can reach already dropped reloc root, triggering KASAN. [FIX] To avoid such access to unstable root->reloc_root, we should check BTRFS_ROOT_DEAD_RELOC_TREE bit first. This patch introduces wrappers that provide the correct way to check the bit with memory barriers protection. Most callers don't distinguish merged reloc tree and no reloc tree. The only exception is should_ignore_root(), as merged reloc tree can be ignored, while no reloc tree shouldn't. [CRITICAL SECTION ANALYSIS] Although test_bit()/set_bit()/clear_bit() doesn't imply a barrier, the DEAD_RELOC_TREE bit has extra help from transaction as a higher level barrier, the lifespan of root::reloc_root and DEAD_RELOC_TREE bit are: NULL: reloc_root is NULL PTR: reloc_root is not NULL 0: DEAD_RELOC_ROOT bit not set DEAD: DEAD_RELOC_ROOT bit set (NULL, 0) Initial state __ | /\ Section A btrfs_init_reloc_root() \/ | __ (PTR, 0) reloc_root initialized /\ | | btrfs_update_reloc_root() | Section B | | (PTR, DEAD) reloc_root has been merged \/ | __ === btrfs_commit_transaction() ==================== | /\ clean_dirty_subvols() | | | Section C (NULL, DEAD) reloc_root cleanup starts \/ | __ btrfs_drop_snapshot() /\ | | Section D (NULL, 0) Back to initial state \/ Every have_reloc_root() or test_bit(DEAD_RELOC_ROOT) caller holds transaction handle, so none of such caller can cross transaction boundary. In Section A, every caller just found no DEAD bit, and grab reloc_root. In the cross section A-B, caller may get no DEAD bit, but since reloc_root is still completely valid thus accessing reloc_root is completely safe. No test_bit() caller can cross the boundary of Section B and Section C. In Section C, every caller found the DEAD bit, so no one will access reloc_root. In the cross section C-D, either caller gets the DEAD bit set, avoiding access reloc_root no matter if it's safe or not. Or caller get the DEAD bit cleared, then access reloc_root, which is already NULL, nothing will be wrong. The memory write barriers are between the reloc_root updates and bit set/clear, the pairing read side is before test_bit. Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org> Fixes: d2311e698578 ("btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots") CC: stable@vger.kernel.org # 5.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ barriers ] Signed-off-by: David Sterba <dsterba@suse.com>
2020-01-08 05:12:00 +00:00
if (!rc || !have_reloc_root(root))
return 0;
rc = root->fs_info->reloc_ctl;
rc->merging_rsv_size += rc->nodes_relocated;
if (rc->merge_reloc_tree) {
ret = btrfs_block_rsv_migrate(&pending->block_rsv,
rc->block_rsv,
rc->nodes_relocated, true);
if (ret)
return ret;
}
new_root = pending->snap;
reloc_root = create_reloc_root(trans, root->reloc_root, btrfs_root_id(new_root));
if (IS_ERR(reloc_root))
return PTR_ERR(reloc_root);
ret = __add_reloc_root(reloc_root);
ASSERT(ret != -EEXIST);
if (ret) {
/* Pairs with create_reloc_root */
btrfs_put_root(reloc_root);
return ret;
}
new_root->reloc_root = btrfs_grab_root(reloc_root);
if (rc->create_reloc_tree)
ret = clone_backref_node(trans, rc, root, reloc_root);
return ret;
}
btrfs: output affected files when relocation fails [PROBLEM] When relocation fails (mostly due to checksum mismatch), we only got very cryptic error messages like: BTRFS info (device dm-4): relocating block group 13631488 flags data BTRFS warning (device dm-4): csum failed root -9 ino 257 off 0 csum 0x373e1ae3 expected csum 0x98757625 mirror 1 BTRFS error (device dm-4): bdev /dev/mapper/test-scratch1 errs: wr 0, rd 0, flush 0, corrupt 1, gen 0 BTRFS info (device dm-4): balance: ended with status: -5 The end user has to decipher the above messages and use various tools to locate the affected files and find a way to fix the problem (mostly deleting the file). This is not an easy work even for experienced developer, not to mention the end users. [SCRUB IS DOING BETTER] By contrast, scrub is providing much better error messages: BTRFS error (device dm-4): unable to fixup (regular) error at logical 13631488 on dev /dev/mapper/test-scratch1 physical 13631488 BTRFS warning (device dm-4): checksum error at logical 13631488 on dev /dev/mapper/test-scratch1, physical 13631488, root 5, inode 257, offset 0, length 4096, links 1 (path: file) BTRFS info (device dm-4): scrub: finished on devid 1 with status: 0 Which provides the affected files directly to the end user. [IMPROVEMENT] Instead of the generic data checksum error messages, which is not doing a good job for data reloc inodes, this patch introduce a scrub like backref walking based solution. When a sector fails its checksum for data reloc inode, we go the following workflow: - Get the real logical bytenr For data reloc inode, the file offset is the offset inside the block group. Thus the real logical bytenr is @file_off + @block_group->start. - Do an extent type check If it's tree blocks it's much easier to handle, just go through all the tree block backref. - Do a backref walk and inode path resolution for data extents This is mostly the same as scrub. But unfortunately we can not reuse the same function as the output format is different. Now the new output would be more user friendly: BTRFS info (device dm-4): relocating block group 13631488 flags data BTRFS warning (device dm-4): csum failed root -9 ino 257 off 0 logical 13631488 csum 0x373e1ae3 expected csum 0x98757625 mirror 1 BTRFS warning (device dm-4): checksum error at logical 13631488 mirror 1 root 5 inode 257 offset 0 length 4096 links 1 (path: file) BTRFS error (device dm-4): bdev /dev/mapper/test-scratch1 errs: wr 0, rd 0, flush 0, corrupt 2, gen 0 BTRFS info (device dm-4): balance: ended with status: -5 Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-03 04:40:01 +00:00
/*
* Get the current bytenr for the block group which is being relocated.
*
* Return U64_MAX if no running relocation.
*/
u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
btrfs: output affected files when relocation fails [PROBLEM] When relocation fails (mostly due to checksum mismatch), we only got very cryptic error messages like: BTRFS info (device dm-4): relocating block group 13631488 flags data BTRFS warning (device dm-4): csum failed root -9 ino 257 off 0 csum 0x373e1ae3 expected csum 0x98757625 mirror 1 BTRFS error (device dm-4): bdev /dev/mapper/test-scratch1 errs: wr 0, rd 0, flush 0, corrupt 1, gen 0 BTRFS info (device dm-4): balance: ended with status: -5 The end user has to decipher the above messages and use various tools to locate the affected files and find a way to fix the problem (mostly deleting the file). This is not an easy work even for experienced developer, not to mention the end users. [SCRUB IS DOING BETTER] By contrast, scrub is providing much better error messages: BTRFS error (device dm-4): unable to fixup (regular) error at logical 13631488 on dev /dev/mapper/test-scratch1 physical 13631488 BTRFS warning (device dm-4): checksum error at logical 13631488 on dev /dev/mapper/test-scratch1, physical 13631488, root 5, inode 257, offset 0, length 4096, links 1 (path: file) BTRFS info (device dm-4): scrub: finished on devid 1 with status: 0 Which provides the affected files directly to the end user. [IMPROVEMENT] Instead of the generic data checksum error messages, which is not doing a good job for data reloc inodes, this patch introduce a scrub like backref walking based solution. When a sector fails its checksum for data reloc inode, we go the following workflow: - Get the real logical bytenr For data reloc inode, the file offset is the offset inside the block group. Thus the real logical bytenr is @file_off + @block_group->start. - Do an extent type check If it's tree blocks it's much easier to handle, just go through all the tree block backref. - Do a backref walk and inode path resolution for data extents This is mostly the same as scrub. But unfortunately we can not reuse the same function as the output format is different. Now the new output would be more user friendly: BTRFS info (device dm-4): relocating block group 13631488 flags data BTRFS warning (device dm-4): csum failed root -9 ino 257 off 0 logical 13631488 csum 0x373e1ae3 expected csum 0x98757625 mirror 1 BTRFS warning (device dm-4): checksum error at logical 13631488 mirror 1 root 5 inode 257 offset 0 length 4096 links 1 (path: file) BTRFS error (device dm-4): bdev /dev/mapper/test-scratch1 errs: wr 0, rd 0, flush 0, corrupt 2, gen 0 BTRFS info (device dm-4): balance: ended with status: -5 Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-03 04:40:01 +00:00
{
u64 logical = U64_MAX;
lockdep_assert_held(&fs_info->reloc_mutex);
if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
logical = fs_info->reloc_ctl->block_group->start;
return logical;
}